
Learned Query Optimizer: At the Forefront
of AI-Driven Databases

Rong Zhu1, Ziniu Wu2, Chengliang Chai3, Andreas Pfadler1,

Boling Ding1, Guoliang Li3, Jingren Zhou1

1 2 3

Speakers

Rong Zhu
Alibaba Group

Ziniu Wu
MIT

Chengliang Chai
Tsinghua University

Andreas Pfadler
Alibaba Group

Bolin Ding
Alibaba Group

Jingren Zhou
Alibaba Group

Guoliang Li
Tsinghua University

❑ Part 1: Preliminaries

❑ Part 2: Learned Individual Component

❑ Part 3: Learned Whole QO Module

❑ Part 4: Applications and Deployment

❑ Part 5: Summary and Future Work

❑ Q & A

Outline

Tutorial Part A

Tutorial Part B

❑ Query Optimizer (QO)

❑ Learned QO

Part 1: Preliminaries

DBMS

QO: The Central Role in DBMS

• Generating best physical plan for input query

• Directly relates to the system performance

Query
OptimizerQuery 𝑄

Data 𝐷
Plan 𝑃

Plan
Execution

QO: A Difficult Task

• Different join orders, join methods, scan methods, …

SELECT COUNT(*)

FROM s, sc, c

WHERE s.sid = sc.sid AND sc.cid = c.cid

AND s.year < 2009 AND c.credit >= 3

s sc c

MJ, HJ, NJ

MJ, HJ, NJ

s sc c

MJ, HJ, NJ

MJ, HJ, NJ

Seq Scan, Index Scan, … Seq Scan, Index Scan, …

Which plan is better?

Query Optimizer

QO Architecture

• The general volcano framework

Cardinality
Estimation

Cost
Model

Join Order SelectionQuery 𝑄

Data 𝐷 Plan 𝑃
Plan

Execution

Enumerate all possible
candidate plan

Estimate the number of
tuples of each sub-query

Estimate the running cost
of each sub-query

QO Architecture

• The general volcano framework

SELECT COUNT(*)

FROM s, sc, c

WHERE s.sid = sc.sid AND sc.cid = c.cid

AND s.year < 2009 AND c.credit >= 3

s sc c

100

10,000

s sc c

1,000

10,000

Seq Scan, Index Scan, …

This plan is better!

Join Cost: HJ < MJ < NJ
Scan Cost: Seq Scan < Index Scan HJ

HJ

SeqScan

Query Optimizer

Traditional QO Methods

• Experience driven: not favorable enough

Cardinality
Estimation

Cost
Model

Join Order SelectionQuery 𝑄

Data 𝐷 Plan 𝑃
Plan

Execution

Dynamic Programming,
Greedy Search…

Simple statistical methods:
histogram, sampling, …

Rule based, experience
based tuning

Query Optimizer

Learned QO: A Pioneer in AI4DB

• QO is an experimental plot for learned techniques: more
automatic, fine-grained and accurate solutions

Cardinality
Estimation

Cost
Model

Join Order SelectionQuery 𝑄

Data 𝐷 Plan 𝑃
Plan

Execution

Decision making:
reinforcement learning

Unsupervised data
modeling

Supervised rule
learning

Learned QO: Status and Opportunities

System Deployment

Existing traditional DBMS

Intelligent QO

Learned component algorithms: CardEst, Cost Model,
Join Order search, …

Applications in real-world scenarios

Learned E2e QO

• Review on recent advances: 100+ papers recently

• Deep analysis: comparison and benchmark

• Summary and future work

Explore this journey together!

❑ Cardinality Estimation (CardEst)

❑ Cost Model

❑ Join Order Search

Part 2: Learned QO Components

Cardinality estimation

•CardEst: estimate the result size 𝐶(𝑄) of the query 𝑄 without
actual execution

•Lay foundations for cost estimation and join ordering selection

•A key component in QO and decides the query plan quality

SELECT COUNT(*)

FROM s, sc, c

WHERE s.sid = sc.sid AND sc.cid = c.cid

AND s.year < 2009 AND c.credit >= 3
s sc c

100

10,000

s sc c

1,000

10,000

or

CardEst methods overview

•Traditional methods: Histogram and Sampling

•Learned query-driven methods:
•Analyze query workload, learn regression model mapping Q to C(Q)

•Learned data-driven methods:
•Analyze data, learn PrT(A) of table T with attributes A
•C(Q) = PrT(Q) * |T|

•Bound-based methods:
• Instead of estimating the cardinality, it provides an upper bound
•Can avoid very expensive join orders and physical operators
•Rigorously not CardEst (will not explain in detail)

Traditional methods

•Most widely used in modern DBMS

•Histogram: attribute independent assumption Pr(𝐴) ≈ ς𝑖 Pr(𝐴𝑖)
• Fast inference, low storage cost, high estimation error
•Multi-dimensional Histogram

•Sampling:
• Execute the query on a smaller sample of the data
• Estimation accuracy and inference speed trade-off
• Kernel-density estimation, join sampling

• Join uniformity assumption
• Estimate join query Q=A B as C(Q) = PrA(QA) * PrB(QB) * |A B|

Learned query-driven methods

•Build supervised model mapping Q to C(Q)
•Query feature engineering is important

•XGboost, Neural network, Tree-LSTM, deep ensemble

•Fast inference speed, versatile

•Estimation accuracy is highly dependent on the training query
workload.
•Requires excessive amount of training queries (unavailable to new DB)
• Performance degrades severely for data and workload changes

Learned data-driven methods

•Build statistical models to capture data distributes PrT(A)
•Deep auto-regression model (Neurocard)
• Probabilistic graphical models: Bayesian network (BayesCard), Sum-
product network (DeepDB), Factorized-sum-product network (FLAT)
•Normalizing flow model (FACE)

•Use fanout-based method to handle join queries.
• Produce accurate estimates
• Inference time and model size are generally small but maybe large
for databases with large number of tables

•Current state-of-the-art methods in improving query plans.

Distribution modeling techniques

•Deep auto-regression model (Neurocard1)
• Fully factorize the distribution: for table A with attr {A1, …, An}
PrT(A) = PrT(A1) * PrT(A2|A1) * PrT(A3|A2, A1) * … * PrT(An|An-1, ..., A1)
•High accuracy, large model size, and slow inference

• Bayesian Network (BayesCard2): Pr(𝐴) = ς𝑖 Pr(𝐴𝑖|𝐴𝑝𝑎(𝑖))

• Conditional independence assumption: high accuracy
• Explainable and compact model
•Difficult in structure learning (NP-Hard)
• BayesCard addresses the low inference of BN:
JIT-compiled variable elimination,
Progressive sampling.
•High accuracy, small model size, and fast inference

𝐴1 𝐴2 𝐴3

𝐴4 𝐴5

𝐴6 𝐴7 𝐴8

[1] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and I. Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables. PVLDB 14, 1 (2021), 61–73
[2] Z. Wu, A. Shaikhha, R Zhu, K Zeng, Y Han and J Zhou. BayesCard: A Unified Bayesian Framework for Cardinality Estimation. arXiv:2012.14743 (2021).

Distribution modeling techniques

• Sum-product network (DeepDB3):
• Local independence assumptions
• Split the data by rows to find local
independence between attributes
• Accuracy, inference speed, and model size
are sensitive with attribute correlations.

• Factorized sum-product network (FLAT4):

• Combining the techniques from BN and SPN
• Adaptively process highly and weakly
correlated attributes.
•High accuracy and small model size.
Inference can be slow for large # attrs.

factorize

𝑁1

𝑁2
𝑁3

𝑁4 𝑁5 𝑁6 𝑁7

split

univariate leaf

0.3 0.7

sum

TP < 50°F?
TP < 55°F?

WT < 0.9? WT < 1.2?

multivariate leaf

𝐿5 𝐿6 𝐿7 𝐿8𝐿1 𝐿2 𝐿3 𝐿4

[3] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2019. DeepDB: learn from data, not from queries!. In PVLDB.
[4] R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou, and B. Cui. FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation. VLDB 14, 9
(2021), 1489–1502.

Distribution modeling techniques

•Normalizing flow model(FACE5):
• Continuous joint distribution
•Dequantize discrete attributes

to ensure continuity
•High accuracy, inference speed, and

compact model even for columns with
large domain size.

[5] J. Wang, C. Chai, J. Liu, and G. Li. FACE: A normalizing ow based cardinality estimator. Proc. VLDB Endow., 15(1):72–84, 2021.

Benchmark evaluations

• IMDB JOB-light benchmark:
• real-world data with complicated distributions
• contains 6 tables, forming a star-shaped join

•Stats-CEB benchmark5:
• real-world data with complicated distributions
•More tables, more complicated join pattern, more attributes

STATS-
CEB

TitleTitle

Title
Movie
InfoTitle

Cast
Info

Title
Movie

Company Title
Movie

Keyword

Title
Movie

Info_idx
IMDB

JOB-light

[5] Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. Tan, K。 Zeng, G. Cong, Y. Qin, A. Pfadler, Z. Qian, J. Zhou, J. Li, B. Cui, Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. VLDB 2022.

Benchmark evaluations

•Traditional method are most general, lightweight, fast to train
and update, low latency, and perfect for system deployment.

•Learned data-driven methods have the state-of-the-art
performance, but less general and can sometimes have large
model and slow inference.

•Learned query-driven methods can perform well for static DB
instances, but not suitable for new DBs or DBs that have
frequent data update/workload shift.

•Bound-based methods provide us deeper understanding of the
CardEst problem but may not be practical.

Learned CardEst: Summary

❑ Cardinality Estimation (CardEst)

❑ Cost Model

❑ Join Order Search

Part 2: Learned QO Components

25

The Relations of Card/Cost Estimation

 Task Target

• Cost estimation is to approximate the execution-
time/resource-consumption;

 Correlations

• Cost estimation is based on cardinality

 Estimation Difficulity

• Cost is harder to estimate than cardinality, which
considers multiple factors (e.g., seq scan cost, cpu
usage)

26

Learned Cost Estimation
Method Classification
Single Query Cost Estimation

• Characteristic : end2end, tree-structure plan encoding.

• Key idea : use previous plans to train a tree-structure neural
network， which directly predicts the cost.

Concurrent Query Cost Estimation
• Characteristic: multile queries are considered, and performance of

one plan varies due to the correlation between plans.

• Key idea : use a graph to represent the correlation between plans
and use a network to predict the cost.

27

Single Query Cost Estimation
Challenge

• Build an end2end model of cost estimation to avoid
the accumutative errors of cardinality estimation.

• The learning model should capture the tree-structured
information of the query plan

• Hard to encode the predicate.

28

Tree-LSTM for Cost Estimation
 Model Construction

➢ The representation layer learns an embedding of each subquery

➢ The estimation layer outputs cardinality & cost simultaneously

Ji Sun and Guoliang Li. An End-to-End Learning-based Cost Estimator. PVLDB 13, 3 (2019).

QPP for Concurrent Queries troubles

 Queries have complex correlations

 Constraints of DB configurations

✓ Queries and relations form a graph

✓ DB configurations also take effects

Shared
Pool

Read x Read y

Data
Block

Read x Write y

Resource
Pools

Op x Op y

Rigorous 2-

PL

Strict 2-PL

U = set of 2-PL schedules

Work Memory

U = set of memory knobs

Shared Memory

Disk Caching

Predict Performance

On a graph model

Graph Modeling for QPP

 Vertex Modeling: Obtain query plans; and extract

operators from plans as vertex features

SELECT M AX(aka_ name.person_ id)

FROM aka_ name,cast_ info ,company_ type

W H ERE aka_ name. id= cast_ info . id and

 cast_ info . id= company_ type. id ;

UPDATE aka_ name

SE Taka_ name.name = concat(id ,name)

W H ERE id>2 2 5 or id<5 0 and name<>’Shu’;

SELECT cast_ info .nr_ order

FROM cast_ info ,company_ type

W H ERE cast_ info. id= company_ type. id

LIM IT 1 0 ;

SELECT aka_ name.person_ id

FROM aka_ name

LIM IT 1 0 ;

Query Predicate

Operator Type

Estimated Cost

Feature Stack

Sample Bitmap

Optimizer

Graph Modeling for QPP

 Edge Modeling: Compute 4 types of correlations

as edges

Data Sharing

Parent-Child

Resource

Edge Stack

Data Conflict

Resource

Configuration Workload Graph

Graph Embedding for QPP

 𝑆𝑡𝑒𝑝 1: Embed graph features with learned

weights

Workload

Graph

V
e
rt

e
x

E
d
g
e

(in vertex level)

Graph Embedding Network

Graph Layer

Dropout Dropout

weight

V

Graph Layer

weight

H1

Graph Layer

weight

H2 H3

In each graph embedding layer:

𝐷: neighborhood vertices of every vertex

𝜎: activation function that conducts nonlinear transformations

33

Join Order Enumerator
Problem Definition

• Given a SQL query, a join ordering is captured by a binary tree, in
which each leaf node represents a base relation. The aim is to
select the “cheapest” ordering (according to the cost model)
for execution.

Traditional Methods

34

Learning based Join Order Enumerator

Method Classification
Offline learning methods

• Characteristic : Based on the workload，use RL-based methods

• Key idea : Use existing workload to train a learned optimizer, which
will predict the plan for future workload.

Online learning methods
• Characteristic: No workload provided, but relies on customized

Database

• Key idea : The plan of a query can be changed during execution.
The query can switch to another plan if it finds that current plan is
bad. It learns when the database executes the query.

35

Offline learning(ReJoin)
 Background:

• The search space for join order is huge.

• Traditional optimizer does not learn from previous
examples.

 Challenges:
• How to reduce the search space of join order.

• How to select the best join order.

36

Offline learning(ReJoin)

RL model

 Agent : optimizer

 Action: join

 Environment: cost model, database

 Reward：cost , latency

 State : join order, O(n^2)

37

Offline learning(RTOS)
 Background:

• Previous learning based optimizers give good cost, but they do
not give good latency on test queries.

• Schema often changes in realworld database.

 Challenges:
• The intermediate state of the rl is a forest which is hard to

represent.

• The training time is huge when collecting latency as feedback.

• The schema change leads to the retraining.

38

Offline learning (RTOS)

TreeLSTM based Q network
• Use n-ary to represent the sub-trees

• Use child-sum to represent the forest

Two step training
• Cost pretrain

• Latency fine-tuning

Dynamic neural network
• DFS to build neural network for each plan

Reinforcement Learning with Tree-LSTM for Join Order Selection Xiang Yu, Guoliang Li, Chengliang Chai, Nan Tang ICDE 2018

39

Online learning(SkinnerDB)
 Background:

• The workload varies in realworld database.

• Previous learning based optimizer need to give training queries and
hard to give good plans to different workload.

 Challenges:
• How to design a new working mechanism that allows the optimizer to

learn and switch between different join orders online.

• How to evaluate and choose different join orders online.

 Eddies-style
• Divide the execution process into

serveral time slices.

• N way join can support the plan switch.

• Select the plan for the next time slice

based on the previous time slice

MCTS For JOS
• Learn and generate a plan in each time slice

 Relys on Customize Database
• Switch plan in low latency

40

Online learning(SkinnerDB)

N way join

41

Join Order Enumerator

Quality Training Cost
Adaptive

(workload)
Adaptive

(DB Instance)

Traditional Methods
[Genetic algorithms]

[Dynamic Programming]
Low Low ✓ High

Offline Optimization Methods
[ReJoin aiDM 2018]

[RTOS ICDE2020]
High High ✕ Medium

Online Optimization Methods
[SkinnerDB SIGMOD2019]

Medium Low ✓ Low

Learned CostEst and JoinSel: Summary

 They work together to generate an optimal query plan,
i.e., JoinSel selects a good order based on CostEst.

 Both can be optimized through ML techniques.
• CostEst can leverage the neural network to encode the query and predict the cost, and

the methods of CardEst can also be used.

• JoinSel mostly relies on the RL-based methods, because it can be regraded as a decision
making process and the DB can provide feedback as the reward.

❑ End-to-end learned QO: NEO

❑ Learn to steer QO: BAO

❑ One model for all: MTMLF

❑ Comparison and analysis

Part 3: Learned Whole QO Module

Query Optimizer

Learned QO Architecture: Revisit

• From learned components to learned QO module

Cardinality
Estimation

Cost
Model

Join Order SelectionQuery 𝑄

Data 𝐷 Plan 𝑃
Plan

Execution

• From input query to executable plan

NEO

NEO: E2E Learned QO Architecture

Best-First
Plan SearchQuery 𝑄

Plan 𝑃 Plan
Execution

Value Network

Partial
Plan 𝑃′

Estimated
Latency 𝑡′

Latency 𝑡(𝑃)

Featurization

Sample
Workload

• Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,
Nesime Tatbul. Neo: A Learned Query Optimizer, VLDB, 2019. https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf

https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf

• Query encoding: join information + predicates information

NEO: Query Featurization

Query 𝑄 Featurization Query Encoding

1-hot, embedding…

• Learn the latency of the best possible plan from partial plan

NEO: Value Network

Query 𝑄

Value Network

Estimated Latency
𝑡′ = min(𝑡(𝑃)|𝑃′ ⊆ 𝑃)

Featurization Query Encoding

Mapping function: 𝑓(𝑡′|𝑄, 𝑃′)

Partial Plan 𝑃′

• Network architecture: tree convolution

• Inductive bias for tree-structured query plan

NEO: Value Network

• Network architecture: tree convolution

• Learn filter weights for different operations/tables automatically

NEO: Value Network

• NEO could outperforms or matches

existing commercial query optimizers

NEO: Evaluation Results

• Advantages

• First claimed automatic e2e learned QO

• Disadvantages

• Learn everything by itself → Long training time and heavy cold-start

• Ad-hoc featurization for each DB → Low generalization to update

• Replace but not modify → Can’t reuse existing DBMS codes

NEO: Summary

• Existing QO has different hint set: disable/enable certain types
of operations, i.e., disable loop join

• For each query, tuning a good hint set may help to generate a
good plan compensating its estimation error

BAO: Learn to Steer QO

• Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, Tim Kraska. Bao: Learning to
Steer Query Optimizers, SIGMOD, 2021. https://arxiv.org/abs/2004.03814

https://arxiv.org/abs/2004.03814

• Learn how to find the right hint set over existing QO

BAO: Learn to Steer QO Architecture

Existing
Query OptimizerQuery 𝑄

Data 𝐷

Plan 𝑃

Plan
Execution

Hint set

Plan Latency Prediction

Different hints …

Different plans …

Latency 𝑡(𝑃)

• Similar tree structure and convolution to NEO

BAO: Latency Prediction Model

Plan 𝑃
Plan Latency
Prediction Latency 𝑡(𝑃)

• BAO largely outperforms open-source and commercial DBMS

BAO: Evaluation Results

• NEO could overtake BAO after long time training due to more
freedom on plan selection

• BAO coverages fast and easily adapts to dynamic workload

BAO: Evaluation Results

• Advantages

• Steer but not replace → Reuse existing QO, easy to deploy

• Easily adapts to data/query/system updates → Better generality

• Smaller training time w.r.t. NEO

• Disadvantages

• Less freedom of plan selection → Performance loss sometimes

• Cold-start and regression problems stills exist

BAO: Summary

Learned QO: A Comparison

Items Existing QO NEO BAO

Needs CardEst Yes No Yes

Needs Cost Model Yes No Yes

Learning Space No Large Small

Plan Search DP/Greedy Best-first
DP/Greedy with hint

set tuning

Plan Selection Freedom High High Low

Query Encoding No Ad-hoc Easy

Training Time No Long Fast

Hands Update Easy Hard Easy

Cold Start / Regression No Serious Heavy

Deployment Easy Hard Easy

Learned QO: Our Goal

Training Time

Performance

Optimal

Existing QO

NEO

BAO

Regression / Cold Start

Our Goal

MTMLF: One Model for All

• Basic idea: learned knowledge is decomposable

CardEst CostEst JoinSel

Data-agnostic meta-knowledge:
common rules across DBs e.g., expert
experiences and multi-table join rules

Data-specific knowledge:
data unique, e.g. data and

query workload distributions

Task shared knowledge: data and
query representations used in all tasks

Task specific knowledge: method
to solve a specific task, e.g. join
ordering selection rules

• Ziniu Wu, Peilun Yang #, Pei Yu #, Rong Zhu, Yuxing Han , Yaliang Li, Defu Lian, Kai Zeng, Jingren Zhou. A Unified
Transferable Model for ML-Enhanced DBMS, CIDR, 2022. https://arxiv.org/abs/2105.02418

https://arxiv.org/pdf/2105.02418.pdf

MTMLF: One Model for All

•Shared learning and specific adaption

CardEst CostEst JoinSel

Data-agnostic meta-knowledge:
summarized from multiple DBs

Data-specific knowledge:
adapt to each DB

Task shared knowledge: general data and
query representations benefit all tasks

Task specific knowledge: a small
model adapt to each task

MTMLF: Service Provider Side

•Pre-trained large models as services

CardEst CostEst JoinSel

Data-agnostic meta-knowledge:
summarized by experts Data-specific knowledge: access

multiple anonymous DBs

Task shared knowledge: pre-trained large
model, e.g., transformer

Task specific knowledge: pre-
trained models with meta-rules

MTMLF: User Side

•Fine-tune pre-trained models to fit user data

CardEst CostEst JoinSel

Data-specific knowledge:
modeling user′ s DB and queries

Task shared knowledge: fine-tune
the pre-trained large model

Task specific knowledge: fine-
tune the pre-trained models

MTMLF: Advantages

•Architecture
•More efficient training without redundant learning

•More effective task modeling with posterior knowledge guidelines, e.g.,
CostEst to CardEst

• Transferability to avoid cold start/regression

•Workflow
•More green computation: pre-trained large models provided as
fundamental tool

•More in-depth optimization: see more data

• Easy to evolve and manage

MTMLF: Detailed Architecture

• Jointly learn multiple components in QO together

Loss Criteria

Est.
Card

Est.
Cost

Est.
Schedule

…

True
Card

True
Cost

Optimal
Schedule…

loss

Inputs

MTMLF
Seq Scan T1

on f(T1)
Index Scan T2

on f(T2)

Index Scan T3

on f(T3)
Seq Scan Tn

on f(Tn)

Merge join
on j(T1, T2)

Loop join
on j(T3, Tn)

Hash join
on j(T1, T3)

(I) Inputs

Table
T1

Table
T2

Table
Tn

…I.i) Data
Tables

I.ii)
Query Q

Initial
plan ! :

SELECT COUNT(*) FROM
T1, T2, T3, Tn WHERE (joins)
AND f(T1) AND … AND f(Tn)

Node: N1 Node: N2

Node: N3

(F) Featurization
and encoding

F.i) Featurization

FEA
t/f(T)/
j(Ti,Tj)

x

Enc1 …

F.ii) Encoding

E(f(T1)) E(f(Tn))

F.iii) Tree structure embedding.

Serializer

E(N1) E(N2) E(N3) …

(S) Shared
Representation

Tran
s_Sh

are

(T) Task-specific
Module

T.i) CardEst Model

M_CardEst

S1 S2
…

T.ii) CostEst Model

M_CostEst

"#$%&

"#' ()

T.iii) Join order Model

Trans_JO

*+1

!" i : Pred position of ith table

*+2 *+n…

(L) Loss Criteria
and training

L.i) CardEst loss
Qerror(#$%&' , Card)

L.ii) CostEst loss
Qerror(#$()*, Cost)

L.iii) JO loss
CrossEntropy(!" i , Pi)

L.iv) Gradient
backpropogation

Encn

Label

Lo
ss C

riterio
n

MTMLF: Evaluation Results

•One model for all architecture is more accurate
• Better than previous plug-in architecture

•Multi-task learning > separate learning

Method
Cardinality Q-Error Cost Q-Error

median max mean median max mean

PostgreSQL 184 670,000 10,416 4.90 4,920 105

Tree-LSTM 8.78 696.29 36.83 4.00 290.35 15.01

Ours-QO 4.48 614.45 28.69 2.10 37.54 4.20

Ours-CardEst 5.12 804.48 36.66 --- --- ---

Ours-CostEst --- --- --- 2.06 61.41 4.69

MTMLF: Evaluation Results

•One model for all architecture is effective

•Pre-train/fine-tune is transferable to new DBs

Method
Execution
Time (min)

Improvement
Ratio

PostgreSQL
(Baseline)

1143.2 ---

Optimal 209.1 81.7%

Ours-QO 318.3 72.2%

Ours-
JoinSel

450.4 60.6%

Method
Execution
Time (min)

Improvement
Ratio

PostgreSQL
(Baseline)

393.3 ---

Ours-QO
(No Finetune)

234.1 40.6%

Ours-QO
(Retrained)

219.5 44.3%

• NEO: Learn everything e2e by itself

• Long training time, low generality and heavy cold-start

• BAO: learn to steer existing QO by tuning hint set

• Easy to deploy and better generality

• Performance loss and remaining cold-start problem

• MTMLF: pre-training + fine-tuning

• A possible routine for a desirable learned QO

• We still have a long way to go

Learned QO Module: Summary

❑ Application case studies of learned QO
❑ Learned cost model for SCOPE
❑ Learn to steer SCOPE

❑ Challenges of actual deployment

❑ Start-up system for deployment: Baihe

Part 4: Applications and Deployment

• SCOPE: the big data system for data analytics in Microsoft

• Mainly consists of recurring jobs: same scripts, different data

• Cost-based optimizer: wide gap between actual/estimated cost

• Cost model gap exists even with actual cardinality

SCOPE and Its Cost Model

• Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, Wangchao Le. Cost Models for Big Data Query Processing:
Learning, Retrofitting, and Our Findings, SIGMOD, 2020. https://arxiv.org/pdf/2002.12393.pdf

https://arxiv.org/pdf/2002.12393.pdf

Learned Cost Model

• A single global model: can’t equally effective for all operators

• Different operators have very different performance behavior

• Performance of the same operator can vary drastically w.r.t. context

• Solution: many specialized small models, each for an operator-
subgraph template

• Common sub-expressions frequently occurring in recurring jobs

Learned Cost Model

• Operator-subgraph model: high accuracy

• Low coverage: some operator subgraphs can’t be covered

Learned Cost Model

• Accuracy-coverage tradeoff

• Another extreme: operator model

• High coverage but poor accuracy, the behavior of an operator
changes w.r.t. context

• Two trade-offs

• Operator-input model: multiple per-operator models, each for jobs
sharing similar inputs

• Operator-subgraph Approx model: learn one model for all
subgraphs sharing approximate subgraph structure

Learned Cost Model

• Combined models: a meta-ensemble

Real-world Evaluation Results

• Learned cost models are accurate and robust

Real-world Evaluation Results

• Learned cost models could improve benchmark and
production jobs plan quality

Production Jobs

TPC-H Benchmark

• SCOPE: query workload and different rules

• Only 10% queries > 5mins, but they consume 90% containers

• 256 rules in total, 100-150 rules are used frequently

• Typically 10 − 20 rules are used in a single job

SCOPE and Its Rule Configuration

• Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska, Marc Friedman, Alekh Jindal.
Steering Query Optimizers: A Practical Take on Big Data Workloads, SIGMOD, 2021.
https://dl.acm.org/doi/pdf/10.1145/3448016.3457568

https://dl.acm.org/doi/pdf/10.1145/3448016.3457568

• Problem: find suitable rules (hint set) for each job to steer QO

• Large learning space: 219 rules

• Expensive execution for model training

SCOPE and Its Rule Configuration

• Discover rule configurations: which ones we should look at

• Candidate rule configuration running: do improve runtime

• Extrapolate to other jobs by learning models

• Deploy and test online

Method Overview

• Finding a number of interesting rule configurations that may
change jobs' performance by randomized heuristic search

• Tuning rule configurations can find plans with estimated costs
lower than the default rule configuration

•Disabling rules would block certain code paths chosen by bad
estimates or heuristics in the optimizer, thus nudge better plans

Rule Configuration Discovery

• Plans performance could improve drastically using the best
seen rule configuration

• Examples on rule configuration difference

• Enable off-by-default rules is not enough

• Disable rules could prevent bad code paths

• Alternate rules would be better

• How to extend to unseen jobs? Learning!

Rule Configuration Selection

• Job group: all jobs having the same default rule configuration

• Similar code paths to QO, could be optimized together

• Regression learning problem

• Input features: job graph features + candidate rule configuration

• Output: normalized runtime

• Lightweight model with 1-layer NN

Rule Configuration Learning

• Online deployment: large improvements, small regressions

Rule Configuration Learning

• ML +DBs sounds great, but...

• It can be challenging to deploy in a real world production setting

• Even more so in mission critical systems such as DBs!

•Key Issues

• Brittleness of most models, hard to detect stochastic failure modes,
model training is not a well-defined process

•Dependencies (ML stacks, external services, ...)

•Keeping track of training data and model versions

Actual Deployment: Challenges

DBs and ML: A Tale of Two Cities

• Central and fundamental piece
of IT infrastructure for almost
any business

• Need rock-solid, reliable and
stable behavior

• Deterministic

• Produces predictions based on
probabilistic methods

• Needs close supervision due to
wide range of failure modes

• Stochastic

Need to resolve conflict through proper software engineering practices!
→ Requirements, design iterations, …

Databases Machine Learning

Deriving Requirements

• Separation from the core system
• Minimal third party dependencies
• Robustness, stability and fault tolerance
• Usability and configurability.

• Support wide range of models and ML frameworks while not introducing too many
dependencies

• Training outside of the core system, support iterative model development and
evaluation process

• Well defined and robust model deployment procedure
• Fallbacks in case of model failures

High Level Design Philosophy

Concrete ML-related requirements

Different User Perspectives

Actual User (both human and technical)

Model Developer / Researcher

DBAs/OPs

• Should not have to care about this

• Should only have to learn a few config knobs and management commands (e.g. activate training data
collection, configure which model to use, deploy a readily packaged model,…)

• Should not be responsible for managing extra external services which provide some sort of inference
API

• Should not have to worry that some fancy new piece of tech breaks their system or security.

• Easy access to training data, fast development iteration cycles
• Simple packaging and deployment (resp. handover to DBA)
• Develop models based on well defined environment (libs, packages, …) close to the usual

ML/DS stack

Baihe: Design Blue Print and Implementation

• Extend Postgres hooking mechanism
through shadow planner component

• Make idiomatic use of Postgres
functionality for shared memory,
background workers, process
management and IPC

• Simple model packaging and
deployment for cardinality estimation
and query runtime prediction

• Easy to use test bed for Ai4DB related
research

Highlights

Open Source Release

• Research oriented MVP: Available soon!
• Comments and discussions welcome!

Demo Time!

• Andreas Pfadler, Rong Zhu, Wei Chen, Botong Huang, Tianjing Zeng, Bolin Ding, Jingren Zhou. Baihe: SysML
Framework for AI-driven Databases, Arxiv, 2022. https://arxiv.org/abs/2112.14460

https://arxiv.org/abs/2112.14460

• Some attempts on customized systems and tasks

• Learned cost model on SCOPE

• Learn to steer QO on SCOPE

• General AI4DB deployment tool is very necessary

• Challenges but also opportunities

• Our Baihe system takes the first step

Applications and Deployment: Summary

❑ Summary

❑ Future Work

Part 5: Summary and Future Work

❑ QO is a suitable experimental plot for AI4DB → the prosperity
of learned QO techniques in recent

❑ Learned QO components: CardEst, Cost Model, JoinSel
❑ CardEst: data-driven, query-driven and bound-based methods
❑ Cost Model: supervised learning
❑ JoinSel: RL-based learning
❑ Exhibit advantages, but still not ready for actual deployment

Summary

❑ Learned whole QO module
❑ Learn to replace original QO vs. learn to steer existing QO
❑ Far from a desirable learned QO
❑ Some possible way is identified

❑ Applications and deployment
❑ Some attempts on customized systems and tasks
❑ General deployment tool is very necessary
❑ The first step is already taken

Summary

Future Work

System Deployment

Existing traditional DBMS

Intelligent QO

Learned component algorithms: CardEst, Cost Model,
Join Order search, …

Applications in real-world scenarios

Learned E2e QO

• Final goals: practical and intelligent QO and beyond

We still have a long way to go!

❑ CardEst
❑ Fusion of data-driven and query-driven methods
❑ Adaptive methods: OLAP/OLTP, different data/workload,…
❑ Performance improvement: update speed, accuracy on multi-table
queries, aware of different sub-queries, …

❑ Cost Model and JoinSel
❑ Automatically generate sufficient training data with large coverage

❑ Robust model for dynamic workloads or different scenarios

❑ Intelligent algorithms selection given a workload and datasets

Future Work

❑ Learned QO module
❑ Pre-training + fine-tuning technique routine
❑ New architecture to steer existing QO
❑ New training and update strategy

❑ Applications and Deployment
❑ General deployment tool
❑ Customized tuning

❑ Beyond QO: extend to more AI4DB or even DB4AI tasks
❑ Indexing, advisors, diagnosis, …

Future Work

Q & A

Contact:
red.zr@alibaba-inc.com
ziniuw@mit.edu
ccl@tsinghua.edu.cn

