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Part 1: Preliminaries
d Query Optimizer (QO)

d Learned QO



QO: The Central Role in DBMS

« Generating best physical plan for input query

» Directly relates to the system performance

Data D —

Query Q

Query

Optimizer

DBMS

—— > Plan P Plan
Execution




QO: A Difficult Task

» Different join orders, join methods, scan methods, ...

SELECT COUNT(*)

FROM s, sc, ¢

WHERE s.sid = sc.sid AND sc.cid = c.cid
AND s.year < 2009 AND c.credit >= 3

MJ, HJ, NJ MJ, HJ, N
X Which plan is better? A
MJ, HJ, NJ MJ, HJ, NJ
/’<\ />{\

S SC C S SC C

Seq Scan, Index Scan, ... Seq Scan, Index Scan, ...




QO Architecture

« The general volcano framework

) (
Query Optimizer

[ Estimate the number of

Estimate the running cost
tuples of each sub-query

of each sub-query

Cardinality Plan
Data D Estimation —> Plan P Execution
Query Q Join Order Selection — Enumerate all possible
candidate plan




QO Architecture

« The general volcano framework

SELECT COUNT(*)

FROM s, sc, ¢

WHERE s.sid = sc.sid AND sc.cid = c.cid
AND s.year < 2009 AND c.credit >= 3

10,000 Join Cost:.HJ < MJ < NJ 10,000
X HJ Scan Cost: Seq Scan < Index Scan X
100 1,000
/N{ h This plan is better! /><\
S SC C S SC C

SeqgScan Seq Scan, Index Scan, ...



Traditional QO Methods

 Experience driven: not favorable enough

) (
Query Optimizer

[Simple statistical methods:

Rule based, experience
histogram, sampling, -

based tuning

Cardinality Plan
Data D Estimation Plan P Execution
Query Q Join Order Selection ' Dynamic Programming,
Greedy Search:




Learned QO: A Pioneer in Al4DB

« QO is an experimental plot for learned techniques: more
automatic, fine-grained and accurate solutions

[Unsupervised dataW [ Supervised rule }
deli . | i
(DS ENING Query Optimizer el ine

Cardinality Plan
Data D Estimation — Plan P

Query Q Join Order Selection — J

Decision making:
reinforcement learning




Learned QO: Status and Opportunities

« Review on recent advances: 100+ papers recently
« Deep analysis: comparison and benchmark |
« Summary and future work @ Intelligent QO

{ZI System Deployment

Q Applications in real-world scenarios
Ej Learned E2e QO

'O Learned component algorithms: CardEst, Cost Model,
QQ Join Order search, ...

E: Existing traditional DBMS
1 g

Explore this journey together!



Part 2. Learned QO Components

d Cardinality Estimation (CardEst)



Cardinality estimation

 CardEst: estimate the result size €(Q) of the query Q without
actual execution

10,000 10,000
SELECT COUNT(*) X X

FROM s, sc, ¢ 100[x] [><]1'OOO
WHERE s.sid = sc.sid AND sc.cid = c.cid , /\ Of /\

AND s.year < 2009 AND c.credit >= 3

- Lay foundations for cost estimation and join ordering selection
A key component in QO and decides the query plan quality



CardEst methods overview

* Traditional methods: Histogram and Sampling

 Learned query-driven methods:
« Analyze query workload, learn regression model mapping Q to C(Q)

* Learned data-driven methods:
« Analyze data, learn Pry(A) of table T with attributes A
+ C(Q) = Pre(Q *[T|
*Bound-based methods:
* Instead of estimating the cardinality, it provides an upper bound

« Can avoid very expensive join orders and physical operators
* Rigorously not CardEst (will not explain in detail)



Traditional methods

* Most widely used in modern DBMS

« Histogram: attribute independent assumption Pr(4) = [1; Pr(4;)
« Fast inference, low storage cost, high estimation error
« Multi-dimensional Histogram
«Sampling:
« Execute the query on a smaller sample of the data
« Estimation accuracy and inference speed trade-off
 Kernel-density estimation, join sampling
*Join uniformity assumption
» Estimate join query Q=AXB as C(Q) = Pr,(Q,) * Pry(Qg) * |AXB|



Learned query-driven methods

* Build supervised model mapping Q to C(Q)

* Query feature engineering is important

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id =5
Tableset {[0101...0],[0010...171} Joinset {[0010]} Predicateset {[100001000.72],[000100100.1471}

table id samples join id column id value operator id

« XGboost, Neural network, Tree-LSTM, deep ensemble
* Fast inference speed, versatile

« Estimation accuracy is highly dependent on the training query
workload.
« Requires excessive amount of training queries (unavailable to new DB)
 Performance degrades severely for data and workload changes




Learned data-driven methods

* Build statistical models to capture data distributes Pr(A)

Deep auto-regression model (Neurocard)
Probabillistic graphical models: Bayesian network (BayesCard), Sum-

oroduct network (DeepDB), Factorized-sum-product network (FLAT)

* Normalizing flow model (FACE)

 Use fanout-based method to handle join queries.
 Produce accurate estimates
* Inference time and model size are generally small but maybe large

for databases with large number of tables

* Current state-of-the-art methods in improving query plans.



Distribution modeling techniques

« Deep auto-regression model (Neurocard’)
* Fully factorize the distribution: for table A with attr {A,, ..., A}
Pre(A) = Pre(Aq) * Pro(Ag|Aq) * Pr(As|Ay Aq) * . * Pre(An AL, 0 Ay)
 High accuracy, large model size, and slow inference
- Bayesian Network (BayesCard?): Pr(4) = [1; Pr(4;|4pq(i))

« Conditional independence assumption: high accuracy

- Explainable and compact model

* Difficult in structure learning (NP-Hard) (4 (4 (4
» BayesCard addresses the low inference of BN:

JIT-compiled variable elimination, (4 (45)
Progressive sampling.
- High accuracy, small model size, and fast inference  (.,) (&) (15

[1] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and I. Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables. PVLDB 14, 1 (2021), 61-73
[2] Z. Wu, A. Shaikhha, R Zhu, K Zeng, Y Han and J Zhou. BayesCard: A Unified Bayesian Framework for Cardinality Estimation. arXiv:2012.14743 (2021).



Distribution modeling techniques

» Sum-product network (DeepDB3): (eregion Cage)
» Local independence assumptions 02 L
- Split the data by rows to find local * XX
Independence between attributes oNe ‘

» Accuracy, inference speed, and model size
are sensitive with attribute correlations.

* Factorized sum-product network (FLAT#):

« Combining the techniques from BN and SPN

« Adaptively process highly and weakly
correlated attributes.

« High accuracy and small model size.
Inference can be slow for large # attrs.

[3] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2019. DeepDB: learn from data, not from queries!. In PVLDB.
[4] R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou, and B. Cui. FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation. VLDB 14, 9
(2021), 1489-1502.

EUASIA 20 100 EUASIA 20 100

univariate leaf multivariate leaf



Distribution modeling techniques

permute(x’)

* Normalizing flow model(FACE>): ' s
- Continuous joint distribution pr L I
- Dequantize discrete attributes )
to ensure continuity X ) % K d < P10 ()
» High accuracy, inference speed, and \i“’gj;:‘/':j’jﬁ;“j*/

compact model even for columns with
large domain size. A@=[

[5] J. Wang, C. Chali, J. Liu, and G. Li. FACE: A normalizing ow based cardinality estimator. Proc. VLDB Endow., 15(1):72-84, 2021.



Benchmark evaluations

«IMDB JOB-light benchmark:

- real-world data with complicated distributions
» contains 6 tables, forming a star-shaped join

1 JOB-light |

 Stats-CEB benchmark?;

- real-world data with complicated distributions
* More tables, more complicated join pattern, more attributes

[5] Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. Tan, K, Zeng, G. Cong, Y. Qin, A. Pfadler, Z. Qian, J. Zhou, J. Li, B. Cui, Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. VLDB 2022.



Benchmark evaluations

Workload
Category Method JOB-LIGHT 4 ™\ STATS-CEB s ™\
End-to-End Time Exec. + Plan Time |Improvement| End-to-End Time Exec.+ Plan Time |Improvement
Baseline PostgreSQL 3.67h 3.67h + 3s 0.0% 11.34h 11.34h + 25s 0.0%
TrueCard 3.15h 3.15h + 3s 14.2% 5.69h 5.69h + 25s 49.8%
MultiHist 3.92h 3.92h + 30s —6.8% 14.55h 14.53h + 79s —28.3%
Traditional UniSample 4.87h 4.84h + 96s -32.6% > 25h - -
W]Sample 4.15h 4.15h + 23s -13.1% 19.86h 19.85h + 45s —75.0%
PessEst 3.38h 3.38h + 11s 7.9% 6.10h 6.10h + 43s 46.2%
MSCN 3.50h 3.50h + 12s 4.6% 8.13h 8.11h + 46s 28.3%
Query-driven LW-XGB 4.31h 431h + 8s -17.4% > 25h —— —=
LW-NN 3.63h 3.63h + 9s 1.1% 11.33h 11.33h + 34s 0.0%
UAE-Q 3.65h 3.55h+356s -1.9% 11.21h 11.03h+645s 1.1%
NeuroCard® 3.41h 3.29h + 423s 6.8% 12.05h 11.85h + 709s -6.2%
Data-driven BayesCard 3.18h 3.18h + 10s 13.3% 7.16h 7.15h + 35s 36.9%
DeepDB 3.29h 3.28h + 33s 10.3% 6.51h 6.46h + 168s 42.6%
FLAT 3.21h 3.21h + 15s 12.9% 5.92h 5.80h + 437s 47.8%
Query + Data UAE 3.71h 3.60h + 412s —2.7% 11.65h 11.46h + 710s —0.02%
\_ J \_ J




Learned CardEst: Summary

- Traditional method are most general, lightweight, fast to train
and update, low latency, and perfect for system deployment.

«Learned data-driven methods have the state-of-the-art
performance, but less general and can sometimes have large
model and slow inference.

 Learned query-driven methods can perform well for static DB
instances, but not suitable for new DBs or DBs that have
frequent data update/workload shift.

*Bound-based methods provide us deeper understanding of the
CardEst problem but may not be practical.



Part 2. Learned QO Components

O Cost Model

d Join Order Search



The Relations of Card/Cost Estimation

O Task Target
+ Cost estimation is to approximate the execution-
time/resource-consumption;
O Correlations
« Cost estimation is based on cardinality

O Estimation Difficulity

« Cost is harder to estimate than cardinality, which
considers multiple factors (e.g., seq scan cost, cpu
usage)



Learned Cost Estimation

OMethod Classification
OSingle Query Cost Estimation

« Characteristic : end2end, tree-structure plan encoding.

- Key idea : use previous plans to train a tree-structure neural
network, which directly predicts the cost.

OConcurrent Query Cost Estimation

« Characteristic: multile queries are considered, and performance of
one plan varies due to the correlation between plans.

- Key idea : use a graph to represent the correlation between plans
and use a network to predict the cost.



Single Query Cost Estimation

OChallenge

« Build an end2end model of cost estimation to avoid
the accumutative errors of cardinality estimation.

« The learning model should capture the tree-structured
information of the query plan

« Hard to encode the predicate.



Tree-LSTM for Cost Estimation

Model Construction

» The representation layer learns an embedding of each subquery

» The estimation layer outputs cardinality & cost simultaneously

Representation Model

| SQL Query

' SELECT MIN(mc.note) AS production_note,
| MIN(t.title) AS movie_title,
| MIN(t.production_year) AS movie_year

Ge1 | G

=i x + ‘

Ei;n_;_, i 2 [terh ] ?

@ e i OB 2O |

-Jb—l | Tt 3

T > - 6 e ] ' n
B

Concatenate

FROM company_type AS ct,
info_type AS it,
movie_companies AS mc,
movie_info_idx AS mi_idx,
title AS t

WHERE ct.kind = "production companies'

\ AND it.info = 'top 250 rank’

i AND mc.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%'
! AND (mc.note LIKE '% (co-production)%')

) OR mc.note LIKE '%(presents)%")

AND t.production_year >2010

AND ct.id = mc.company_type_id

= mec.movie_id

= mi_idx.movie_id

AND me.movie_id = mi_idx.movie_id

AND it.id = mi_idx.info_type id;

mc.note NOT LIKE
'%(as Metro-
Goldwyn-Mayer
Pictures)%'

mc.note LIKE
'%(co-production) %'

'%(presents) %'

‘ mc.note LIKE ‘

' : i Predicates Embedding Layer '
| Nested Lcn:)p1 i / f § ° ]
; e o ik s 3
2 7 9 | Representatiol i Representatiol |2 g». r '
Hash Join Index;Scan H ! Model | Model ik 3, > |
~ ‘ | Representation i | Representation 3 TG« Ro H )
: Hash Join Hash Join : . ' Model | | Model ' i | 7 H '
3 / \ \ H | s ! Predicate ' '
§ L] i me.note LIKE '%(presents)%" me.nots LIKE '3(co-prodGetionss '
; 2 s - 5 e 0 )|
] Seq Scan Seq Scan Seq Scan Seq Scan | OO ( me.note NOT LIKE *%(as Meiro-Goldwyn-Mayer Pictures)’ J :

28



I QPP for Concurrent Queries troubles

O Queries have complex correlations

Read x Read y Read x  Writey Opx Opy
N\ 7~ ~ N\ } |
Shared Data Resource
Pool Block Pools

O Constraints of DB configurations

U = set of 2-PL schedules U = set of memory knobs
—>  Strict 2-PL @S — work Memory
Rigorous 2- B — shared Memory
PL @ — Disk Caching

Queries and relations form a graph Predict Performance

age h model
DB configurations also take effects na graph mode




I Graph Modeling for QPP

O Vertex Modeling: Obtain query plans; and extract
operators from plans as vertex features

SELECT MAX(aka_name.person_id)
FROM aka_name,cast_info,company_type
W HERE aka_name.id=cast_info.id and

cast_info.id=company_type.id;

, Limit Feature Stack
SELECT cast_info.nr_order Aggregate

FROM cast_info,company_type Hash Join/

W HERE cast_info.id=company_type.id \ Operator Type

v

1

LIMIT  10; 0\ Seq Scan
SELECT aka_name.person_id 1

FROM aka_name

v @
% @@
4 ) Limit .
) Q) iy Sample Bitmap
SE Taka_name.name = concat(id,name)
f4

Update Query Predicate

UPDATE aka_name
WHERE id>225 or id<50 and name<>’Shu’;

6.
| ; - | / \ sed sean Index Scad
d Optimizer

Estimated Cost




I Graph Modeling for QPP

O Edge Modeling: Compute 4 types of correlations
as edges

Limit
Aggregate
V12

Hash Join/

V1o Seq Scan —
\ d f e \ Edge Stack
V1 Update 12 [

& N e Parent-Child

Seq Scan

V “\
’ @/ Limit \\\\ @§ r
Vi \v./ Update Data Sharing
R @ i \
\

Index Sc r/

g
e V7\ ®/ @ ) g
fia5 SN S Limit | .
\ Seq Scan / LN /o / Data Conﬂlct
an N /
N\, N N

! ,
‘o A | '
e 5\ N : /'
g\ pag -yl Resource
/ Seq Scan L
- Index Scan

| ' Resource
| | \(Geniotaton Workload Graph




I Graph Embedding for QPP

O Step 1: Embed graph features with learned

(in vertex level)

Graph Embedding Network

Graph Layer

Dropout

Graph Layer

A

N
&k

weights

! Workload : :

i+ Graph 1

: : : Graph Layer

I % o | |

E1ZE TV o -
SIES | iy
: | : weight

' ames ||

I o es | |

==

Edge
- e

In each graph embedding layer:

H! :O'Z(D

D: neighborhood vertices of every vertex

o: activation function that conducts nonlinear transformations




Join Order Enumerator

OProblem Definition

- Given a SQL query, a join ordering is captured by a binary tree, in
which each leaf node represents a base relation. The aim is to
select the “cheapest” ordering (according to the cost model)

for execution.

Dynamic programing
e _ e ° |
o ¢ y ®
: oooo
@ %o .0 oooo
o o * ooc=a
. .. oo
Genetic optimizer
o« o o Cost Model
e 0 D
® o ) e ..
e e
Quick-pick

Traditional Methods



Learning based Join Order Enumerator

COOMethod Classification
OOffline learning methods

« Characteristic : Based on the workload, use RL-based methods

« Key idea : Use existing workload to train a learned optimizer, which
will predict the plan for future workload.

OOnline learning methods

« Characteristic.: No workload provided, but relies on customized
Database

« Key idea : The plan of a query can be changed during execution.
The query can switch to another plan if it finds that current plan is
bad. It learns when the database executes the query.



Offline learning(ReJoin)

O Background:
 The search space for join order is huge.
» Traditional optimizer does not learn from previous
examples.
O Challenges:

« How to reduce the search space of join order.
« How to select the best join order.



Offline learning(ReJoin)

ORL model

O Agent : optimizer
O Action: join

O Environment: cost model, database

O Reward: cost, latency

O State : join order, O(n2)

Initial state

] [
: Action Layer 1 2 %"
o State Layer n_ay ¥
'S =~ '3g
1@ g0
T 15 3
1 S mae
12 &~
:E ; \ d |C|—
[ 13
1= U]
! ' Hidden Layers '3 3
M IH_'
: Reward :9‘8
(] ]
D o e e e o ]
 J

. . . . Initial State
T1 a=T2.a
Select *
From T1,T2,T3 T4 &
Where Tl.a=T2.a
Intermediate state
and T3.b=T4.b . .
and Tl.c=Ta.c T3 b=T4b
& A Intermediate state
T1 c=T3.¢c

@
9 (9

Termination State

SELECT *
Ald—C:LdANDC:Ld—DJ_dANDBaZ>100

FROM A, B, C, D WHERE A.id = B.id AND

i |

(ﬂ
]
Achon 1 3 Acllon 2 3 Actlon 1, 2 ‘ Final
o ABCD ABCD AB D
€ Af1 000} |awc{% 0% 0] |Axc !ao o cmuc)[xa ’aa]
¢ Blo1o0o0 B 0100 BuD | 0 % 0 % ™
v cloo1o D 0001 (B®D)
E plo oo 1 ABCD
aAfo 110
Bl|L 0 OO
A.al A.a2 .. B.al B.a2 . cli o001
(o [ .0 1 ploo1o
Join predicate vector Column predicate vectors

36



Offline learning(RTOS)
[0 Background:

* Previous learning based optimizers give good cost, but they do
not give good latency on test queries.

* Schema often changes in realworld database.

[0 Challenges:

* The intermediate state of the rl is a forest which is hard to
represent.

* The training time Is huge when collecting latency as feedback.
* The schema change leads to the retraining.

(>) (>)

T1 T2 T3 T4
1/4 (1/4(1/4|1/4

37




Offline learning (RTOS)
OTreelLSTM based Q network

« Use n-ary to represent the sub-trees — o |

R(((Th % T2) w T3, Ta), q)

m

l‘rﬂm’l‘; . (000000

Where M B
and TLh <50 RIMimT)wT3,T1) @ @ @)@ @ @)
and TLa=-T2a |@ @ @ @\ g
BRI e " oy

. nrr;aMooooo“bo TR S —Y

 Use child-sum to represent the forest = g8 8g
nrr,,n)FOOOOOOO i E %ﬂﬂ o
------ T

OTwo step training 77T

- Cost pretrain ”‘“‘ Sm:“"“” |
- Latency fine-tuning | o B e N

Intermediate State

} Action Space

Action Tla=TR2a Tlc=T3c .. T3b=T4b

Terminating State

ODynamic neural network

 DFS to build neural network for each plan

______

Cost Training: Cost

Latency Tuning: Cost, Latency

38



Online learning(SkinnerDB)

O Background:
 The workload varies in realworld database.

* Previous learning based optimizer need to give training queries and
hard to give good plans to different workload.

O Challenges:

« How to design a new working mechanism that allows the optimizer to
learn and switch between different join orders online.

« How to evaluate and choose different join orders online.



Online learning(SkinnerDB)

O Eddies-style

 Divide the execution process into
serveral time slices.

« N way join can support the plan switch.
« Select the plan for the next time slice
based on the previous time slice

OMCTS For JOS T e

« Learn and generate a plan in each time slice

) &)
@ e @ @& e @& 66
OOFOE O0COD ONEE OQEO®
® e @ @
€9 €9 D
O Relys on Customize Database
e Switch plan in low latency

40



Join Order Enumerator

Adaptive Adaptive
(workload) (DB Instance)

Training Cost

Traditional Methods
[Genetic algorithms] Low Low v High
[Dynamic Programming]

Offline Optimization Methods
[ReJoin aiDM 2018] High High X Medium
[RTOS ICDE2020]

Online Optimization Methods

[SkinnerDB SIGMOD2019] Medium Low v Low



Learned CostEst and JoinSel: Summary

O They work together to generate an optimal query plan,
l.e., JoinSel selects a good order based on CostEst.

O Both can be optimized through ML techniques.

« CostEst can leverage the neural network to encode the query and predict the cost, and
the methods of CardEst can also be used.

« JoinSel mostly relies on the RL-based methods, because it can be regraded as a decision
making process and the DB can provide feedback as the reward.



Part 3: Learned Whole QO Module
d End-to-end learned QO: NEO

d Learn to steer QO: BAO

3 One model for all: MTMLF

d Comparison and analysis



Learned QO Architecture: Revisit

* From learned components to learned QO module

Query Optimizer

Cardinality Plan

Query Q Join Order Selection




NEQO: E2E Learned QO Architecture

« From input query to executable plan

NEO
Sample

Latency t(P)

Workload Value Network

Partial Estimated
Plan P’ Latency t’
Plan
Best-First :
Quel‘y Q — Featurization Plan Search Execution

« Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,
Nesime Tatbul. Neo: A Learned Query Optimizer, VLDB, 2019. https://www.vldb.org/pvidb/vol12/p1705-marcus.pdf



https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf

NEQO: Query Featurization

* Query encoding: join information + predicates information

ONoN NN _jlw)

mMoNw>
corocoo'>»
g-en—u—neam
ODOOORKON

)
=
OO0 oM

SELECT * FROM A, B, C, D WHERE
A.3=C.3 AND A.4=D.4 AND C.5=B.5
AND A.2<5 AND B.1l=‘h’;
A-2<5 11010000001 .1
B.1 = ‘h’

Query-level Encoding
A1A2 . B.18B2 _E1E?2

.1 6 - 9 9]
Column Predicates

1-hot, embedding...

Query Q Query Encoding

0 ..

0 0]



NEOQO: Value Network

 Learn the latency of the best possible plan from partial plan

e i Mapping function: f(t'|Q, P")

(4 <
RO \&éq\,°°QA B C D
01100060611 6] [LJ] 060606001066 00]
. Value Network
4
& B ¢ o L \@‘f’/ooQA B ¢ D alue etwor
(161000066 10] [MI 00000006106 0]

(index)

S&

00010 WA B G B
LA hA [0 1000000 0]
I I (scan) (scan)

Partial Plan P’ Estimated Latency
t'" = min(t(P)|P’ € P)

Featurization Query Encoding




NEOQO: Value Network

 Network architecture: tree convolution
* Inductive bias for tree-structured query plan

Buijood s1weuiqg

Plan-level Encodlng
s £ £ ...f\.ll.qm?m%fi.ﬁee... 612 1x2se 1x128
< < < |
&1 |8 |8
3 = 3 —> —
B
@ @ )
a a a
- - -
L | |2 <L
g 3| |2

.................... Tree Convolution

= Concatenatuon

8L x|
14 R
ceXx]

-
x

(o]
H

JaAeT pajosuuo) Ajjng
Jahe] pajoauuo) Ajjn4
1ahe pajoauuo) Ajn4
19Ae pajoauuo) Ajin4

8ZL x|
8L x|
12 R
ceX ]
X1



NEOQO: Value Network

 Network architecture: tree convolution
« Learn filter weights for different operations/tables automatically

J/f1,o,1,1,01 ] [ [o,o,o,o,\k] %,0,1.1.01 ] [ [0,0,0,0,N Z:::, @
/ \ / \ Filter
rra

[[0,0,1,0,01] [[0,0,0,1,01] [[0,0,1,0,01] [[0,0,0,1,01] [1, 10 0,0] [1, 100 ,0]

1 101 A1) rra
Tree A\'
Conv rra
Filter
[00010] [11111] @ @
(d)

Output

1
H

(a) Query trees (b) Features on each node (c) Tree conv filters



NEQO: Evaluation Results

JOB mmmmm Corporation
TPC-H s

« NEO could outperforms or matches —
existing commercial query optimizers

Relative performance

PostgreSQL SQLite SQL Server Oracle

PostgreSQL SQLite MS SQL Server Oracle
2.5 . - 2.5 T T T — 2.5 2.5 r T
Postgres ———- SQLite ———- Oracle ———~-
o Neo (R-Vectors) o 2f PostgreSQL on SQLite —-—-- | v e e s s | Z ol PostgreSQL on Oracle —-—-- |
g 2 c Neo (Row Vectors) c < Neo (Row Vectors)
2 i) 9 SQL.Srv =—== o
Si1s§ LENY: 815} PostgreSQL on SQL Srv —-—- | G Wt oo ey s bumee e s
o o o Neo (Row Vectors) -
& o 8 8
b l1ese—————7T————7—————————1 I 1 T Y P T e — ® 1 T e b e
£ os g . E
so. 05 805 205
0 ' ‘ ‘ ' 0 ' ' ' ' 0 ' : : ‘ 0 * : : '
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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NEO: Summary

- Advantages
 First claimed automatic e2e learned QO

 Disadvantages
 Learn everything by itself > Long training time and heavy cold-start
« Ad-hoc featurization for each DB > Low generalization to update
 Replace but not modify > Can’ t reuse existing DBMS codes



BAQO: Learn to Steer QO

« Existing QO has different hint set: disable/enable certain types
of operations, i.e., disable loop join

« For each query, tuning a good hint set may help to generate a
good plan compensating its estimation error

m
S 60- 60.2s B PostgreSQL
o PostgreSQL (no loop join)
&
> 40 -
O
&
2 21.2s
© 50 - 19.7s
>
s
O ol 0.4s |
16b 24b
JOB Query

« Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, Tim Kraska. Bao: Learning to
Steer Query Optimizers, SIGMOD, 2021. https://arxiv.org/abs/2004.03814
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BAQO: Learn to Steer QO Architecture

» Learn how to find the right hint set over existing QO

Different hints ?‘! !|!

bata D —> Existing
Query Q — Query Optimizer

Plan

Execution

Different plans

Plan P

Plan Latency Prediction

Latency t(P)



BAO: Latency Prediction Model

e Similar tree structure and
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BAQ: Evaluation Results

« BAO largely outperforms open-source and commercial DBMS
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BAQ: Evaluation Results

« NEO could overtake BAO after long time training due to more
freedom on plan selection

« BAO coverages fast and easily adapts to dynamic workload

100k 100k
— Bao — Bao
- 80k PostgreSQL - 80k PostgreSQL
Q Q
= - Neo = - Neo
'c 60k 'c 60k
e n
2 40k = 40k
() Q
o =)
O 20k O 20k
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0 20 40 60 0 20 40 60
Time (hours) Time (hours)

(a) Stable query workload (b) Dynamic query workloads



BAO: Summary

- Advantages
« Steer but not replace - Reuse existing QO, easy to deploy
« Easily adapts to data/query/system updates > Better generality
« Smaller training time w.r.t. NEO

 Disadvantages
* Less freedom of plan selection - Performance loss sometimes
 Cold-start and regression problems stills exist



Learned QO: A Comparison
-mm-m-—

Needs CardEst

Needs Cost Model Yes No Yes

Learning Space No Large Small
Plan Search DP/Greedy Best-first Bl Gsrgtefgnvivr:gh AL

Plan Selection Freedom High High Low
Query Encoding No Ad-hoc Easy

Training Time No Long Fast
Hands Update Easy Hard Easy
Cold Start / Regression No Serious Heavy

Deployment Easy Hard Easy



Learned QO: Our Goal

Performance
A

O t|ma| ......................................................................................................
P Our Goal NEO

Existing QO

Regression / Cold Start

Training Time



MTMLF: One Model for All

 Basic idea: learned knowledge is decomposable

Task specific knowledge: method
@ @ @ -------- » to solve a specific task, e.g. join
. ordering selection rules

CardEst JoinSel

\ / Task shared knowledge: data and
query representations used in all tasks

.............. Data-specific knowledge:
"> data unique, e.g. data and
query workload distributions

Data-agnostic meta-knowledge:b
common rules across DBs e.g., expert
experiences and multi-table join rules

« Ziniu Wu, Peilun Yang#, Pei Yu#, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai Zeng, Jingren Zhou. A Unified
Iransferable Model for ML-Enhanced DBMS, CIDR, 2022. https://arxiv.org/abs/2105.02418
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MTMLF: One Model for All

Shared learning and specific adaption

E&} E&} @ Task specific knowledge: a small

CardEst CostEst JoinSel model adapt to each task

f
Task shared knowledge: general data and
query representations benefit all tasks
o«
v, I I I Data—agnostic meta-knowledge:

Data-specific knowledge: = summarized from multiple DBs

adapt to each DB =



MTMLF: Service Provider Side

* Pre-trained large models as services

E%} E%} E%ip Task specific knowledge: pre-

CardEst CostEst JoinSel trained models with meta-rules

\ t

D /
g ||II

Data-specific knowledge: access =
multiple anonymous DBs -

Task shared knowledge: pre-trained large
model, e.g., transformer

Data—agnostic meta-knowledge:
summarized by experts




MTMLF: User Side

* Fine-tune pre-trained models to fit user data

E&} E&} E&} Task specific knqwledge: fine-

CardEst CostEst JoinSe| tune the pre-trained models

@ Task shared knowledge: fine-tune
/ the pre-trained large model

i I I I Data-specific knowledge:
modeling user’ s DB and queries

—
—



MTMLF: Advantages

* Architecture
» More efficient training without redundant learning

« More effective task modeling with posterior knowledge guidelines, e.g.,
CostEst to CardEst

» Transferability to avoid cold start/regression

« Workflow

« More green computation: pre-trained large models provided as
fundamental too

« More in-depth optimization: see more data
« Easy to evolve and manage




MTMLF: Detailed Architecture

- Jointly learn multiple components in QO together
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MTMLF: Evaluation Results

*One model for all architecture is more accurate
« Better than previous plug-in architecture
« Multi-task learning > separate learning

m Cardinality Q-Error Cost Q-Error

PostgreSQL 184 670,000 10,416 4.90 4,920 105

Tree-LSTM 8.78 696.29 36.83 4.00 290.35 15.01

Ours-QO 4.48 614.45 28.69 2.10 37.54 4.20
Ours-CardEst 5.12 804.48 36.66 --- --- ---

Ours-CostEst --- --- --- 2.06 61.41 4.69



MTMLF: Evaluation Results

«One model for all architecture is effective
« Pre-train/fine-tune is transferable to new DBs

Execution Improvement Execution | Improvement
Time (min) Ratio Time (min) Ratio

PostgreSQL PostgreSQL
(Baseline) ULt (Baseline) 393.3
Optimal 209.1 81.7% Ours-QO 2341 40 6%
(No Finetune)
Ours-QO 318.3 72.2% Ours-QO
urs- o
ours- 450.4 60.6% Retrained) 1% .

JoinSel



Learned QO Module: Summary

« NEO: Learn everything e2e by itself
« Long training time, low generality and heavy cold-start

« BAO: learn to steer existing QO by tuning hint set
 Easy to deploy and better generality
 Performance loss and remaining cold-start problem

« MTMLF: pre-training + fine-tuning
« A possible routine for a desirable learned QO
« We still have a long way to go ......



Part 4. Applications and Deployment

d Application case studies of learned QO
d Learned cost model for SCOPE
 Learn to steer SCOPE

d Challenges of actual deployment

3 Start-up system for deployment: Baihe



SCOPE and Its Cost Model

« SCOPE: the big data system for data analytics in Microsoft
« Mainly consists of recurring jobs: same scripts, different data
« Cost-based optimizer: wide gap between actual/estimated cost
« Cost model gap exists even with actual cardinality

Default Cost Model = == Manually tuned Cost Model with Actual Cardinality Feedback
Manually tuned Cost Model = == Default Cost Model with Actual Cardinality Feedback
W Clustert [ Cluster2 Cluster3 WM Cluster4 Model SEaEGR ©1.0 el ’
20.0 Correlation % 0.8 )44%?
= S 2
< 15.0 .04 © 0.6 77
2 £ |Under Estimation V 4
Q _— 0.10 O 0.4 y.
= 10.0 5 ¢ Over Estimati
o e _.-227" Over Estimation
2 . §02
L 5.0 B >
© = O g —
< T Gda T i
: . 103 102 10! 10° 10! 102 10°
0.0 a) Pearson Correlation Estimated/Actual
Day1 Day2 Day3
b) Accuracy

Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, Wangchao Le. Cost Models for Big Data Query Processing:
Learning, Retrofitting, and Our Findings, SIGMOD, 2020. https://arxiv.org/pdf/2002.12393.pdf
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Learned Cost Model

A single global model: can’ t equally effective for all operators
- Different operators have very different performance behavior
 Performance of the same operator can vary drastically w.r.t. context

« Solution: many specialized small models, each for an operator-
subgraph template

« Common sub-expressions frequently occurring in recurring jobs

Q [Il Count(*)

S !
| 0 \Price >100 |L|Price >100

_/ T y
« = M )
—— 8l -
N Order Order
Customer Q 0

Q1 Q2



Learned Cost Model

« Operator-subgraph model: high accuracy
« Low coverage: some operator subgraphs can’ t be covered

Feature Description

Input Cardinality (I) Total Input Cardinality from children operators
Base Cardinality (B) Total Input Cardinality at the leaf operators
Output Cardinality (C) | Output Cardinality from the current operator
AverageRowLength (L) | Length (in bytes) of each tuple

Number of Partitions (P) | Number of partitions allocated to the operator
Input (IN) Normalized Inputs (ignored dates, numbers)

Parameters (PM)

Parameters

=)

o
=
o

o
o
o

Normalized Weight
S

sqrt(C)

' 4

Model Correlation | Median Error
Default 0.04 258%

Neural Network 0.89 27%

Decision Tree 0.91 19 %
Fast-Tree regression | 0.90 20%

Random Forest 0.89 32%

Elastic net 0.92 14%

sgmyg%sgsgi
oo o EoovY=
=ge) o 2o =
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Learned Cost Model

 Accuracy-coverage tradeoff
« Another extreme: operator model

« High coverage but poor accuracy, the behavior of an operator
changes w.r.t. context

« Two trade-offs

» Operator-input model: multiple per-operator models, each for jobs
sharing similar inputs

» Operator-subgraph Approx model: learn one model for all
subgraphs sharing approximate subgraph structure



Learned Cost Model

« Combined models: a meta-ensemble

Model Correlation | Median | Coverage
Model Correlation | Median Error Error
Default 0.04 258% Default 0.04 258% 100%
Neural Network 0.79 31% Op-Subgraph | 0.92 14% 54%
Decision Tree 0.73 41 % ‘ Op-Subgraph | 0.89 16 % 76%
FastTree Regression | 0.84 19% Approx
Random Forest 0.80 28% Op-Input 0.85 18% 83%
Elastic net 0.68 64% Operator 0.77 42% 100%
Combined 0.84 19% 100%
? /\
ai ; . N
b!h '
Al
e .
C O S
dif 0
N I GL)
e
£ oy

p-Subgra p—Subgphrox Operator

 Combined




Real-world Evaluation Results

e Learned cost models are accurate and robust

All jobs Ad-hoc jobs
Correlation | Median Error | 95%tile Error | Coverage | Correlation | Median Error | 95%tile Error | Coverage
Default 0.12 182% 12512% 100% 0.09 204% 17791% 100%
Op-Subgraph 0.86 9% 56% 65% 0.81 14% 57% 36%
Op-Subgraph Approx 0.85 12 % 71% 82% 0.80 16 % 79% 64%
Op-Input 0.81 23% 90% 91% 0.77 26% 103% 79%
Operator 0.76 33% 138% 100% 0.73 42% 186% 100%
Combined 0.79 21% 112% 100% 0.73 29% 134% 100%
Operator-SubgraphApprox Operator-Subgraph —>»— Operator-Input —— Operator —&— Combined —+— Default
n Cluster 1 Cluster 2 Cluster 3 Cluster 4
b~ T _ T ] T _ T
=y | | : :
S 0757 ? ! : # i
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'© 0.25 1 i 4 g g
L 1 ) I i
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Latency (Mins)

Real-world Evaluation Results

 Learned cost models could improve benchmark and
production jobs plan quality
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SCOPE and Its Rule Configuration

« SCOPE: query workload and different rules
« Only 10% queries > S5mins, but they consume 90% containers

« 256 rules in total, 100-150 rules are used frequently
 Typically 10 — 20 rules are used in a single job

¥ 8000

10

2 @ 2 6000
2 3 o] <
‘S 10 2 o
5 ° 5 4000
Q o) Ko}
= e} =
Z 10! 5 Z 2000
10 3
md ‘ 0 .
0 25000 50000 75000 100000 ‘ ‘ 0 20 40 60
Runtime (Seconds) Rule Number of rules used in a job
(a) Histogram of SCOPE job (b) Number of jobs using (c) Histogram of number of

runtimes. each of the rules. different rules used in a job.

Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska, Marc Friedman, Alekh Jindal.
Steering Query Optimizers: A Practical Take on Big Data Workloads, SIGMOD, 2021.
https://dl.acm.org/doi/pdf/10.1145/3448016.3457568
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SCOPE and Its Rule Configuration

 Problem: find suitable rules (hint set) for each job to steer QO
« Large learning space: 219 rules
« Expensive execution for model training

Category #Rules | ¥Unused| poje Examples
Rules
Hevica 37 9 EnforceExchange, BuildOutput
i GetToRange, SelectToFilter
Off-by-default 16 36 Correlated_]on'lOnUmonl,
GroupbyOnJoin
NormalizeReduce,
On-by-default 141 37 CollapseSelect, SelectPartitions,
SequenceProjectOnUnion
. HashJoinImpl1, JoinToApplyIn-
Sapementanion | o2 5 dex1, UnionToVirtualDataset




Method Overview

» Discover rule configurations: which ones we should look at
 Candidate rule configuration running: do improve runtime
 Extrapolate to other jobs by learning models

» Deploy and test online



Rule Configuration Discovery

Cost

Cost

 Finding a number of interesting rule configurations that may
change jobs' performance by randomized heuristic search

 Tuning rule configurations can find plans with estimated costs
lower than the default rule configuration

* Disabling rules would block certain code paths chosen by bad
estimates or heuristics in the optimizer, thus nudge better plans
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Rule Configuration Selection

* Plans performance could improve drastically using the best
seen rule configuration Workload

A B C
# Queries 36 155 45
ARuntime -1689s -663s -400s

« Examples on rule configuration difference irercentage 307 =~ 137 7%

 Enable off-by-default rules is not enough o Fpme T o Rulesonly i

%change  default plan best plan

( Joinlmpl2 )

« Disable rules could prevent bad code paths _, .. |t Cormltedoinon

GroupbyBelowUnionAll ~ -UnionAll2

k“'8 more rules )
« Alternate rules would be better e \
Ouz —86% SelectOnProject .
SelectPredNormalized
\...3 more rules )
UnionAlltoVirtual )

Qas  -75% UnionAllToUnionAll
-Dataset

« How to extend to unseen jobs? Learning!

TopOnRestrRemap

-96% CollapseSelects
Qb1 SelectOnTrue e

OB -80% JoinImpl2 HashJoinImpl1
Ops  —-70% ProcesOnnUnionAll UnionAlltoVirtual

UnionAllToUnionAll -Dataset




Rule Configuration Learning

« Job group: all jobs having the same default rule configuration
 Similar code paths to QO, could be optimized together

« Regression learning problem
* Input features: job graph features + candidate rule configuration
« Output: normalized runtime
« Lightweight model with 1-layer NN



Rule Configuration Learning

« Online deployment: large improvements, small regressions

1 2 3
Mean 90P  99P Mean 90P 99P Mean 90P 99P
Best 5458 14K 14.8K 19.8K 26K 27K 2966 13.8K 15.3K

Default 6461 16.3K 18.3K 20.7K 26.9K 28.9K 3304 14.7K 16.8K
Learned 5724 14.7K 15.4K 20.2K 26.2K 27K 3252 14.6K 16.8K
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Actual Deployment: Challenges

« ML +DBs sounds great, but...
* It can be challenging to deploy in a real world production setting
« Even more so in mission critical systems such as DBs!

*Key Issues

* Brittleness of most models, hard to detect stochastic failure modes,
model training is not a well-defined process

« Dependencies (ML stacks, external services, ...)
 Keeping track of training data and model versions



DBs and ML: A Tale of Two Cities

Databases Machine Learning
« Central and fundamental piece « Produces predictions based on
of IT infrastructure for almost probabilistic methods
any business « Needs close supervision due to
« Need rock-solid, reliable and wide range of failure modes
stable behavior « Stochastic

« Deterministic

Need to resolve conflict through proper software engineering practices!
- Requirements, design iterations, -



Deriving Requirements

High Level Design Philosophy

« Separation from the core system

« Minimal third party dependencies

« Robustness, stability and fault tolerance
« Usability and configurability.

Concrete ML-related requirements

« Support wide range of models and ML frameworks while not introducing too many

dependencies
 Training outside of the core system, support iterative model development and

evaluation process
« Well defined and robust model deployment procedure

« Fallbacks in case of model failures



Different User Perspectives

Actual User (both human and technical)
« Should not have to care about this

DBAs/OPs

Should only have to learn a few config knobs and management commands (e.g. activate training data
collection, configure which model to use, deploy a readily packaged model,...)

Should not be responsible for managing extra external services which provide some sort of inference
API

Should not have to worry that some fancy new piece of tech breaks their system or security.

Model Developer / Researcher

 Easy access to training data, fast development iteration cycles

« Simple packaging and deployment (resp. handover to DBA)

« Develop models based on well defined environment (libs, packages, ...) close to the usual
ML/DS stack



Baihe: Design Blue Print and Implementation

PostgreSQL Host System Dshpmwkfptgsm Highlights
Backend Baihe Extension D> Inference Message Flow | |
Brocess mPp- Control and Config Information Flow * Extend Postg res hookin g mec hanism
Integration Layer Data Collector i > Collected Data Flow
Planner{Hook > Shadow >@ T Model Information Flow th rou g h ' S h a d OW p | anner com p one nt
o Planner | = Hook normation Flow * Make idiomatic use of Postgres
> - P@ Cc-'llectorz fu nctlona | |ty for Sha red memory,
OtherHooks | 5 background workers, process
Con:ol and Config >@ Collector n d | PC
nforonce Mmanagement an
E ‘IPCModule * Simple model packaging and
— t | deployment for cardinality estimation
Collected Data

Training

and query runtime prediction
* FEasy to use test bed for Ai4DB related

Background Workers Shared Memory

‘ Environment

...... Data
Model 1 Model 2 Model n ey | Bae research
Support
Disk Storage ‘ | Library Open Source Release
Saved Models | | Training Data Tables : | '

* Research oriented MVP: Available soon!
* Comments and discussions welcome!



Demo Timel

« Andreas Pfadler, Rong Zhu, Wei Chen, Botong Huang, Tianjing Zeng, Bolin Ding, Jingren Zhou. Baihe: SysML
Framework for Al-driven Databases, Arxiv, 2022. https://arxiv.org/abs/2112.14460
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Applications and Deployment: Summary

« Some attempts on customized systems and tasks

« Learned cost model on SCOPE
 Learn to steer QO on SCOPE

« General Al4DB deployment tool is very necessary
« Challenges but also opportunities

« Our Baihe system takes the first step



Part 5: Summary and Future Work
d Summary

d Future Work



Summary

d QO is a suitable experimental plot for Al4DB - the prosperity
of learned QO techniques in recent

d Learned QO components: CardEst, Cost Model, JoinSel
d CardEst: data-driven, query-driven and bound-based methods
d Cost Model: supervised learning
3 JoinSel: RL-based learning
O Exhibit advantages, but still not ready for actual deployment




Summary

d Learned whole QO module
O Learn to replace original QO vs. learn to steer existing QO
3 Far from a desirable learned QO
d Some possible way is identified

d Applications and deployment
d Some attempts on customized systems and tasks
d General deployment tool is very necessary
ad The first step is already taken



Future Work

- Final goals: practical and intelligent QO and beyond

@ Intelligent QO
{ZJ System Deployment

Q Applications in real-world scenarios
tj Learned E2e QO

a Learned component algorithms: CardEst, Cost Model,
QQ Join Order search, ...

E: Existing traditional DBMS
Ll g

We still have a long way to go!



Future Work

d CardEst
3 Fusion of data-driven and query-driven methods
d Adaptive methods: OLAP/OLTP, different data/workload,...

d Performance improvement: update speed, accuracy on multi-table
gueries, aware of different sub-queries, ...

d Cost Model and JoinSel
d Automatically generate sufficient training data with large coverage
d Robust model for dynamic workloads or different scenarios
a Intelligent algorithms selection given a workload and datasets



Future Work

d Learned QO module
d Pre-training + fine-tuning technique routine
d New architecture to steer existing QO
d New training and update strategy

d Applications and Deployment
d General deployment tool
d Customized tuning

d Beyond QO: extend to more Al4DB or even DB4AI tasks
A Indexing, advisors, diagnosis, ...
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