

Tutorial

Learned Query Optimizer: At the Forefront of Al-Driven Databases

Rong Zhu¹, Ziniu Wu², Chengliang Chai³, Andreas Pfadler¹,

Boling Ding¹, Guoliang Li³, Jingren Zhou¹

Speakers

Rong Zhu Alibaba Group

Ziniu Wu MIT

Chengliang Chai Tsinghua University

Andreas Pfadler Alibaba Group

Bolin Ding Alibaba Group

Guoliang Li Tsinghua University

Jingren Zhou Alibaba Group

Outline

□ Part 1: Preliminaries

Part 2: Learned Individual Component

□ Part 3: Learned Whole QO Module

Part 4: Applications and Deployment

□ Part 5: Summary and Future Work

- Tutorial Part A

• Tutorial Part B

Q & A

Part 1: Preliminaries

Query Optimizer (QO)

Learned QO

QO: The Central Role in DBMS

- Generating best physical plan for input query
- Directly relates to the system performance

QO: A Difficult Task

• Different join orders, join methods, scan methods, ...

QO Architecture

• The general volcano framework

QO Architecture

• The general volcano framework

SELECT COUNT(*)

FROM s, sc, c

WHERE s.sid = sc.sid AND sc.cid = c.cid

AND s.year < 2009 AND c.credit >= 3

Traditional QO Methods

• Experience driven: not favorable enough

Learned QO: A Pioneer in Al4DB

• QO is an experimental plot for learned techniques: more automatic, fine-grained and accurate solutions

Learned QO: Status and Opportunities

- Review on recent advances: 100+ papers recently
- Deep analysis: comparison and benchmark
- Summary and future work

Explore this journey together!

Learned component algorithms: CardEst, Cost Model, Join Order search, ...

Learned E2e QO

Intelligent QO

System Deployment

Applications in real-world scenarios

Existing traditional DBMS

Part 2: Learned QO Components

□ Cardinality Estimation (CardEst)

Cost Model

Join Order Search

Cardinality estimation

• CardEst: estimate the result size C(Q) of the query Q without actual execution

Lay foundations for cost estimation and join ordering selection
A key component in QO and decides the query plan quality

CardEst methods overview

- Traditional methods: Histogram and Sampling
- Learned query-driven methods:
 - Analyze query workload, learn regression model mapping Q to C(Q)
- Learned data-driven methods:
 - Analyze data, learn $Pr_T(A)$ of table T with attributes A
 - $C(Q) = Pr_T(Q) * |T|$
- Bound-based methods:
 - Instead of estimating the cardinality, it provides an upper bound
 - Can avoid very expensive join orders and physical operators
 - Rigorously not CardEst (will not explain in detail)

Traditional methods

- Most widely used in modern DBMS
- Histogram: attribute independent assumption $Pr(A) \approx \prod_i Pr(A_i)$
 - Fast inference, low storage cost, high estimation error
 - Multi-dimensional Histogram
- Sampling:
 - Execute the query on a smaller sample of the data
 - Estimation accuracy and inference speed trade-off
 - Kernel-density estimation, join sampling
- Join uniformity assumption
 - Estimate join query $Q = A \bowtie B$ as $C(Q) = Pr_A(Q_A) * Pr_B(Q_B) * |A \bowtie B|$

Learned query-driven methods

Build supervised model mapping Q to C(Q) Query feature engineering is important

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5 Table set $\{[0101...0], [0010...1]\}$ Join set $\{[0010]\}$ Predicate set $\{[10000100...1000...1000...1]\}$ table id samples join id column id value operator id

- XGboost, Neural network, Tree-LSTM, deep ensemble
- Fast inference speed, versatile
- Estimation accuracy is highly dependent on the training query workload.
 - Requires excessive amount of training queries (unavailable to new DB)
 - Performance degrades severely for data and workload changes

Learned data-driven methods

• Build statistical models to capture data distributes Pr_T(A)

- Deep auto-regression model (Neurocard)
- Probabilistic graphical models: Bayesian network (BayesCard), Sumproduct network (DeepDB), Factorized-sum-product network (FLAT)
- Normalizing flow model (FACE)
- •Use fanout-based method to handle join queries.
 - Produce accurate estimates
 - Inference time and model size are generally small but maybe large for databases with large number of tables

• Current state-of-the-art methods in improving query plans.

Distribution modeling techniques

• Deep auto-regression model (Neurocard¹)

- Fully factorize the distribution: for table A with attr {A₁, ..., A_n} $Pr_T(A) = Pr_T(A_1) * Pr_T(A_2|A_1) * Pr_T(A_3|A_2, A_1) * ... * Pr_T(A_n|A_{n-1}, ..., A_1)$
- High accuracy, large model size, and slow inference
- Bayesian Network (BayesCard²): $Pr(A) = \prod_{i} Pr(A_i | A_{pa(i)})$
 - Conditional independence assumption: high accuracy
 - Explainable and compact model
 - Difficult in structure learning (NP-Hard)
 - BayesCard addresses the low inference of BN: JIT-compiled variable elimination, Progressive sampling.
 - High accuracy, small model size, and fast inference

[1] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and I. Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables. PVLDB 14, 1 (2021), 61–73
 [2] Z. Wu, A. Shaikhha, R Zhu, K Zeng, Y Han and J Zhou. BayesCard: A Unified Bayesian Framework for Cardinality Estimation. arXiv:2012.14743 (2021).

Distribution modeling techniques

- Sum-product network (DeepDB³):
 - Local independence assumptions
 - Split the data by rows to find local independence between attributes
 - Accuracy, inference speed, and model size are sensitive with attribute correlations.
- Factorized sum-product network (FLAT⁴):
 - Combining the techniques from BN and SPN
 - Adaptively process highly and weakly correlated attributes.
 - High accuracy and small model size. Inference can be slow for large # attrs.

[3] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2019. DeepDB: learn from data, not from queries!. In PVLDB.
[4] R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou, and B. Cui. FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation. VLDB 14, 9 (2021), 1489–1502.

Distribution modeling techniques

- Normalizing flow model(FACE⁵):
 - Continuous joint distribution
 - Dequantize discrete attributes to ensure continuity
 - High accuracy, inference speed, and compact model even for columns with large domain size.

Benchmark evaluations

• IMDB JOB-light benchmark:

- real-world data with complicated distributions
- contains 6 tables, forming a star-shaped join

• Stats-CEB benchmark⁵:

- real-world data with complicated distributions
- More tables, more complicated join pattern, more attributes

[5] Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. Tan, K。 Zeng, G. Cong, Y. Qin, A. Pfadler, Z. Qian, J. Zhou, J. Li, B. Cui, Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation. VLDB 2022.

Benchmark evaluations

		Workload					
Category	Method		JOB-LIGHT	\frown		STATS-CEB	$\overline{}$
		End-to-End Time	Exec. + Plan Time	Improvement	End-to-End Time	Exec. + Plan Time	Improvement
Baseline	PostgreSQL	3.67h	3.67h + 3s	0.0%	11.34h	11.34h + 25s	0.0%
	TrueCard	3.15h	3.15h + 3s	14.2%	5.69h	5.69h + 25s	49.8 %
Traditional	MultiHist	3.92h	3.92h + 30s	-6.8%	14.55h	14.53h + 79s	-28.3%
	UniSample	4.87h	4.84h + 96s	-32.6%	> 25h		
	WJSample	4.15h	4.15h + 23s	-13.1%	19.86h	19.85h + 45s	-75.0%
	PessEst	3.38h	3.38h + 11s	7.9%	6.10h	6.10h + 43s	46.2%
Query-driven	MSCN	3.50h	3.50h + 12s	4.6%	8.13h	8.11h + 46s	28.3%
	LW-XGB	4.31h	4.31h + 8s	-17.4%	> 25h		
	LW-NN	3.63h	3.63h + 9s	1.1%	11.33h	11.33h + 34s	0.0%
	UAE-Q	3.65h	3.55h+356s	-1.9%	11.21h	11.03h+645s	1.1%
Data-driven	NeuroCard ^E	3.41h	3.29h + 423s	6.8%	12.05h	11.85h + 709s	-6.2%
	BayesCard	3.18h	3.18h + 10s	13.3%	7.16h	7.15h + 35s	36.9%
	DeepDB	3.29h	3.28h + 33s	10.3%	6.51h	6.46h + 168s	42.6%
	FLAT	3.21h	3.21h + 15s	12.9%	5.92h	5.80h + 437s	47.8%
Query + Data	UAE	3.71h	3.60h + 412s	-2.7%	11.65h	11.46h + 710s	-0.02%

Learned CardEst: Summary

- Traditional method are most general, lightweight, fast to train and update, low latency, and perfect for system deployment.
- Learned data-driven methods have the state-of-the-art performance, but less general and can sometimes have large model and slow inference.
- Learned query-driven methods can perform well for static DB instances, but not suitable for new DBs or DBs that have frequent data update/workload shift.
- Bound-based methods provide us deeper understanding of the CardEst problem but may not be practical.

Part 2: Learned QO Components

□ Cardinality Estimation (CardEst)

Cost Model

Join Order Search

The Relations of Card/Cost Estimation

Task Target

 Cost estimation is to approximate the executiontime/resource-consumption;

Correlations

Cost estimation is based on cardinality

Estimation Difficulity

 Cost is harder to estimate than cardinality, which considers multiple factors (e.g., seq scan cost, cpu usage)

Learned Cost Estimation

DMethod Classification

- □Single Query Cost Estimation
 - **Characteristic** : end2end, tree-structure plan encoding.
 - **Key idea** : use previous plans to train a tree-structure neural network, which directly predicts the cost.

□Concurrent Query Cost Estimation

- **Characteristic**: multile queries are considered, and performance of one plan varies due to the correlation between plans.
- **Key idea** : use a graph to represent the correlation between plans and use a network to predict the cost.

Single Query Cost Estimation

DChallenge

- Build an end2end model of cost estimation to avoid the accumutative errors of cardinality estimation.
- The learning model should capture the tree-structured information of the query plan
- Hard to encode the predicate.

Tree-LSTM for Cost Estimation Model Construction

- > The representation layer learns an embedding of each subquery
- > The estimation layer outputs cardinality & cost simultaneously

QPP for Concurrent Queries *troubles*

Queries have complex correlations

Constraints of DB configurations

 ✓ Queries and relations form a graph
 ✓ DB configurations also take effects
 ✓ Predict Performance On a graph model

Graph Modeling for QPP

Vertex Modeling: Obtain query plans; and extract operators from plans as vertex features

Graph Modeling for QPP

Edge Modeling: Compute 4 types of correlations as edges

Graph Embedding for QPP

Step 1: Embed graph features with learned weights

D: neighborhood vertices of every vertex

 σ : activation function that conducts nonlinear transformations

Join Order Enumerator

Problem Definition

 Given a SQL query, a join ordering is captured by a binary tree, in which each leaf node represents a base relation. The aim is to select the "cheapest" ordering (according to the cost model) for execution.

Learning based Join Order Enumerator

DMethod Classification

□Offline learning methods

- Characteristic : Based on the workload, use RL-based methods
- Key idea : Use existing workload to train a learned optimizer, which will predict the plan for future workload.

□Online learning methods

- Characteristic: No workload provided, but relies on customized Database
- Key idea : The plan of a query can be changed during execution. The query can switch to another plan if it finds that current plan is bad. It learns when the database executes the query.

Offline learning(ReJoin)

□ Background:

- The search space for join order is huge.
- Traditional optimizer does not learn from previous examples.

□ Challenges:

- How to reduce the search space of join order.
- How to select the best join order.

Offline learning(ReJoin)

Offline learning(RTOS)

D Background:

- Previous learning based optimizers give good cost, but they do not give good latency on test queries.
- Schema often changes in realworld database.

Challenges:

- The intermediate state of the rl is a forest which is hard to represent.
- The training time is huge when collecting latency as feedback.
- The schema change leads to the retraining.

Offline learning (RTOS)

□TreeLSTM based Q network

- Use n-ary to represent the sub-trees
- Use child-sum to represent the forest

□Two step training

- Cost pretrain
- Latency fine-tuning

Dynamic neural network

• DFS to build neural network for each plan

Online learning(SkinnerDB)

□ Background:

- The workload varies in realworld database.
- Previous learning based optimizer need to give training queries and hard to give good plans to different workload.

□ Challenges:

- How to design a new working mechanism that allows the optimizer to learn and switch between different join orders online.
- How to evaluate and choose different join orders online.

Online learning(SkinnerDB)

Eddies-style

- Divide the execution process into serveral time slices.
- N way join can support the plan switch.
- Select the plan for the next time slice based on the previous time slice

DMCTS For JOS

• Learn and generate a plan in each time slice

Relys on Customize Database

• Switch plan in low latency

Join Order Enumerator

	Quality	Training Cost	Adaptive (workload)	Adaptive (DB Instance)
Traditional Methods [Genetic algorithms] [Dynamic Programming]	Low	Low	\checkmark	High
Offline Optimization Methods [ReJoin aiDM 2018] [RTOS ICDE2020]	High	High	×	Medium
Online Optimization Methods [SkinnerDB SIGMOD2019]	Medium	Low	\checkmark	Low

Learned CostEst and JoinSel: Summary

They work together to generate an optimal query plan, i.e., JoinSel selects a good order based on CostEst.

D Both can be optimized through ML techniques.

- CostEst can leverage the neural network to encode the query and predict the cost, and the methods of CardEst can also be used.
- JoinSel mostly relies on the RL-based methods, because it can be regraded as a decision making process and the DB can provide feedback as the reward.

Part 3: Learned Whole QO Module

□ End-to-end learned QO: NEO

Learn to steer QO: BAO

□ One model for all: MTMLF

□ Comparison and analysis

Learned QO Architecture: Revisit

From learned components to learned QO module

NEO: E2E Learned QO Architecture

• From input query to executable plan

 Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, Nesime Tatbul. Neo: A Learned Query Optimizer, VLDB, 2019. <u>https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf</u>

NEO: Query Featurization

• Query encoding: join information + predicates information

NEO: Value Network

• Learn the latency of the best possible plan from partial plan

NEO: Value Network

- Network architecture: tree convolution
 - Inductive bias for tree-structured query plan

NEO: Value Network

- Network architecture: tree convolution
 - Learn filter weights for different operations/tables automatically

NEO: Evaluation Results

• NEO could outperforms or matches existing commercial query optimizers

NEO: Summary

- Advantages
 - First claimed automatic e2e learned QO
- Disadvantages
 - Learn everything by itself \rightarrow Long training time and heavy cold-start
 - Ad-hoc featurization for each DB \rightarrow Low generalization to update
 - Replace but not modify \rightarrow Can' t reuse existing DBMS codes

BAO: Learn to Steer QO

- Existing QO has different hint set: disable/enable certain types of operations, i.e., disable loop join
- For each query, tuning a good hint set may help to generate a good plan compensating its estimation error

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, Tim Kraska. *Bao: Learning to Steer Query Optimizers, SIGMOD*, 2021. <u>https://arxiv.org/abs/2004.03814</u>

BAO: Learn to Steer QO Architecture

Learn how to find the right hint set over existing QO

BAO: Latency Prediction Model

Similar tree structure and convolution to NEO

BAO: Evaluation Results

BAO largely outperforms open-source and commercial DBMS

BAO: Evaluation Results

- NEO could overtake BAO after long time training due to more freedom on plan selection
- BAO coverages fast and easily adapts to dynamic workload

BAO: Summary

- Advantages
 - Steer but not replace \rightarrow Reuse existing QO, easy to deploy
 - Easily adapts to data/query/system updates \rightarrow Better generality
 - Smaller training time w.r.t. NEO
- Disadvantages
 - Less freedom of plan selection \rightarrow Performance loss sometimes
 - Cold-start and regression problems stills exist

Learned QO: A Comparison

ltems	Existing QO	NEO	BAO
Needs CardEst	Yes	No	Yes
Needs Cost Model	Yes	No	Yes
Learning Space	No	Large	Small
Plan Search	DP/Greedy	Best-first	DP/Greedy with hint set tuning
Plan Selection Freedom	High	High	Low
Query Encoding	No	Ad-hoc	Easy
Training Time	No	Long	Fast
Hands Update	Easy	Hard	Easy
Cold Start / Regression	No	Serious	Heavy
Deployment	Easy	Hard	Easy

Learned QO: Our Goal

Training Time

MTMLF: One Model for All

• Basic idea: learned knowledge is decomposable

 Ziniu Wu, Peilun Yang [#], Pei Yu [#], Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai Zeng, Jingren Zhou. A Unified Transferable Model for ML-Enhanced DBMS, CIDR, 2022. <u>https://arxiv.org/abs/2105.02418</u>

MTMLF: One Model for All

Shared learning and specific adaption

MTMLF: Service Provider Side

Pre-trained large models as services

MTMLF: User Side

• Fine-tune pre-trained models to fit user data

MTMLF: Advantages

- Architecture
 - More efficient training without redundant learning
 - More effective task modeling with posterior knowledge guidelines, e.g., CostEst to CardEst
 - Transferability to avoid cold start/regression
- Workflow
 - More green computation: pre-trained large models provided as fundamental tool
 - More in-depth optimization: see more data
 - Easy to evolve and manage

MTMLF: Detailed Architecture

• Jointly learn multiple components in QO together

MTMLF: Evaluation Results

•One model for all architecture is more accurate

- Better than previous plug-in architecture
- Multi-task learning > separate learning

Mathad	Caro	dinality Q-Er	ror	Cost Q-Error		
Method	median	max	mean	median	max	mean
PostgreSQL	184	670,000	10,416	4.90	4,920	105
Tree-LSTM	8.78	696.29	36.83	4.00	290.35	15.01
Ours-QO	4.48	614.45	28.69	2.10	37.54	4.20
Ours-CardEst	5.12	804.48	36.66			
Ours-CostEst				2.06	61.41	4.69

MTMLF: Evaluation Results

•One model for all architecture is effective

• Pre-train/fine-tune is transferable to new DBs

Method	Execution Time (min)	Improvement Ratio	Method	Execution Time (min)	Improvement Ratio
PostgreSQL (Baseline)	1143.2		PostgreSQL (Baseline)	393.3	
Optimal	209.1	81.7%	Ours-QO	234.1	40.6%
Ours-QO	318.3	72.2%			
Ours- JoinSel	450.4	60.6%	(Retrained)	219.5	44.3%

Learned QO Module: Summary

- NEO: Learn everything e2e by itself
 - Long training time, low generality and heavy cold-start
- BAO: learn to steer existing QO by tuning hint set
 - Easy to deploy and better generality
 - Performance loss and remaining cold-start problem
- MTMLF: pre-training + fine-tuning
 - A possible routine for a desirable learned QO
 - We still have a long way to go

Part 4: Applications and Deployment

Application case studies of learned QO
Learned cost model for SCOPE
Learn to steer SCOPE

□ Challenges of actual deployment

□ Start-up system for deployment: Baihe

SCOPE and Its Cost Model

- SCOPE: the big data system for data analytics in Microsoft
 - Mainly consists of recurring jobs: same scripts, different data
 - Cost-based optimizer: wide gap between actual/estimated cost
 - Cost model gap exists even with actual cardinality

 Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, Wangchao Le. Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our Findings, SIGMOD, 2020. <u>https://arxiv.org/pdf/2002.12393.pdf</u>

Learned Cost Model

- A single global model: can' t equally effective for all operators
 - Different operators have very different performance behavior
 - Performance of the same operator can vary drastically w.r.t. context
- Solution: many specialized small models, each for an operatorsubgraph template
 - Common sub-expressions frequently occurring in recurring jobs

Learned Cost Model

- Operator-subgraph model: high accuracy
 - Low coverage: some operator subgraphs can't be covered

Feature	Description
Input Cardinality (I)	Total Input Cardinality from children operators
Base Cardinality (B)	Total Input Cardinality at the leaf operators
Output Cardinality (C)	Output Cardinality from the current operator
AverageRowLength (L)	Length (in bytes) of each tuple
Number of Partitions (P)	Number of partitions allocated to the operator
Input (IN)	Normalized Inputs (ignored dates, numbers)
Parameters (PM)	Parameters
-	

Model	Correlation	Median Error
Default	0.04	258%
Neural Network	0.89	27%
Decision Tree	0.91	19 %
Fast-Tree regression	0.90	20%
Random Forest	0.89	32%
Elastic net	0.92	14%
Learned Cost Model

- Accuracy-coverage tradeoff
 - Another extreme: operator model
 - High coverage but poor accuracy, the behavior of an operator changes w.r.t. context
- Two trade-offs
 - Operator-input model: multiple per-operator models, each for jobs sharing similar inputs
 - Operator-subgraph Approx model: learn one model for all subgraphs sharing approximate subgraph structure

Learned Cost Model

Combined models: a meta-ensemble

Model	Correlation	Median Error
Default	0.04	258%
Neural Network	0.79	31%
Decision Tree	0.73	41 %
FastTree Regression	0.84	19%
Random Forest	0.80	28%
Elastic net	0.68	64%

Model	Correlation	Median	Coverage
		Error	
Default	0.04	258%	100%
Op-Subgraph	0.92	14%	54%
Op-Subgraph	0.89	16 %	76%
Approx			
Op-Input	0.85	18%	83%
Operator	0.77	42%	100%
Combined	0.84	19%	100%

Op-Subgraph Op-SubgraphApprox

Operator

Real-world Evaluation Results

• Learned cost models are accurate and robust

	All jobs				Ad-hoc jobs			
	Correlation Median Error 95%tile Erro			Coverage	Correlation	Median Error	95%tile Error	Coverage
Default	0.12	182%	12512%	100%	0.09	204%	17791%	100%
Op-Subgraph	0.86	9%	56%	65%	0.81	14%	57%	36%
Op-Subgraph Approx	0.85	12 %	71%	82%	0.80	16 %	79%	64%
Op-Input	0.81	23%	90%	91%	0.77	26%	103%	79%
Operator	0.76	33%	138%	100%	0.73	42%	186%	100%
Combined	0.79	21%	112%	100%	0.73	29%	134%	100%

Real-world Evaluation Results

 Learned cost models could improve benchmark and production jobs plan quality

SCOPE and Its Rule Configuration

- SCOPE: query workload and different rules
 - Only 10% queries > 5mins, but they consume 90% containers
 - 256 rules in total, 100-150 rules are used frequently
 - Typically 10 20 rules are used in a single job

 Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska, Marc Friedman, Alekh Jindal. Steering Query Optimizers: A Practical Take on Big Data Workloads, SIGMOD, 2021. <u>https://dl.acm.org/doi/pdf/10.1145/3448016.3457568</u>

SCOPE and Its Rule Configuration

- Problem: find suitable rules (hint set) for each job to steer QO
 - Large learning space: 219 rules
 - Expensive execution for model training

Category	#Rules	#Unused Rules	Rule Examples
Required	37	9	EnforceExchange, BuildOutput GetToRange, SelectToFilter
Off-by-default	46	36	CorrelatedJoinOnUnion1, GroupbyOnJoin
On-by-default	141	37	NormalizeReduce, CollapseSelect, SelectPartitions, SequenceProjectOnUnion
Implementation	32	4	HashJoinImpl1, JoinToApplyIn- dex1, UnionToVirtualDataset

Method Overview

- Discover rule configurations: which ones we should look at
- Candidate rule configuration running: do improve runtime
- Extrapolate to other jobs by learning models
- Deploy and test online

Rule Configuration Discovery

- Finding a number of interesting rule configurations that may change jobs' performance by randomized heuristic search
- Tuning rule configurations can find plans with estimated costs lower than the default rule configuration
 - Disabling rules would block certain code paths chosen by bad estimates or heuristics in the optimizer, thus nudge better plans

Rule Configuration Selection

- Plans performance could improve drastically using the best seen rule configuration <u>Workload</u>
- Examples on rule configuration difference
 - Enable off-by-default rules is not enough
 - Disable rules could prevent bad code paths
 - Alternate rules would be better
- How to extend to unseen jobs? Learning! ²

			Workload					
			Α	В	С			
#	Queries	5	36	155	45			
Δ	Runtim	e	-1689s	-663s	-400s			
Δ Percentage		age	-30%	-15%	-7%			
Job	Runtime %change	Rules defaul	only in It plan	Rules only in best plan	n			
QA1	-90%	JoinIm Select Group 8 mor	pl2 DnProject byBelowUnionAl re rules	CorrelatedJoir l -UnionAll2	nOn			
Q _{A2}	-86%	HashJo SelectO SelectP 3 mot	oinImpl1 DnProject PredNormalized re rules	-				
Q _{A3}	-75%	Union/	AllToUnionAll	UnionAlltoVir -Dataset	tual			
Q _{B1}	-96%	TopOn Select(RestrRemap DnTrue	CollapseSelec	ts			
Q _{B2}	-80%	JoinImpl2		HashJoinImpl	1			
Q _{B3}	-70%	Proces Union/	OnnUnionAll AllToUnionAll	UnionAlltoVir -Dataset	tual			

Rule Configuration Learning

- Job group: all jobs having the same default rule configuration
 - Similar code paths to QO, could be optimized together
- Regression learning problem
 - Input features: job graph features + candidate rule configuration
 - Output: normalized runtime
 - Lightweight model with 1-layer NN

Rule Configuration Learning

• Online deployment: large improvements, small regressions

	1			2			3		
	Mean	90P	99P	Mean	90P	99P	Mean	90P	99P
Best	5458	14K	14.8K	19.8K	26K	27K	2966	13.8K	15.3K
Default	6461	16.3K	18.3K	20.7K	26.9K	28.9K	3304	14.7K	16.8K
Learned	5724	14.7K	15.4K	20.2K	26.2K	27K	3252	14.6K	16.8K

Actual Deployment: Challenges

- ML + DBs sounds great, but...
 - It can be challenging to deploy in a real world production setting
 - Even more so in mission critical systems such as DBs!

• Key Issues

- Brittleness of most models, hard to detect stochastic failure modes, model training is not a well-defined process
- Dependencies (ML stacks, external services, ...)
- Keeping track of training data and model versions

DBs and ML: A Tale of Two Cities

Databases

- Central and fundamental piece of IT infrastructure for almost any business
- Need rock-solid, reliable and stable behavior
- Deterministic

Machine Learning

- Produces predictions based on probabilistic methods
- Needs close supervision due to wide range of failure modes
- Stochastic

Need to resolve conflict through proper software engineering practices!
 → Requirements, design iterations, …

Deriving Requirements

High Level Design Philosophy

- Separation from the core system
- Minimal third party dependencies
- Robustness, stability and fault tolerance
- Usability and configurability.

Concrete ML-related requirements

- Support wide range of models and ML frameworks while not introducing too many dependencies
- Training outside of the core system, support iterative model development and evaluation process
- Well defined and robust model deployment procedure
- Fallbacks in case of model failures

Different User Perspectives

Actual User (both human and technical)

• Should not have to care about this

DBAs/OPs

- Should only have to learn a few config knobs and management commands (e.g. activate training data collection, configure which model to use, deploy a readily packaged model,...)
- Should not be responsible for managing extra external services which provide some sort of inference API
- Should not have to worry that some fancy new piece of tech breaks their system or security.

Model Developer / Researcher

- Easy access to training data, fast development iteration cycles
- Simple packaging and deployment (resp. handover to DBA)
- Develop models based on well defined environment (libs, packages, ...) close to the usual ML/DS stack

Baihe: Design Blue Print and Implementation

Highlights

- Extend Postgres hooking mechanism through shadow planner component
- Make idiomatic use of Postgres functionality for shared memory, background workers, process management and IPC
- Simple model packaging and deployment for cardinality estimation and query runtime prediction
- Easy to use test bed for Ai4DB related research

Open Source Release

- Research oriented MVP: Available soon!
- Comments and discussions welcome!

Demo Time!

Andreas Pfadler, Rong Zhu, Wei Chen, Botong Huang, Tianjing Zeng, Bolin Ding, Jingren Zhou. *Baihe: SysML Framework for AI-driven Databases, Arxiv*, 2022. <u>https://arxiv.org/abs/2112.14460</u>

Applications and Deployment: Summary

- Some attempts on customized systems and tasks
 - Learned cost model on SCOPE
 - Learn to steer QO on SCOPE
- General AI4DB deployment tool is very necessary
 - Challenges but also opportunities
- Our Baihe system takes the first step

Part 5: Summary and Future Work

G Summary

□ Future Work

 \Box QO is a suitable experimental plot for Al4DB \rightarrow the prosperity of learned QO techniques in recent

Learned QO components: CardEst, Cost Model, JoinSel
 CardEst: data-driven, query-driven and bound-based methods
 Cost Model: supervised learning
 JoinSel: RL-based learning
 Exhibit advantages, but still not ready for actual deployment

Summary

□ Learned whole QO module

Learn to replace original QO vs. learn to steer existing QO
 Far from a desirable learned QO

□ Some possible way is identified

Applications and deployment
 Some attempts on customized systems and tasks
 General deployment tool is very necessary
 The first step is already taken

Future Work

• Final goals: practical and intelligent QO and beyond

Future Work

CardEst

Fusion of data-driven and query-driven methods
 Adaptive methods: OLAP/OLTP, different data/workload,...
 Performance improvement: update speed, accuracy on multi-table queries, aware of different sub-queries, ...

Cost Model and JoinSel

□ Automatically generate sufficient training data with large coverage

- □ Robust model for dynamic workloads or different scenarios
- □ Intelligent algorithms selection given a workload and datasets

Future Work

Learned QO module

- Pre-training + fine-tuning technique routine
- □ New architecture to steer existing QO
- □ New training and update strategy
- Applications and Deployment
 General deployment tool
 Customized tuning
- Beyond QO: extend to more AI4DB or even DB4AI tasks
 Indexing, advisors, diagnosis, ...

Q & A

Ziniu Wu MIT

Chengliang Chai Tsinghua University

Andreas Pfadler Alibaba Group

Bolin Ding Alibaba Group

Guoliang Li Tsinghua University

Jingren Zhou Alibaba Group

red.zr@alibaba-inc.com ziniuw@mit.edu ccl@tsinghua.edu.cn