
LEARNED INDEX WITH DYNAMIC ϵ

Daoyuan Chen1∗, Wuchao Li2,∗ Yaliang Li1†, Bolin Ding,1 Kai Zeng3‡, Defu Lian2,† Jingren Zhou1

1 Alibaba Group, 2 University of Science and Technology of China, 3 Huawei
{daoyuanchen.cdy, yaliang.li, bolin.ding, jingren.zhou}@alibaba-inc.com
liwuchao@mail.ustc.edu.cn, kai.zeng@huawei.com, liandefu@ustc.edu.cn

ABSTRACT

Index structure is a fundamental component in database and facilitates broad data
retrieval applications. Recent learned index methods show superior performance
by learning hidden yet useful data distribution with the help of machine learning,
and provide a guarantee that the prediction error is no more than a pre-defined
ϵ. However, existing learned index methods adopt a fixed ϵ for all the learned
segments, neglecting the diverse characteristics of different data localities. In
this paper, we propose a mathematically-grounded learned index framework with
dynamic ϵ, which is efficient and pluggable to existing learned index methods. We
theoretically analyze prediction error bounds that link ϵ with data characteristics
for an illustrative learned index method. Under the guidance of the derived bounds,
we learn how to vary ϵ and improve the index performance with a better space-time
trade-off. Experiments with real-world datasets and several state-of-the-art methods
demonstrate the efficiency, effectiveness and usability of the proposed framework.

1 INTRODUCTION

Data indexing (Graefe & Kuno, 2011; Wang et al., 2018; Luo & Carey, 2020; Zhou et al., 2020), which
stores keys and corresponding payloads with designed structures, supports efficient query operations
over data and benefits various data retrieval applications. Recently, Machine Learning (ML) models
have been incorporated into the design of index structure, leading to substantial improvements in
terms of both storage space and querying efficiency (Kipf et al., 2019; Ferragina & Vinciguerra,
2020a; Vaidya et al., 2021). The key insight behind this trending topic of “learned index” is that the
data to be indexed contain useful distribution information and such information can be utilized by
trainable ML models that map the keys {x} to their stored positions {y}. To approximate the data
distribution, state-of-the-art (SOTA) learned index methods (Galakatos et al., 2019; Kipf et al., 2020;
Ferragina & Vinciguerra, 2020b; Stoian et al., 2021) propose to learn piece-wise linear segments
S = [S1, ..., Si, ..., SN], where Si : y = aix + bi is the linear segment parameterized by (ai, bi)
and N is the total number of learned segments. These methods introduce an important pre-defined
parameter ϵ ∈ Z>1 to guarantee the worst-case preciseness: |Si(x)− y| ≤ ϵ for i ∈ [N].

By tuning ϵ, various space-time preferences from users can be met. For example, a relatively large ϵ
can result in a small index size while having large prediction errors, and on the other hand, a relatively
small ϵ provides users with small prediction errors while having more learned segments and thus
a large index size. Existing learned index methods implicitly assume that the whole dataset to be
indexed contains the same characteristics for different localities and thus adopt the same ϵ for all
the learned segments. However, the scenario where there is varied local data distribution, is very
common, leading to sub-optimal index performance of existing methods. For example, the real-world
Weblog dataset used in our experiment has typically non-linear temporal patterns caused by online
campus transactions such as class schedule arrangements, weekends and holidays. More importantly,
the impact of ϵ on index performance is intrinsically linked to data characteristics, which are not fully
explored and utilized by existing learned index methods.

Motivated by these, in this paper, we theoretically analyze the impact of ϵ on index performance,
and link the characteristics of data localities with the dynamic adjustments of ϵ. Based on the

∗The first two authors contributed equally to this work.
†Corresponding author.
‡Work was done at Alibaba.

1

derived theoretical results, we propose an efficient and pluggable learned index framework that
dynamically adjusts ϵ in a principled way. To be specific, under the setting of an illustrative learned
index method MET (Ferragina et al., 2020), we present novel analyses about the prediction error
bounds of each segment that link ϵ with the mean and variance of data localities. The segment-wise
prediction error embeds the space-time trade-off as it is the product of the number of covered keys
and mean absolute error, which determine the index size and preciseness respectively. The derived
mathematical relationships enable our framework to fully explore diverse data localities with an
ϵ-learner module, which learns to predict the impact of ϵ on the index performance and adaptively
choose a suitable ϵ to achieve a better space-time trade-off.

We apply the proposed framework to several SOTA learned index methods, and conduct a series of
experiments on three widely adopted real-world datasets. Compared with the original learned index
methods with fixed ϵ, our dynamic ϵ versions achieve significant index performance improvements
with better space-time trade-offs. We also conduct various experiments to verify the necessity and
effectiveness of the proposed framework, and provide both ablation study and case study to understand
how the proposed framework works. Our contributions can be summarized as follows:

• We make the first step to exploit the potential of dynamically adjusting ϵ for learned indexes,
and propose an efficient and pluggable framework that can be applied to a broad class of
piece-wise approximation algorithms.

• We provide theoretical analysis for a proxy task modeling the index space-time trade-off,
which establishes our ϵ-learner based on the data characteristics and the derived bounds.

• We achieve significant index performance improvements over several SOTA learned index
methods on real-world datasets. To facilitate further studies, we make our codes and datasets
public at https://github.com/yxdyc/Learned-Index-Dynamic-Epsilon.

2 BACKGROUND

Learned Index. Given a dataset D = {(x, y)|x ∈ X , y ∈ Y}, X is the set of keys over a universe
U such as reals or integers, and Y is the set of positions where the keys and corresponding payloads
are stored. The index such as B+-tree (Abel, 1984) aims to build a compact structure to support
efficient query operations over D. Typically, the keys are assumed to be sorted in ascending order to
satisfy the key-position monotonicity, i.e., for any two keys, xi > xj iff their positions yi > yj , such
that the range query (X ∩ [xlow, xhigh]) can be handled.

Recently, learned index methods (Kraska et al., 2018; Li et al., 2019; Tang et al., 2020; Dai et al., 2020;
Crotty, 2021) leverage ML models to mine useful distribution information from D, and incorporate
such information to boost the index performance. To look up a given key x, the learned index first
predicts position ŷ using the learned models, and subsequently finds the stored true position y based on
ŷ with a binary search or exponential search. By modeling the data distribution information, learned
indexes achieve faster query speed and much smaller storage cost than B+-tree index traditional,
with different optimization aspects such as on ϵ-bounded linear approximation (Galakatos et al.,
2019; Ferragina & Vinciguerra, 2020b; Kipf et al., 2020; Marcus et al., 2020; Li et al., 2021b) and
data-layout (Ding et al., 2020; Wu et al., 2021; Zhang & Gao, 2022; Wu et al., 2022; Li et al., 2021a).

ϵ-bounded Linear Approximation. Many existing learned index methods adopt piece-wise linear
segments to approximate the distribution of D due to their effectiveness and low computing cost, and
introduce the parameter ϵ to provide a worst-case preciseness guarantee and a tunable knob to meet
various space-time trade-off preferences. Here we briefly introduce the SOTA ϵ-bounded learned
index methods that are most closely to our work, and refer readers to the literature (Ferragina &
Vinciguerra, 2020a; Marcus et al., 2020; Stoian et al., 2021) for details of other methods. We first
describe an illustrative learned index algorithm MET (Ferragina et al., 2020). Specifically, for any two
consecutive keys ofD, suppose their key interval (xi−xi−1) is drawn according to a random process
{Gi}i∈N, where Gi is a positive independent and identically distributed (i.i.d.) random variable
whose mean is µ and variance is σ2. MET learns linear segments {Si : y = aix+ bi} via a simple
deterministic strategy: the current segment fixes the slope ai = 1/µ, goes through the first available
data point and thus bi is determined. Then Si covers the remaining data points one by one until a
data point (x′, y′) gains the prediction error larger than ϵ. The violation triggers a new linear segment
that begins from (x′, y′) and the process repeats until D has been traversed.

2

Other ϵ-bounded learned index methods learn linear segments in a similar manner to MET while
having different mechanisms to determine the parameters of {Si} such as FITing-Tree (Galakatos
et al., 2019), PGM (Ferragina & Vinciguerra, 2020b) and Radix-Spline (Kipf et al., 2020). However,
they both constrain all learned segments with the same ϵ. In this paper, we study how to enhance
existing learned index methods from a new perspective: dynamic adjustment of ϵ accounting for
diversity of different data localities, and present new theoretical results about the effect of ϵ. In Appx.
A, we provide more detailed description and comparison to existing learned index methods.

3 LEARN TO VARY ϵ

3.1 PROBLEM FORMULATION AND MOTIVATION

Before introducing the proposed framework, we first formulate the task of learning index from
data with ϵ guarantee, and provide some discussions about why we need to vary ϵ. Given a dataset
D to be indexed and an ϵ-bounded learned index algorithm A, we aim to learn linear segments
S = [S1, ..., Si..., SN] with segment-wise varied [ϵi]i∈[N], such that a better trade-off between
storage cost (size in KB) and query efficiency (time in ns) can be achieved than the ones using fixed
ϵ. Let Di ⊂ D be the data whose keys are covered by Si, for the remaining data D \

⋃
j<iDj , the

algorithm A repeatedly checks whether the prediction error of new data point violates the given ϵi
and outputs the learned segment Si. When all the ϵis for i ∈ [N] take the same value, the problem
becomes the one that existing learned index methods are dealing with.

To facilitate theoretical analysis, we focus on two proxy quantities for the target space-time trade-off:
(1) the number of learned segments N and (2) the mean absolute prediction error MAE(Di|Si), which
is affected and upper-bounded by ϵi. We note that the improvements of N -MAE trade-off fairly
and adequately reflect the improvements of the space-time trade-off: (1) The learned segments size
in bytes and N are positively correlated and only different by a constant factor, e.g., the size of a
segment can be 128bit if it consists of two double-precision float parameters (slope and intercept);
(2) When using exponential search, the querying complexity is O(log(N) + log(MAE(Di|Si)), in
which the first term indicates the finding process of the specific segment S′ that covers the key x for
a queried data point (x, y), and the second term indicates the search range |ŷ − y| for true position y
based on the estimated one ŷ = S′(x). In this paper, we adopt exponential search as search algorithm
since it is better than binary search for exploiting the predictive ability of learned models. In Appx. B,
we show that the search range of exponential search is O(MAE(Di|Si)), which can be much smaller
than the one of binary search, O(ϵi), especially for strong predictive models and the datasets having
clear linearity. Similar empirical support can be also found from (Ding et al., 2020).

Now let’s examine how the parameter ϵ affects the N -MAE trade-off. We can see that these two
performance terms compete with each other and ϵ plays an important role to balance them. If we
adopt a small ϵ, the prediction error constraint is more frequently violated, leading to a large N ;
meanwhile, the preciseness of learned index is improved, leading to a small MAE of the whole data
MAE(D|S). On the other hand, with a large ϵ, we will get a more compact learned index (i.e., a small
N) with larger prediction errors (i.e., a large MAE(D|S)).
Actually, the effect of ϵ on index performance is intrinsically linked to the characteristic of the
data to be indexed. For real-world datasets, an important observation is that the linearity degree
varies in different data localities. Recall that we use piece-wise linear segments to fit the data, and
ϵ determines the partition and the fitness of the segments. By varying ϵ, we can adapt to the local
variations of D and adjust the partition such that each learned segment fits the data better. Formally,
let’s consider the quantity SegErri that is defined as the total prediction error within a segment Si,
i.e., SegErri ≜

∑
(x,y)∈Di

|y − Si(x)|, which is also the product of the number of covered keys
Len(Di) and the mean absolute error MAE(Di|Si). Note that a large Len(Di) leads to a small N
since |D| =

∑N
i=1 Len(Di). From this view, the quantity SegErri internally reflects the N -MAE

trade-off. Later we will show how to leverage this quantity to dynamically adjust ϵ.

3.2 OVERALL FRAMEWORK

In practice, it is intractable to directly solve the problem formulated in Section 3.1. With a given ϵi,
the one-pass algorithm A determines Si and Di until the error bound ϵi is violated. In other words,

3

10 20 30
Key

0

5

10

15

P
o
si

ti
o
n

10 20 30
Key

0

5

10

15

P
o
si

ti
o
n

()

reward
,-./00!, ((, *)

User &−Learner
* ", +, ,

⑤ update
4, &,-./00

(

② lookahead
2", ((", *")

""

[,!, 2!]

10 20 30
Key

0

5

10

15

P
o
si

ti
o
n

""

"$,-

[,!#$, 2!#$]

③ predict 5!

(,, &#) (,, &#$%)

: Learned Segments

: M&'|) − +)|

: Data Points

④ learn index

&,-./00
① initExpected

Figure 1: The dynamic ϵ framework. We 1⃝ transform ϵ̃ into the proxy prediction error ˜SegErr, then
2⃝ sample a small look-ahead data D′ to estimate the data characteristics (µ, σ). 3⃝ The ϵ-learner
predicts a suitable ϵi accordingly, and 4⃝ we learn a new segment Si using A (e.g., PGM) with ϵi.
5⃝ Once Si triggers the violation of ϵi, the ϵ-learner is updated and enhanced with the rewarded

ground-truth. Steps 2⃝ to 5⃝ repeat in an online manner to approximate the distribution of D.

it is unknown what the data partition {Di} will be a priori, which makes it impossible to solve the
problem by searching among all the possible {ϵi}s and learning index with a set of given {ϵi}.
In this paper, we investigate how to efficiently find an approximate solution to this problem via the
introduced ϵ-learner module. Instead of heuristically adjusting ϵ, the ϵ-learner learns to predict
the impact of ϵ on the index structure and adaptively adjusts ϵ in a principled way. Meanwhile, the
introducing of ϵ-learner should not sacrifice the efficiency of the original one-pass learned index
algorithms, which is important for real-world practical applications.

These two design considerations establish our dynamic ϵ framework as shown in Figure 1. The
ϵ-learner is based on an estimation function SegErr = f(ϵ, µ, σ) that depicts the mathematical
relationships among ϵ, SegErri and the characteristics µ, σ of the data to be indexed. As a start, users
can provide an expected ϵ̃ that indicates various preferences under space-sensitive or time-sensitive
applications. To meet the user requirements, afterward, we internally transform the ϵ̃ into another
proxy quantity ˜SegErr, which reflects the expected prediction error for each segment if we set ϵi = ϵ̃.
This transformation also links the adjustment of ϵ and data characteristics together, which enables the
data-dependent adjustment of ϵ. Beginning with ϵ̃, the ϵ-learner chooses a suitable ϵi according to
current data characteristics, then learns a segment Si usingA, and finally enhances the ϵ-learner with
the rewarded ground-truth SegErri of each segment. To make the introduced adjustment efficient,
we propose to only sample a small Look-ahead data D′ to estimate the characteristics (µ, σ) of the
following data locality. The learning process repeats and is also in an efficient one-pass manner. 1

Note that the proposed framework provides users the same interface as the ones used by original
learned index methods. That is, we do not add any additional cost to the users’ experience, and users
can smoothly and painlessly use our framework with given ϵ̃ just as they use the original methods
with given ϵ. The ϵ is an intuitive, meaningful, easy-to-set and method-agnostic quantity for users.
On the one hand, we can easily impose restrictions on the worst-case querying cases with ϵ as the data
accessing number in querying process is O(log(|ŷ − y|)). On the other hand, ϵ is easier to estimate
than the other quantities such as index size and querying time, which are dependent on specific
algorithms, data layouts, implementations and experimental platforms. Our pluggable framework
retains the benefits of existing learned index methods, such as the aforementioned usability of ϵ, and
the ability to handle dynamic update case and hard size requirement. 2

We have seen how ϵ determines index performance and how SegErri embeds the N -MAE trade-off
in Section 3.1. In Section 3.3, we further theoretically analyze the relationship among ϵ, SegErri,
and data characteristics µ, σ at different localities. Based on the analysis, we elaborate on the details
of ϵ-learner and the internal transformation between ϵ and SegErri in Section 3.4.

1For better readability, we summarize the notations in Appx. C.
2We discuss how to extend existing works in more detail in Appx. D.

4

3.3 PREDICTION ERROR ESTIMATION

In this section, we theoretically study the impact of ϵ on the prediction error SegErri of each learned
segment Si. The derived closed-form relationships will be taken into account in the design of the
proposed ϵ-learner module (Section 3.4). Specifically, for the MET algorithm, we can prove the
following theorem to bound the expectation of SegErri with ϵ and the key interval distribution of D.
Theorem 1. Given a dataset D to be indexed and an ϵ where ϵ ∈ Z>1, consider the setting of the
MET algorithm (Ferragina et al., 2020), in which key intervals ofD are drawn from a random process
consisting of positive i.i.d. random variables with mean µ and variance σ2, and ϵ ≫ σ/µ. For a
learned segment Si and its covered data Di, denote SegErri =

∑
(x,y)∈Di

|y − Si(x)|. Then the
expectation of SegErri satisfies:√

1

π

µ

σ
ϵ2 < E[SegErri] <

2

3

√
2

π
(
5

3
)
3
4 (

µ

σ
)2ϵ3.

Note that the average length of segments obtained by the MET algorithm is (µσ)
2ϵ2. We now get

a constant 2
3

√
2
π (

5
3)

3
4 ≈ 0.78 that is tighter than the trivial one with 1 corresponding to the case

where each data point reaches the largest error ϵ. This theorem reveals that the prediction error
SegErri depends on both ϵ and the data characteristics (µ, σ). Recall that CV =σ/µ is the coefficient
of variation, a classical statistical measure of the relative dispersion of data points. In the context of
the linear approximation, the data statistic 1/CV = µ/σ in our bounds intrinsically corresponds to
the linearity degree of the data. With this, we can find that when µ/σ is large, the data is easy-to-fit
with linear segments, and thus we can choose a small ϵ to achieve precise predictions. On the other
hand, when µ/σ is small, it becomes harder to fit the data using a linear segment, and thus ϵ should
be increased to absorb some non-linear data localities. In this way, we can make the total prediction
error for different learned segments consistent and achieve a better N -MAE trade-off. This analysis
also confirms the motivation of varying ϵ: The local linearity degrees of the indexed data can be
diverse, and we should adjust ϵ according to the local characteristic of the data, such that the learned
index can fit and leverage the data distribution better. In the rest of this section, we provide a proof
sketch of this theorem due to the space limitation. For detailed proof, please refer to our Appx. E.

• TRANSFORMED RANDOM WALK. The main idea is to model the learning process of linear
approximation with ϵ guarantee as a random walk process, and consider that the absolute prediction
error of each data point follows folded normal distributions. Specifically, given a learned segment
Si : y = aix+ bi, we can calculate the expectation of SegErri for this segment as:

E[SegErri] = aiE

(j∗−1)∑
j=0

|Zj |

 = ai

∞∑
n=1

E

[
n−1∑
j=0

|Zj |

]
Pr(j∗ = n), (1)

where Zj is the j-th position of a transformed random walk {Zj}j∈N, j∗ = max{j ∈ N| − ϵ/ai ≤
Zj ≤ ϵ/ai} is the random variable indicating the maximal position when the random walk is within
the strip of boundary ±ϵ/ai, and the last equality is due to the definition of expectation.

• PROOF OF UPPER BOUND. Under the MET setting where ai = 1/µ and ϵ≫ σ/µ, we find that
the increments of the transformed random walk {Zj} have zero mean and variance σ2, and many
steps are necessary to reach the random walk boundary. With the Central Limit Theorem, we assume
the Zj follows normal distribution with mean µzj = 0 and variance σ2

zj = jσ2, and thus |Zj | follows
the folded normal distribution with expectation E(|Zj |) =

√
2/πσ

√
j. Thus Eq. (1) becomes:

1

µ

∞∑
n=1

E

[
n−1∑
j=0

|Zj |

]
Pr(j∗ = n)<

1

µ

∞∑
n=1

n−1∑
j=0

E [|Zj |]Pr(j∗ = n) =
σ

µ

√
2

π

∞∑
n=1

n−1∑
j=0

√
j Pr(j∗ = n).

Using E[j∗] =
µ2

σ2
ϵ2 and V ar[j∗] =

2

3

µ4

σ4
ϵ4 as derived in Ferragina et al. (2020), we get E[(j∗)2] =

5

3

µ4

σ4
ϵ4. With the inequality

∑n−1
j=0

√
j < 2

3n
√
n and E[X 3

4] ≤ (E[X])
3
4 , we get the upper bound:

E[SegErri] <
2

3

√
2

π

σ

µ
E[(j∗)

3
2] ≤ 2

3

√
2

π

σ

µ

(
E[(j∗)2]

) 3
4 =

2

3

√
2

π
(
5

3
)
3
4 (

µ

σ
)2ϵ3.

5

• PROOF OF LOWER BOUND. Applying the triangle inequality into Eq. (1), we can get
E[SegErri] > 1

µ

∑∞
n=1 E [|Z|] Pr(j∗ = n), where Z =

∑n−1
j=0 Zj , and Z follows the normal

distribution since Zj ∼ N(0, σ2
zj). We can prove that |Z| follows the folded normal distribution

whose expectation E[|Z|] > σ(n− 1)/
√
π. Thus the lower bound is:

E[SegErri] >
σ

µ

√
1

π

∞∑
n=1

(n− 1)Pr(j∗ = n) =
σ

µ

√
1

π
E [j∗ − 1] =

√
1

π
(
µ

σ
ϵ2 − σ

µ
).

Since ϵ≫ σ
µ , we can omit the right term

√
1/π · σ/µ and finish the proof. Although the derivations

are based on the MET algorithm whose slope is the reciprocal of µ, we found that the mathematical
forms among ϵ, µ/σ and SegErri are still applicable to other ϵ-bounded methods, and further prove
that the learned segment slopes of these methods are similar with bounded differences in Appx. F.

3.4 ϵ-LEARNER

Now given an ϵ, we have obtained the closed-form bounds of the SegErr in Theorem 1, and both
the upper and lower bounds are in the form of w1(

µ
σ)

w2ϵw3 , where w1,2,3 are some coefficients. As
the concrete values of these coefficients can be different for different datasets and different methods,
we propose to learn the following trainable estimator to make the error prediction more precise:

SegErr = f(ϵ, µ, σ) =w1(
µ

σ
)w2ϵw3 ,

s.t.

√
1

π
≤ w1 ≤ 2

3

√
2

π
(
5

3
)
3
4 , 1 ≤ w2 ≤ 2, 2 ≤ w3 ≤ 3.

(2)

With this learnable estimator, we feed data characteristic µ/σ of the look-ahead data and the trans-

formed ˜SegErr into it and find a suitable ϵ∗ as
(

˜SegErr/w1(
µ
σ)

w2

)1/w3

. We will discuss the

look-ahead data and the transformed ˜SegErr in the following paragraphs. Now let’s discuss the rea-
sons for how this adjustment can achieve better index performance. Actually, the ϵ-learner proactively
plans the allocations of the total prediction error indicated by the user (i.e., ϵ̃ · |D|) and calculates the
tolerated ˜SegErr for the next segment. By adjusting current ϵ to ϵ∗, the following learned segment
can fully utilize the distribution information of the data and achieve better performance in terms of
N -MAE trade-off. To be specific, when µ/σ is large, the local data has clear linearity, and thus we
can adjust ϵ to a relatively small value to gain precise predictions; although the number of data points
covered by this segment may decrease and then the number of total segments increases, such cost
paid in terms of space is not larger than the benefit we gain in terms of precise predictions. Similarly,
when µ/σ is small, ϵ should be adjusted to a relatively large value to lower the learning difficulty and
absorb some non-linear data localities; in this case, we gain in terms of space while paying some
costs in terms of prediction accuracy. The segment-wise adjustment of ϵ improves the overall index
performance by continually and data-dependently balancing the cost of space and preciseness.

Look-ahead Data. To make the training and inference of the ϵ-learner light-weight, we propose to
look ahead a few data D′ to reflect the characteristics of the following data localities. Specifically,
we leverage a small subset D′ ⊂ D \

⋃
j<iDj to estimate the value µ/σ for the following data.

In practice, we set the size of D′ to be 404 when learning the first segment as initialization, and(
1

(i−1)

∑i−1
j=1 Len(Dj)

)
· ρ for the other following segments. Here ρ is a pre-defined parameter

indicating the percentage that is relative to the average number of covered keys for learned segments,
considering that the distribution of µ/σ can be quite different to various datasets. As for the first
segment, according to the literature (Kelley, 2007), the sample size 404 can provide a 90% confidence
interval for a coefficient of variance σ/µ ≤ 0.2.

˜SegErr and Optimization. As aforementioned, taking the user-expected ϵ̃ as input, we aim to
reflect the impact of ϵ̃ with a transformed proxy quantity ˜SegErr such that the ϵ-learner can choose
suitable ϵ∗ to meet users’ preference while achieving better N -MAE trade-off. Specifically, we make
the value of ˜SegErr updatable, and update it to be ˜SegErr = w1(µ̂/σ̂)

w2 ϵ̃w3 once a new segment
is learned, where µ̂/σ̂ is the mean value of all the processed data so far. This strategy enables us
to promptly incorporate both the user preference and the data distribution into the calculation of

6

˜SegErr. As for the optimization of the light-weight model, i.e., f(ϵ, µ, σ) that contains only three
learnable parameters w1,2,3, we adopt the projected gradient descent den Hertog & Roos (1991) with
the parameter constraints in Eq. (2). In this way, we only need to track a few statistics and learn the ϵ
estimator in an efficient one-pass manner. The overall algorithm is summarized in Appx. G.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines and Metrics. We apply our framework to several SOTA learned index methods, including
MET (Ferragina et al., 2020), FITing-Tree (Galakatos et al., 2019), Radix-Spline, and PGM (Ferragina
& Vinciguerra, 2020b). For evaluation, we consider the index performance in terms of its learned
segments N , size in bytes, prediction preciseness MAE, and the total querying time in ns. For a
quantitative comparison w.r.t. the trade-off improvements, we calculate the Area Under the N-MAE
Curve (AUNEC) where the x-axis and y-axis indicate N and MAE respectively. For AUNEC metric,
the smaller, the better. More introduction and implementation details are in Appx. H.

Datasets. We use several widely adopted datasets that are from real-world applications and differ in
data scales and distributions (Kraska et al., 2018; Galakatos et al., 2019; Ding et al., 2020; Ferragina
& Vinciguerra, 2020b; Li et al., 2021b), including Weblogs and IoT (timestamp keys), Map (location
coordinate keys), and Lognormal (synthetic keys). More details and visualization are in Appx. I.

4.2 OVERALL INDEX PERFORMANCE

N -MAE Trade-off Improvements. In Table 1, we summarize AUNEC improvements in percentage
brought by the proposed framework of all the baseline methods on all the datasets. We also illustrate
the N -MAE trade-off curves for some cases in Figure 2, where the blue curves indicate results
achieved by fixed ϵ version while the red curves are for dynamic ϵ. Other baselines and datasets yield
similar curves, which we include in Appx. J.1 due to the space limitation. These results show that the
dynamic ϵ versions of all the baseline methods achieve much better N -MAE trade-off (−15.66% to
−22.61% averaged improvements as smaller AUNEC indicates better performance), demonstrating
the effectiveness and wide applicability of the proposed framework. As discussed in previous sections,
datasets usually have diverse key distributions at different data localities, and the proposed framework
can data-dependently adjust ϵ to fully utilize the distribution information of data localities and thus
achieve better index performance in terms of N -MAE trade-off. Here the Map dataset has significant
non-linearity caused by spatial characteristics, and it is hard to fit using linear segments (all baseline
methods learn linear segments), thus relatively small improvements are achieved.

Table 1: The AUNEC relative improvements for learned index methods with dynamic ϵ.
Weblogs IoT Map Lognormal Average

MET -25.87% -7.66% -7.63% -21.48% -15.66%
FITing-Tree -31.18% -25.56% -4.94% -28.24% -22.48%
Radix-Spline -28.37% -24.59% -6.14% -31.32% -22.61%

PGM -22.42% -25.01% -7.18% -6.52% -15.28%

Figure 2: The N -MAE trade-off curves for learned index methods.

Querying Time Improvements. Recall that the querying time of each data point is in O(log(N) +
log(|y − ŷ|) as we mentioned in Section 3.1, where N and |y − ŷ| are inversely impacted by ϵ. To

7

Figure 3: Improvements in terms of querying times for learned index methods with dynamic ϵ.

examine whether the performance improvements w.r.t. N -MAE trade-off (i.e., Table 1) can lead
to better querying efficiency in real-world systems, we show the averaged total querying time per
query and the actual learned index size in bytes for two scenarios in Figure 3. We also mark the 99th
percentile (P99) latency as the right bar. We can observe that the dynamic ϵ versions indeed gain
faster average querying speed, since we improve both the term N as well as the term |y − ŷ| via
adaptive adjustment of ϵ. Besides, we find that the dynamic version achieves comparable or even
better P99 results than the static version, due to the fact that our method effectively adjusts ϵ based
on the expected ϵ̃ and data characteristic, making the {ϵi} fluctuated within a moderate range and
leading to good robustness. A similar conclusion can be drawn from other baselines and datasets, and
we present their results in Appx. J.1. Another thing to note is that, this experiment also verifies the
usability of our framework in which users can flexibly set the expected ϵ̃ to meet various space-time
preferences just as they set ϵ in the original learned index methods.

Index Building Cost. Compared with the original learned index methods that adopt a fixed ϵ, we
introduce extra computation to dynamically adjust ϵ in the index building stage. Does this affect the
efficiency of the original methods? Here we report the relative increments of building times in Table 2.
From it, we can observe that the proposed dynamic ϵ framework achieves comparable building times
to all the original learned index methods on all the datasets, showing the efficiency of our framework
since it retains the online learning manner with the same complexity as the original methods (both in
O(|D|)). Note that we only need to pay this extra cost once, i.e., building the index once, and then
the index structures can accelerate the frequent data querying operations for real-world applications.

Table 2: Building time increments in percentage for learned index methods with dynamic ϵ.
Weblogs IoT Map Lognormal Average

MET 10.54% 5.14% 8.33% 5.26% 7.32%
FITing-Tree 10.70% 1.88% 5.35% 5.23% 5.79%
Radix-Spline 10.19% 1.64% 3.85% 8.96% 6.16%

PGM 16.76% 2.20% 1.28% 21.29% 10.38%

4.3 ABLATION STUDY OF DYNAMIC ϵ

To gain further insights into how the proposed dynamic ϵ framework works, we compare the proposed
one with three dynamic ϵ variants: (1) Random ϵ is a vanilla version that randomly choose ϵ from
[0, 2ϵ̃] when learning each new segment; (2) Polynomial Learner differs our framework with another
polynomial function SegErr(ϵ) = θ1ϵ

θ2 where θ1 and θ2 are trainable parameters; (3) Least Square
Learner differs our framework with an optimal (but very costly) strategy to learn f(ϵ, µ, σ) with the
least square regression.

Table 3: The AUNEC relative changes of dynamic ϵ variants compared to the proposed framework.
Weblogs IoT Map Lognormal Average

Random ϵ +70.94% +68.19% +53.29% +73.38% +66.45%
Polynomial Learner +49.32% +40.57% +7.71% +42.77% +35.09%

Least Square Learner +4.44% +9.32% +2.04% −17.63% −0.46%

We summarize the AUNEC changes in percentage compared to the proposed framework in Table 3.
Here we only report the results for FITing-Tree due to the space limitation and similar results can
be observed for other methods. Recall that for AUNEC, the smaller, the better. From this table, we
have the following observations: (1) The Random ϵ version achieves much worse results than the
proposed dynamic ϵ framework, showing the necessity and effectiveness of learning the impact of ϵ.
(2) The Polynomial Learner achieves better results than the Random ϵ version while still having a

8

large performance gap compared to our proposed framework. This indicates the usefulness of the
derived theoretical results that link the index performance, the ϵ, and the data characteristics together.
(3) For the Least Square Learner, we can see that it achieves similar AUNEC results compared with
the proposed framework. However, it has higher computational complexity and pays the cost of much
larger building times, e.g., 14× and 53× longer building times on IoT and Map respectively. These
results demonstrate the effectiveness and efficiency of the proposed framework that adjusts ϵ based
on the theoretical results, which will be validated next.

4.4 CASE STUDY

Figure 4: Visualization of the
learned index (partial) on IoT for
FITing-Tree with fixed ϵ = 32 and
dynamic version (ϵ̃ = 32).

We visualize the partial learned segments for FITing-Tree with
fixed and dynamic ϵ on IoT dataset in Figure 4, where the N and∑

SegErri indicates the number of learned segments and the
total prediction error for the shown segments respectively. The
−−→
µ/σ indicates the characteristics of covered data {Di}. We can
see that our dynamic framework helps the learned index gain
both smaller space (7 v.s. 4) and smaller total prediction errors
(48017 v.s. 29854). Note that ϵs within −→ϵi are diverse due to the
diverse linearity of different data localities: For the data whose
positions are within about [30000, 30600] and [34700, 35000],
the proposed framework chooses large ϵs as their µ/σs are small,
and by doing so, it achieves smaller N than the fixed version by
absorbing these non-linear localities; For the data in the middle
part, they have clear linearity with large µ/σs, and thus the
proposed framework adjusts ϵ as 19 and 10 that are smaller than
32 to achieve better precision. These experimental observations
are consistent with our analysis in the paragraph under Eq. (2),
and clearly confirm that the proposed framework adaptively adjusts ϵ based on data characteristics.

4.5 MORE EXPERIMENTS IN APPENDIX

Due to the space limitation, we provide further experiments and analysis in Appendix, including:

• More results about the overall index performance (Appx.J.1) and ablation studies (Appx.J.2) on
other datasets and methods, which support similar conclusions in Sec.4.2 and Sec.4.4.

• The theoretical validation (Appx.J.3) for Theorem 1 that SegErri is within the derived bounds,
and Theorem 2 that the learned slopes of various ϵ-bounded methods have the same trends and
both concentrate on 1/µi with a bounded difference. This shows that baselines have the same
mathematical forms as we derived, and the proposed ϵ-learner works well with wide applicability.

• The insights about which kinds of datasets will benefit from our dynamic adjustment (Appx.J.4),
with the help of an indicative quantity, the coefficient of variation value (σ/µ).

5 CONCLUSIONS

Existing learned index methods introduce an important hyper-parameter ϵ to provide a worst-case
preciseness guarantee and meet various space-time user preferences. In this paper, we provide formal
analyses about the relationships among ϵ, data local characteristics, and the introduced quantity
SegErri for each learned segment, which is the product of the number of covered keys and MAE,
and thus embeds the space-time trade-off. Based on the derived bounds, we present a pluggable
dynamic ϵ framework that leverages an ϵ learner to data-dependently adjust ϵ and achieve better
index performance in terms of space-time trade-off. A series of experiments verify the effectiveness,
efficiency, and usability of the proposed framework.

We believe that our work contributes a deeper understanding of how the ϵ impacts the index perfor-
mance, and enlightens the exploration of fine-grained trade-off adjustments by considering data local
characteristics. Our study also opens several interesting future works. For example, we can apply the
proposed framework to other problems in which the piece-wise approximation algorithms with fixed
ϵ are used while still requiring space-time trade-off, such as similarity search and lossy compression
for time series data (Chen et al., 2007; Xie et al., 2014; Buragohain et al., 2007; O’Rourke, 1981).

9

REFERENCES

David J Abel. A B+-tree structure for large quadtrees. Computer Vision, Graphics, and Image
Processing, 27(1):19–31, 1984.

Timo Bingmann. Stx b+ tree. https://panthema.net/2007/stx-btree/, 2013.

Chiranjeeb Buragohain, Nisheeth Shrivastava, and Subhash Suri. Space efficient streaming algorithms
for the maximum error histogram. In IEEE 23rd International Conference on Data Engineering,
pp. 1026–1035, 2007.

Qiuxia Chen, Lei Chen, Xiang Lian, Yunhao Liu, and Jeffrey Xu Yu. Indexable pla for efficient
similarity search. In Proceedings of the 33rd international conference on Very large data bases, pp.
435–446, 2007.

Andrew Crotty. Hist-tree: Those who ignore it are doomed to learn. In 11th Conference on Innovative
Data Systems Research, 2021.

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. From wisckey to bourbon: A learned index for log-structured
merge trees. In 14th USENIX Symposium on Operating Systems Design and Implementation, pp.
155–171, 2020.

Dick den Hertog and Cees Roos. A survey of search directions in interior point methods for linear
programming. Mathematical Programming, 52(1):481–509, 1991.

Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang, Badrish Chandramouli,
Johannes Gehrke, Donald Kossmann, and David B. Lomet. Alex: An updatable adaptive learned
index. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 969–984, 2020.

Paolo Ferragina and Giorgio Vinciguerra. Learned data structures. In Recent Trends in Learning
From Data, pp. 5–41. 2020a. doi: 10.1007/978-3-030-43883-8_2.

Paolo Ferragina and Giorgio Vinciguerra. The PGM-Index: A fully-dynamic compressed learned
index with provable worst-case bounds. Proceedings of the VLDB Endowment, 13(8):1162–1175,
2020b. ISSN 2150-8097.

Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. Why are learned indexes so effective? In
International Conference on Machine Learning, pp. 3123–3132, 2020.

Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. Revisiting
reuse for approximate query processing. volume 10, pp. 1142–1153, 2017.

Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska. FITing-
Tree: A data-aware index structure. In Proceedings of the International Conference on Management
of Data, pp. 1189–1206, 2019.

Goetz Graefe and Harumi Kuno. Modern b-tree techniques. In 27th International Conference on
Data Engineering, pp. 1370–1373, 2011.

Ken Kelley. Sample size planning for the coefficient of variation from the accuracy in parameter
estimation approach. Behavior Research Methods, 39(4):755–766, 2007.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper.
Learned cardinalities: Estimating correlated joins with deep learning. In 9th Biennial Conference
on Innovative Data Systems Research, 2019.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska,
and Thomas Neumann. Radixspline: A single-pass learned index. In Proceedings of the Third
International Workshop on Exploiting Artificial Intelligence Techniques for Data Management,
2020.

10

https://panthema.net/2007/stx-btree/

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In Proceedings of the International Conference on Management of Data, pp. 489–504,
2018.

Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. Finedex: a fine-grained learned index scheme for
scalable and concurrent memory systems. Proceedings of the VLDB Endowment, 15(2):321–334,
2021a.

Xin Li, Jingdong Li, and Xiaoling Wang. Aslm: Adaptive single layer model for learned index. In
International Conference on Database Systems for Advanced Applications, pp. 80–95. Springer,
2019.

Yaliang Li, Daoyuan Chen, Bolin Ding, Kai Zeng, and Jingren Zhou. A pluggable learned index
method via sampling and gap insertion. arXiv preprint arXiv:2101.00808, 2021b.

Chen Luo and Michael J Carey. Lsm-based storage techniques: a survey. The VLDB Journal, 29(1):
393–418, 2020.

Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons Kemper,
Thomas Neumann, and Tim Kraska. Benchmarking learned indexes. Proceedings of the VLDB
Endowment, 14(1):1–13, 2020.

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.
openstreetmap.org, 2017.

Joseph O’Rourke. An on-line algorithm for fitting straight lines between data ranges. Communications
of the ACM, 24(9):574–578, 1981.

Mark H Overmars. The design of dynamic data structures, volume 156. Springer Science & Business
Media, 1987.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured merge-tree
(lsm-tree). Acta Informatica, 33(4):351–385, 1996.

Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-support in main memory. In
Proceedings of the 25th International Conference on Very Large Data Bases, pp. 78–89, 1999.

Mihail Stoian, Andreas Kipf, Ryan Marcus, and Tim Kraska. Plex: Towards practical learned
indexing, 08 2021.

Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie Wang, and Haibo
Chen. Xindex: a scalable learned index for multicore data storage. In Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 308–320,
2020.

Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, and Tim Kraska. Partitioned learned bloom filters.
In International Conference on Learning Representations, 2021.

Jingdong Wang, Ting Zhang, jingkuan song, Nicu Sebe, and Heng Tao Shen. A survey on learning to
hash. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):769–790, 2018.

Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao Xing. Updatable learned
index with precise positions. Proc. VLDB Endow., 14(8):1276–1288, 2021.

Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun Jason Xue. Nfl: Robust
learned index via distribution transformation. Proc. VLDB Endow., 15(10):2188–2200, sep 2022.

Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. Maximum error-bounded
piecewise linear representation for online stream approximation. The VLDB journal, 23(6):
915–937, 2014.

Jiaoyi Zhang and Yihan Gao. CARMI: A cache-aware learned index with a cost-based construction
algorithm. Proc. VLDB Endow., 15(11):2679–2691, 2022.

11

 https://www.openstreetmap.org
 https://www.openstreetmap.org

Zhou Zhang, Peiquan Jin, Xiao-Liang Wang, Yan-Qi Lv, Shouhong Wan, and Xike Xie. COLIN:
A cache-conscious dynamic learned index with high read/write performance. J. Comput. Sci.
Technol., 36(4):721–740, 2021.

Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. Database meets artificial intelligence: A
survey. IEEE Transactions on Knowledge and Data Engineering, 2020.

12

APPENDIX FOR THE PAPER: LEARNED INDEX WITH DYNAMIC ϵ

Our appendix includes the following content:

• Sec.A: further descriptions and comparison about the related ϵ-based learned index meth-
ods and data layout optimization-based methods.

• Sec.B: the details of the binary search and exponential search, and the connections between
prediction error and these specific searching strategies.

• Sec.C: the notations adopted in this paper.
• Sec.D: the discussion about how the proposed framework inherits the good abilities of

existing learned index methods.
• Sec.E: the full proof of Theorem 1.
• Sec.F: the analysis about the learned slopes of other ϵ-bounded methods.
• Sec.G: the summarized algorithm of the proposed method.
• Sec.H: the implementation details of experiments.
• Sec.I: the detailed descriptions and visualization of the adopted datasets.
• Sec.J: more experimental results including the overall index performance and ablation

study on other datasets and methods (Sec.J.1 and Sec.J.2), and the theoretical validation
(Sec.J.3). Besides, we explore an indicative quantity (the CV value) to provide further
insight into the rationale of the proposed framework (Sec.J.4).

A MORE DETAILS ABOUT RELATED WORKS

A.1 ϵ-BOUNDED LINEAR APPROXIMATION METHODS

Besides the MET method mentioned in Sec.2, we give more introduction to the related ϵ-bounded
linear approximation methods. FITing-Tree (Galakatos et al., 2019) uses a greedy shrinking cone
algorithm. PGM (Ferragina & Vinciguerra, 2020b) adopts another one-pass algorithm that achieves
the optimal number of learned segments. Radix-Spline (Kipf et al., 2020) introduces a radix structure
to organize learned segments. Here we use a toy dataset to demonstrate the workflow of the ϵ-bounded
linear approximation methods. Suppose we study every segment with a demonstrative method in
an online manner, which is simplified from MET and expresses the general idea of the class of the
ϵ-bounded linear approximation methods: When a new data point comes over, we connect it with the
starting point of the segment as the linear function of this segment, and check whether there is a data
point whose prediction error is greater than ϵ. If so, the learning of this segment is terminated, and the
current data point will serve as the starting point for a new segment. The first two subfigures in Figure
5 show the learning process of the first segment, and the data point which terminates the process is
taken as the starting point of the second segment. Subsequent subfigures show the learning process
for the following segments just as the first segment. Existing works are different in determining linear
functions and termination conditions, but they all follow a similar flow like this.

Figure 5: Workflow of ϵ-bounded linear approximation method.

However, existing methods constrain all learned segments with the same ϵ. All of these piece-wise
segments based approaches attempt to improve performance by changing the way segments are
learned or organized, but ignore the optimization potential of dynamically varying ϵ. In this paper,
we discuss the impact of ϵ in more depth and investigate how to enhance existing learned index
methods from a new perspective: dynamic adjustment of ϵ accounting for the diversity of different

13

data localities, as shown in our mathematical derivation linking the indexing performance, ϵ and data
statistics µ/σ (Sec. 3.3) and the proposed ϵ-learner (Sec. 3.4). Besides, different from (Ferragina
et al., 2020) which reveals the relationship between ϵ and index size performance based on MET. In
Sec.3.3, we give novel analyses about the impact of ϵ on not only index size, but also index preciseness
and a comprehensive trade-off quantity, which facilitates the proposed dynamic ϵ adjustment.

A.2 DATA-LAYOUT-OPTIMIZATION BASED METHODS

In this paper, we mainly focus on the ϵ-based learned index methods. In recent years, some data-
layout-optimization based methods also gain promising indexing performance. For example, ALEX
(Ding et al., 2020) improves Recursive Model Index (RMI) Kraska et al. (2018) by reserving gaps
within arrays to enhance the ability to update indexing case (insert, delete, update, etc.,). LIPP (Wu
et al., 2021) proposes to extend the tree structure with zero prediction error for update operations
and proposes an adjustment strategy to provide a bounded height of the tree index. NFL (Wu et al.,
2022) proposes to transform the complex key distribution into a near-uniform distribution. CARMI
(Zhang & Gao, 2022) leverages an entropy-based cost model to improve the data partitioning of
tree nodes in learned indexes. FINEdex (Li et al., 2021a) focuses on concurrent and independent
model processing with the help of a fattened data structure. These two performance optimization
perspectives are relatively orthogonal. Both types of learned index methods have their pros and cons:

Worst-case guarantee. For the ϵ-bounded methods (Ferragina & Vinciguerra, 2020b; Stoian et al.,
2021; Galakatos et al., 2019; Ferragina et al., 2020; Kipf et al., 2020), the most important advantage
they provide is the worst-case guarantee in each segment. This property is fairly valuable in many
realistic indexing applications such as financial databases and on-device intelligence. Also note that
our approach still maintains comparable 99th percentile (P99) performance compared to static ϵ
baselines as shown in the overall index performance comparison (Figure 3 and Figure 10).

Index Size. Data-layout-based approaches such as ALEX (Ding et al., 2020) do achieve better
indexing performance in dynamic scenarios, but it pays a larger index size overhead because of the
introduced gap insertion technique (reserving empty space for possibly inserted data). Empirically, we
examine the performance of ALEX with our experimental settings and find that it gains comparable
query time and larger index size than the learned index with dynamic ϵ as the following Table 4 shows,
where the qtime and index size are in ns and KB respectively. We adopt the default hyper-parameters
of ALEX and the ϵ is 4, 32, 64, and 32 in these four datasets respectively for RadixSpline.

We note that the index size is still very important even with a large amount of memory available
today, as shown by the fact that almost all related learned index works examine this metric in their
experiments. It is worth noting that index size can have a significant impact on latency indirectly,
since the smaller the index, the more it can fit into the hierarchical high-speed CPU caches, and thus
increase the hit rates to speed up the overall indexing performance Zhang & Gao (2022); Zhang et al.
(2021). Moreover, in some practical applications, the available memory can be relatively small such
as in cases where users need to build indexes from multiple keys of the data, and need to use the
index on IoT devices for edge computation.

Dynamic Hyper-parameter. Moreover, our novel framework can be regarded as an automatic
method that determines hyper-parameters (ϵ) according to the varied local properties of the data.
Although the data layout optimization goes beyond our scope, our insight can also contribute to the
ALEX approach, since it also introduces hyper-parameters in local linear segments learning, the
lower and upper density limits on each gapped array: dl, du ∈ (0, 1]. The authors empirically set
them to be 0.6 and 0.8 respectively. However, different gapped arrays may gain better performance
with different density limitations, since the data distribution can be varied across different localities,
as we have shown in experiments.

B CONNECTING PREDICTION ERROR WITH SEARCHING STRATEGY

As we mentioned in Section 3.1, we can find the true position of the queried data point in O(log(N)+
log(|ŷ − y|)) where N is the number of learned segments and |ŷ − y| is the absolute prediction error.
A binary search or exponential search finds the stored true position y based on ŷ. It is worth pointing

14

Table 4: The indexing performance comparison between ALEX and RadixSpline with the proposed
dynamic ϵ framework.

Weblogs IoT Map Lognormal
qtime size qtime size qtime size qtime size

ALEX 713 1428 915 1632 521 582 962 1321
RadixSpline, Dynamic ϵ 602 995 974 1275 428 373 937 1085

out that the searching cost in terms of searching range |ŷ − y| of binary search strategy corresponds
to the maximum absolute prediction error ϵ, whereas the one of exponential search corresponds to
the mean absolute prediction error (MAE). In this paper, we decouple the quantity SegErri as the
product of Len(Di) and MAE(Di|Si) in the derivation of Theorem 1. Built upon the theoretical
analysis, we adopt exponential search in experiments to better leverage the predictive models.

To clarify, let’s consider a learned segment Si with its covered data Di. Let |ŷk − yk| be the absolute
prediction error of k-th data point covered by this segment, and ϵi be the maximum absolute prediction
error of Si, i.e., |ŷk − yk| ≤ ϵi for all k ∈ [len(Di)].

• The binary search is conducted within the searching range [ŷk ± ϵi] for each data point 3, thus the
mean search range is 1

len(Di)

∑len(Di)
k=1 2ϵi = O(ϵi), which is independent of the preciseness of the

learned segment and an upper bound of MAE(Di|Si).

• The exponential search first finds the searching range where the queried data may exist by cen-
tering around the ŷ, repeatedly doubling the range [ŷ ± 2q] where the integer q grows from
0, and comparing the queried data with the data points at positions ŷ ± 2q. After finding the
specific range such that a qk satisfies 2log(qk)−1 ≤ |ŷk − yk| ≤ 2⌈log(qk)⌉ for the k-th data, a
binary search is conducted to find the exact location. In this way, the mean search range is

1
len(Di)

∑len(Di)
k=1 (2⌈log(qk)⌉+1) = O

(
MAE(Di|Si)

)
, which can be much smaller than O(ϵi), espe-

cially for strong predictive models and the datasets having clear linearity.

C NOTATIONS

We summarize the adopted notations in Table 5 for convenience.

Table 5: The adopted Notations
Notation Description

N The total number of segments
Si The i-th segment of learned index
D The whole data to be indexed
Di The data covered by the i-th segment
ϵ̃ Expected ϵ given by user
ϵi The maximum prediction error of segment i
SegErri The sum of the errors for the data covered by the i-th segment
˜SegErr Expected segment error calculated based on ϵ̃
D′ Sampled data to reflect the characteristics of the following data localities.
ρ The hyperparameter to determine the size of D′

µ̂ Mean of data intervals in D′

σ̂ Standard deviation of data intervals in D′

f(·) The learnable function for determine ϵi
w1, w2, w3 Learnable parameters of the epsilon-learner (f)

3The lower bound and upper bounds of searching ranges should be constricted to 0 and len(Di) respectively.
For brevity, we omit the corner cases when comparing these two searching strategies as they both need to handle
the out-of-bounds scenario.

15

D INHERITING THE ABILITIES OF EXISTING WORKS

In this Section, we discuss the benefits of our proposed framework brought by its pluggable property
with two example scenarios, the dynamic data update and hard limitation on user-required index size.

We note that the data insert operation has been discussed in the adopted baseline methods, FITing-Tree
Galakatos et al. (2019) and PGM Ferragina & Vinciguerra (2020b). More importantly, neither of these
two methods altered the notion of ϵ when dealing with the data insertion, and they still relied on their
ϵ-bounded piece-wise segmentation algorithms. The proposed framework is still valid when using
their respective solutions to handle data insertion. Specifically, FITing-Tree proposes to introduce
a buffer for each learned segment, which is used to store the inserted keys, and when the buffer is
full, the data covered by the segment will be re-segmented (see Section 5 in Galakatos et al. (2017)).
PGM adopts a logarithmic method O’Neil et al. (1996); Overmars (1987) that maintains a series of
sorted sets {S0, S1, ..., Sb} where b = θ(log(|D|)), and builds multiple PGM-INDEX models over
the sets. When a key x is inserted, a new PGM-INDEX will be built over the merged sets (see Section
3 in Ferragina & Vinciguerra (2020b)). In general, these solutions proposed by existing methods
for inserting keys are based on re-indexing for a piece of data along with the inserted data, and the
re-indexing processes are the same as the original piece-wise linear segmentation processes but for
different data, therefore, we can still apply the proposed dynamic-ϵ framework for these methods in
insertion scenarios just like we adjust ϵ and learn index according to the new data to be re-indexed.

For the hard size limitation case, we observe that the existing work PGM introduced a multi-criteria
variant that auto-tunes itself with pre-defined hard size requirements from users. Our proposed
framework is pluggable and still valid when using the PGM variant to handle the size requirement.
Specifically, given a space constraint, the multi-criteria PGM proposes to iteratively estimate the
relationship between ϵ and size with a learnable function size(ϵ) = aϵ−b, and automatically outputs
the index that minimizes its query time via different estimated ϵs. Given a size requirement, we can
just do the same thing in a dynamic ϵ scene by setting our ϵ̃ as ϵ estimated by the original PGM
method.

We present discussions on how the proposed framework can inherit the ability to handle the update
case of existing works above. To show how the learned index with dynamic ϵ performs under
different dynamic scenarios, as an example here, we simply replace the static ϵ parameter in the
segment-building process of updatable PGM into a dynamic one predicted by the proposed ϵ learner
and keep the update processing of PGM unchanged.

We follow the read-heavy and write-heavy workloads setting similar to ALEX Ding et al. (2020),
where the workloads are composed of lookup operations and insert operations with different
ratios. Specifically, after building learned indexes with a random subset of the whole dataset
with the percentage Rinit ∈ (0, 100%), we repetitively perform Nlookup random lookup opera-
tions and 1 insertion operation in a batch. To simulate different workloads, we set Rinit to be
[5%, 10%, 20%, 40%, 60%, 80%] and Nlookup to be [1, 2, 4, 8, 16].

10 20 30 40 50 60 70 80
Init Data Ratio (%)

0.5

1.0

1.5

2.0

In
de

x
Si

ze
 (B

yt
es

)

1e8
Epsilon Type
Static Epsilon
Dynamic Epsilon

Figure 6: Total throughput (ops/sec) and index size (KB) results of the PGM with static and dynamic
ϵ on two different read-write workloads.

We repeat the experiments 3 times and summarize the total throughput (operations/sec) and index
size (KB) in Figure 6. Generally speaking, compared with the PGM with static ϵ, we can observe
that PGM with the ϵ adjustment achieves larger total throughput and smaller sizes in most cases,
indicating the effectiveness of the proposed method. We also find that with larger ratios of write (i.e.,
smaller Nlookup) and smaller ratios of initial building data (Rinit), the throughput improvements are
less and the variances are larger. Note that the current modification with ϵ-learner mostly impacts

16

the index building stage, and we do not design specific strategies in the insert stage to achieve more
precise estimation for the data’s local characteristics, which is a promising future direction to further
optimize the index performance in update case.

E PROOF OF THEOREM 1

Given a learned segment Si : y = aix+ bi, denote ci as the stored position of the last covered data
for the (i− 1)-th segment (c1 = 0 for the first segment). We can write the expectation of SegErri
for the segment Si as the following form:

E[SegErri] = E

(j∗−1)∑
j=0

|aiXj + bi − (j + ci + 1)|

 ,

where j∗ indicates the length of the segment, and Xj indicates the j-th key covered by the segment
Si. As studied in Ferragina et al. (2020), the linear-approximation problem with ϵ guarantee can
be modeled as random walk processes. Specifically, Xj = X0 +

∑j
k=0 Gk (for j ∈ Z>0) where

Gk is the key increment variable whose mean and variance is µ and σ2 respectively. Denote the
Zj = Xj − j/ai + (bi − ci − 1)/ai as the j-th position of the transformed random walk {Zj}j∈N,
and j∗ = max{j ∈ N| − ϵ/ai ≤ Zj ≤ ϵ/ai} as the random variable indicating the maximal position
when the random walk is within the strip of boundary ±ϵ/ai. The expectation can be rewritten as:

E

(j∗−1)∑
j=0

|aiXj − j + (bi − ci − 1)|

 = aiE

(j∗−1)∑
j=0

|Zj |

= ai

∞∑
n=1

E

[
n−1∑
j=0

|Zj |

]
Pr(j∗ = n).

(3)

The last equality in Eq. (3) is due to the definition of expectation. Following the MET algorithm that
the Si goes through the point (X0, Y0 = ci + 1), we get bi = −aiX0 + ci + 1 and we can rewrite
Zj as the following form:

Z0 = 0, Zj
j>0
= Xj −X0 − j/ai =

j∑
k=1

Gk − j/ai

=

j∑
k=1

(Gk − 1/ai) =

j∑
k=1

(Wk),

where Wk is the walk increment variable of Zj , E[Wk] = µ − 1/ai and V ar[Wk] = σ2. Under
the MET algorithm setting where ai = 1/µ and ε≫ σ/µ, the transformed random walk {Zj} has
increments with zero mean and variance σ2, and many steps are necessary to reach the random walk
boundary. With the Central Limit Theorem, we can assume that Zj follows the normal distribution
with mean µzj and variance σ2

zj , and thus |Zj | follows the folded normal distribution:

Zj ∼ N
(
(µ− 1/ai)j, jσ

2
)
,

E(|Zj |) = µzj [1− 2Φ(− µzj/σzj)] + σzj

√
2/π exp(−µ2

zj/2σ
2
zj),

where Φ is the normal cumulative distribution function. For the MET algorithm, ai = 1/µ and thus
the µzj = 0, σzj = σ

√
j, and E(|Zj |) =

√
2/πσ

√
j. Then the Eq. (3) can be written as

1

µ

∞∑
n=1

E

[
n−1∑
j=0

|Zj |

]
Pr(j∗ = n) <

1

µ

∞∑
n=1

n−1∑
j=0

E [|Zj |] Pr(j∗ = n)

=
σ

µ

√
2

π

∞∑
n=1

n−1∑
j=0

√
j Pr(j∗ = n).

(4)

17

For the inner sum term in Eq. (4), we have (
∑n−1

j=0

√
j) < 2

3n
√
n since

n−1∑
j=0

√
j <

n−1∑
j=0

√
j +

√
n

2
<

∫ n

0

√
x dx =

2

3
n
√
n,

then the result in Eq. (4) becomes

E[SegErri] <
2

3

√
2

π

σ

µ

∞∑
n=1

n
√
nPr(j∗ = n)

=
2

3

√
2

π

σ

µ
E[(j∗)

3
2] =

2

3

√
2

π

σ

µ
E
[(

(j∗)2
) 3

4

]
≤ 2

3

√
2

π

σ

µ

(
E[(j∗)2]

) 3
4
,

where the last inequality holds due to the Jensen inequality E[X 3
4] ≤ (E[X])

3
4 . Using E[j∗] =

µ2

σ2
ϵ2

and V ar[j∗] =
2

3

µ4

σ4
ϵ4 derived in MET algorithm Ferragina et al. (2020), we get E[(j∗)2] =

5

3

µ4

σ4
ϵ4,

which yields the following upper bound:

E[SegErri] <
2

3

√
2

π
(
5

3
)

3
4 (

µ

σ
)2ϵ3.

For the lower bound, applying the triangle inequality into the Eq. (3), we have

1

µ

∞∑
n=1

E

[
n−1∑
j=0

|Zj |

]
Pr(j∗ = n)

>
1

µ

∞∑
n=1

E

[
|
n−1∑
j=0

Zj |

]
Pr(j∗ = n)

=
1

µ

∞∑
n=1

E [|Z|] Pr(j∗ = n),

(5)

where Z =
∑n−1

j=0 Zj . Since Zj ∼ N(0, σ2
zj), the Z follows the normal distribution:

Z ∼ N
(
µZ = 0, σ2

Z =

n−1∑
j=0

σ2
zj +

n−1∑
j=0

n−1∑
k=0,k ̸=j

rjkσzjσzk

)
,

where rjk is the correlation between Zj and Zk. Since µZ = 0, the |Z| follows the folded normal
distribution with E[|Z|] = σZ

√
2/π. Since the random walk {Zj} is a process with i.i.d. increments,

the correlation rjk ≥ 0. With σzj = σ
√
j > 0 and rjk ≥ 0, we have

E[|Z|] >
√

2

π

n−1∑
j=0

σzj > σ
√
n(n− 1)/π >

σ(n− 1)√
π

,

and the result in Eq. (5) becomes:

E[SegErri] >
1

µ

∞∑
n=1

E

| n−1∑
j=0

Zj |

Pr(j∗ = n)

>
σ

µ

√
1

π

∞∑
n=1

(n− 1)Pr(j∗ = n)

=
σ

µ

√
1

π
E [j∗ − 1] =

√
1

π
(
µ

σ
ϵ2 − σ

µ
).

Since ϵ≫ σ
µ , we can omit the right term

√
1
π

σ
µ and finish the proof.

18

F LEARNED SLOPES OF OTHER ϵ-BOUNDED METHODS

As shown in Theorem 1, we have known how ϵ impacts the SegErri of each segment learned by
the MET algorithm, where the theoretical derivations largely rely on the slope condition ai = 1/µ.
Here we prove that for other ϵ-bounded methods, the learned slope of each segment (i.e., ai of Si)
concentrates on the reciprocal of the expected key interval as shown in the following Theorem.
Theorem 2. Given an ϵ ∈ Z>1 and an ϵ-bounded learned index algorithm A. For a linear segment
Si : y = aix + bi learned by A, denote its covered data and the number of covered keys as Di
and Len(Di) respectively. Assuming the expected key interval of Di is µi, the learned slope ai
concentrates on ã = 1/µi with bounded relative difference:

(1− 2ϵ

E[Len(Di)]− 1
)ã ≤ E[ai] ≤ (1 +

2ϵ

E[Len(Di)]− 1
)ã.

Proof. For the learned linear segment Si, denote its first predicted position and last predicted position
as y′0 and y′n respectively, we have its slope ai =

y′
n−y′

0

xn−x0
. Notice that y0 − ϵ ≤ y′0 ≤ y0 + ϵ and

yn − ϵ ≤ y′n ≤ yn + ϵ due to the ϵ guarantee, we have yn − y0 − 2ϵ ≤ y′n − y′0 ≤ yn − y0 + 2ϵ and
the expectation of ai can be written as

E[yn − y0 + 2ϵ

xn − x0
] ≤ E[ai] =

y′
n − y′

0

xn − x0
≤ E[yn − y0 + 2ϵ

xn − x0
].

Note that for any learned segment Si whose first covered data is (x0, y0) and last covered data is
(xn, yn), we have E[xn−x0

yn−y0
] = µi and thus the inequalities become

1

µ
− E[

2ϵ

xn − x0
] ≤ E[ai] ≤

1

µ
+ E[

2ϵ

xn − x0
].

Since ã = 1/µi and E[xn − x0] = (E[Len(Di)]− 1)µi, we finish the proof.

The Theorem 2 shows that the relative deviations between learned slope ai and ã are within
2ϵ/(E[Len(Di)] − 1). For the MET and PGM learned index methods, we have the following
corollary that depicts more precise deviations without the expectation term E[Len(Di)].
Corollary 2.1. For the MET method Ferragina et al. (2020) and the optimal ϵ-bounded linear
approximation method that learns the largest segment length used in PGM Ferragina & Vinciguerra
(2020b), the slope relative differences are at O(1/ϵ).

Proof. We note that the segment length of a learned segment is at O(ϵ2) for the MET algorithm,
which is proved in the Theorem 1 of Ferragina et al. (2020). Since PGM achieves the largest learned
segment length that is larger than the one of the MET algorithm, we finish the proof.

G THE ALGORITHM OF DYNAMIC ϵ ADJUSTMENT

We summarize the proposed algorithm below. In Section 3.4, we provide detailed descriptions
of the initialization and adjustment sub-procedures. The lookahead() and optimize() are in the
“Look-ahead Data” and “ ˜SegErr and Optimization” paragraph respectively.

H IMPLEMENTATION DETAILS

Baselines. All the experiments are conducted on a Linux server with an Intel Xeon Platinum 8163
2.50GHz CPU. We first introduce more details and the implementation of baseline learned index
methods. MET (Ferragina et al., 2020) fixes the segment slope as the reciprocal of the expected key
interval, and goes through the first available data point for each segment. FITing-Tree (Galakatos
et al., 2019) adopts a greedy shrinking cone algorithm and the learned segments are organized
with a B+-tree. Here we use the stx::btree (v0.9) implementation (Bingmann, 2013) and set the
filling factors of inner nodes and leaf nodes as 100%, i.e., we adopt the full-paged filling manner.
Radix-Spline (Kipf et al., 2020) adopts a greedy spline interpolating algorithm to learn spline points,

19

Algorithm Dynamic ϵ Adjustment with Pluggable ϵ Learner
Input: D: Data to be indexed, A: Learned index algorithm, ϵ̃: Expected ϵ, ρ: Length percentage

for look-ahead data
Output: S: Learned segments with varied ϵs

1: initial parameters w1,2,3 of the learned function: f(ϵ, µ, σ) = w1(
µ
σ)

w2 ϵ̃w3

2: initial mean length of learned segments so far: Len(DS)← 404
3: S← ∅, (µ̂/σ̂)← 0
4: repeat
5: Get data statistic:
6: (µ/σ)← lookahead(D, Len(DS) · ρ)
7: Adjust ϵ based on the learner:

8: ϵ∗ ←
(

˜SegErr/w1(
µ
σ)

w2

)1/w3

9: Learn new segment Si using adjusted ϵ∗:
10: [Si,Di]← A(D, ϵ∗)
11: S← S ∪ Si
12: D ← D \ Di, DS ← DS ∪ Di

13: Online update Len(DS):
14: Len(DS)← running-mean

(
Len(DS), Len(Di)

)
15: (µ̂/σ̂)← running-mean

(
(µ̂/σ̂), (µ/σ)

)
16: Train the learner with ground truth:
17: w1,2,3 ← optimize(f, Si, SegErri)

18: ˜SegErr ← w1(µ̂/σ̂)
w2 ϵ̃w3

19: until D = ∅

and the learned spline segments are organized with a flat radix table. We set the number of radix
bits as r = 16 for the Radix-Spline method, which means that the leveraged radix table contains 216
entries. PGM (Ferragina & Vinciguerra, 2020b) adopts a convex hull based algorithm to achieve the
minimum number of learned segments, and the segments can be organized with the help of binary
search, CSS-Tree (Rao & Ross, 1999) and recursive structure. Here we implement the recursive
version since it beats the other two variants in terms of indexing performance. For all the baselines
and our method, we adopt exponential search to better leverage the predictive models since the query
complexity using exponential search corresponds to the preciseness of models (MAE) as we analyzed
in Appendix B.

Evaluation Metrics. We evaluate the index performance in terms of its size, prediction preciseness,
and total querying time. Specifically, we report the number of learned segments N , the index size
in bytes, the MAE as 1

|D|
∑

(x,y)∈D |y − S(x)|, and the total querying time per query in ns (i.e., we
perform querying operations for all the indexed data, record the total time of getting the payloads
given the keys, and report the time that is averaged over all the queries). For a quantitative comparison
w.r.t. the trade-off improvements, we calculate the Area Under the N-MAE Curve (AUNEC) where
the x-axis and y-axis indicate N and MAE respectively. For the AUNEC metric, the smaller, the
better.

Hyper-parameters. We describe a few additional details of the proposed framework in terms of the
ϵ-learner initialization and the hyper-parameter setting. For the w1,2,3 of the ϵ-learner shown in the
Eq. (2), We empirically found that this light-weight initialization leads to better index performance
compared to the versions with random parameter initialization, and it benefits the exploration of
diverse ϵ∗, i.e., leading to the larger variance of the dynamic ϵ sequence [ϵ1, . . . , ϵi, . . . , ϵN]. As for the
hyper-parameter ρ (described in the Section 3.4), we conduct a grid search over ρ ∈ [0.1, 0.4, 0.7, 1.0]
on Map and IoT datasets. We found that all the ρs achieve better N -MAE trade-off (i.e., smaller
AUNEC results) than the fixed ϵ versions. Since the setting ρ = 0.4 achieves averagely best results
on the two datasets, we set ρ to be 0.4 for the other datasets.

20

I DATASET DETAILS

Our framework is verified on several widely adopted datasets having different data scales and
distributions. Weblogs Kraska et al. (2018); Galakatos et al. (2019); Ferragina & Vinciguerra (2020b)
contains about 715M log entries for the requests to a university web server and the keys are log
timestamps. IoT Galakatos et al. (2019); Ferragina & Vinciguerra (2020b) contains about 26M event
entries from different IoT sensors in a building and the keys are recording timestamps. Map dataset
Kraska et al. (2018); Galakatos et al. (2019); Ding et al. (2020); Ferragina & Vinciguerra (2020b); Li
et al. (2021b) contains location coordinates of 200M places that are collected around the world from
the Open Street Map OpenStreetMap contributors (2017), and the keys are the longitudes of these
places. Lognormal Ferragina & Vinciguerra (2020b) is a synthetic dataset whose key intervals follow
the lognormal distribution: ln(Gi) ∼ N (µlg, σ

2
lg). To simulate the varied data characteristics among

different localities. We generate 20M keys with 40 partitions by setting µlg = 1 and setting σlg with
a random number within [0.1, 1] for each partition.

We normalize the positions of stored data into the range [0, 1], and thus the key-position distribution
can be modeled as a Cumulative Distribution Function (CDF). We plot the CDFs and zoomed-in
CDFs of experimental datasets in Figure 7 and Figure 8 respectively, which intuitively illustrate the
diversity of the adopted datasets. For example, the CDF visualization of the Map dataset shows
that it has a fairly shifted distribution across different data localities, verifying of the necessity of
dynamically adapting and adjusting the learned index algorithms just as we considered in this paper.

1.450 1.455 1.460 1.465 1.470 1.475 1.480
Key ×109

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Weblogs

1.485 1.490 1.495 1.500 1.505 1.510 1.515
Key ×109

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

IoT

−100 0 100
Key

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Map

0 1 2 3 4 5 6
Key ×107

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Lognormal

Figure 7: CDFs of adopted datasets.

1.4718 1.4720 1.4722 1.4724
Key ×109

0.640

0.645

0.650

0.655

0.660

C
D

F

Zoomed-in Weblogs

3.95 4.00 4.05 4.10
Key ×107

0.640

0.645

0.650

0.655

0.660

C
D

F

Zoomed-in Lognormal

Figure 8: Zoomed-in CDFs of adopted datasets.

J ADDITIONAL EXPERIMENTAL RESULTS

J.1 OVERALL INDEX PERFORMANCE.

For the N -MAE trade-off improvements and the actual querying efficiency improvements brought
by the proposed framework, we illustrate more N -MAE trade-off curves in Figure 9 and querying
time results in Figure 10. We also mark the 99th percentile (P99) latency as the right bar, which is a
useful metric in industrial-scale practical systems. Recall that the N -MAE trade-off curve adequately
reflects the index size and querying time: (1) the segment size in bytes and N are only different by a
constant factor, e.g., the size of a segment can be 128bit if it consists of two double-precision float
parameters (slope and intercept); (2) the querying operation can be done in O(log(N) + log(|y − ŷ|)
as we mentioned in Section 3.1, thus a better N -MAE trade-off indicates a better querying efficiency.
From these figures, we can see that the dynamic ϵ versions of all the baseline methods achieve better
N -MAE trade-off and better querying efficiency, verifying the effectiveness and the wide applicability
of the proposed framework. Regards the p99 metrics, we can see that the dynamic version achieves
comparable or even better P99 results than the static version, showing that the proposed method not

21

Figure 9: The additional N -MAE trade-off curves for learned index methods.

only improves the average lookup time, but also has good robustness. This is because our method can
effectively adjust ϵ based on the expected ϵ̃ and data characteristic, making the {ϵi} fluctuated within
a moderate range.

J.2 ABLATION STUDY

To examine the necessity and the effectiveness of the proposed framework, in Section 4.3, we
compare the proposed framework with three dynamic ϵ variants for the FITing-Tree method. Here we
demonstrate the AUNEC relative changes for the Radix-Spline method with the same three variants
in Table 6 and similar conclusions can be drawn.

Table 6: The AUNEC relative changes of dynamic ϵ variants compared to the Radix-Spline method
with the proposed framework.

Random ϵ
Polynomial

Learner
Least Square

Learner

Weblogs +81.23% +56.20% -9.56%
IoT +74.78% +53.28% +9.81%
Map +60.67% +7.34% +0.45%

Lognormal +83.16% +55.01% −11.23%
Average +74.96% +42.96% −2.63%

22

Figure 10: Improvements in terms of querying times for learned index methods with dynamic ϵ.

J.3 THEORETICAL RESULTS VALIDATION

We study the impact of ϵ on SegErri for the MET algorithm in Theorem 1, where the derivations
are based on the setting of the slope condition ai = 1/µ. To confirm that the proposed framework
also works well with other ϵ-bounded learned index methods, we analyze the learned slopes of other
ϵ-bounded methods in Theorem 2. In summary, we prove that for a segment Si : y = aix+ bi whose
covered data is Di and the expected key interval of Di is µi, then ai concentrates on 1/µi within
2ϵ/(E[Len(Di)]− 1) relative deviations. Here we plot the learned slopes of baseline learned index
methods in Figure 11 (Map dataset) and in Figure 13 (IoT, Weblogs and Lognormal datasets). We
can see that the learned slopes of other methods indeed center along the line ai = 1/µi, showing the

23

0.2 0.4 0.6 0.8 1.0
1/µi

0.2

0.4

0.6

0.8

1.0

a
i

IoT Dataset

ai = 1/µi

FITing-Tree

RadixSpline

PGM

Figure 11: Learned slopes.

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

45

L
o
g
(S

e
g
E

rr
)

Lognormal µ = 1 σ = 0.5
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

L
o
g
(S

e
g
E

rr
)

Lognormal µ = 1 σ = 1
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

Figure 12: Illustration of the derived bounds.

close connections among these methods and confirming that the proposed framework can work well
with other ϵ-bounded learned index methods.

We further compare the theoretical bounds with the actual SegErri for all the adopted learned index
methods. We show the results on the Lognormal dataset in Figure 12, and the results on another two
datasets Gamma and Uniform in Figure 14, where the key intervals of the latter two datasets follow
gamma distribution and uniform distribution respectively. As expected, we can see that the MET
method has the actual SegErri within the derived bounds, verifying the correctness of the Theorem
1. Besides, the other ϵ-bounded methods show the same trends with the MET method, providing
evidence that these methods have the same mathematical forms as we derived, and thus the ϵ-learner
also works well with them.

0.85 0.90 0.95 1.00
1/µi

0.85

0.90

0.95

1.00

a
i

Weblogs Dataset

ai = 1/µi

FITing-Tree

RadixSpline

PGM

0.25 0.30 0.35
1/µi

0.25

0.30

0.35

a
i

Lognormal Dataset

ai = 1/µi

FITing-Tree

RadixSpline

PGM

Figure 13: Learned slopes on the IoT, Weblogs and Lognormal datasets.

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

L
o
g
(S

e
g
E

rr
)

Gamma, k = 1.0, θ = 1.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

L
o
g
(S

e
g
E

rr
)

Gamma, k = 2.0, θ = 3.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

L
o
g
(S

e
g
E

rr
)

Gamma, k = 3.0, θ = 6.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

L
o
g
(S

e
g
E

rr
)

Uniform, low = 0.0, high = 1.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

L
o
g
(S

e
g
E

rr
)

Uniform, low = 0.0, high = 10.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
ε

0

5

10

15

20

25

30

35

40

L
o
g
(S

e
g
E

rr
)

Uniform, low = 10.0, high = 100.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

Figure 14: Illustrations of the derived bounds on Gamma and Uniform datasets.

24

J.4 CV AS AN INDICATIVE QUANTITY

The coefficient of variation (CV) value, i.e., CV =σ/µ, plays an important factor in our bounds to
reflect the linearity degree of the data. We have seen that CV is effective to help dynamically adjust ϵ
in our framework as shown in our experiments. Here we explore that whether the CV value can be
an indicative quantity to shed light on what types of data will benefit from our dynamic adjustment.
To be specific, we calculate the CV values of the experimental datasets and compare them with the
trade-off improvements.

The global CV values of IoT, Map, Lognormal, and Weblogs are 65.24, 11.12, 0.85, and 0.013
respectively, while their AUNEC improved by 20.71%, 6.47%, 21.89%, and 26.96% respectively.
With the exception of IoT, the rest of the results show that the smaller the CV value is, the greater the
trade-off improvement of dynamic ϵ brings. We find that IoT is a locally linear but globally fluctuant
dataset. We then divide the data into 5000 segments and calculate their average CV values. The local
CV values of IoT, Map, Lognormal, and Weblogs are 0.95, 2.18, 0.63, and 0.005 respectively, which
is consistent with the improvement trends. Intuitively, when the local CV value is small, the local data
is hard-to-fit with a few linear segments if we adopt an improper ϵ, and we need more fine-grained
ϵ adjustment rather than the fixed setting. Thus we can expect more performance improvements in
this case. The calculation of actual CV values of real-world datasets helps to validate our ϵ analysis
based on the CV values, and provides further insight into the scenarios where the proposed method
has strong potential to outperform existing methods.

25

	Introduction
	Background
	Learn to Vary
	Problem Formulation and Motivation
	Overall Framework
	Prediction Error Estimation
	-Learner

	Experiments
	Experimental Settings
	Overall Index Performance
	Ablation Study of Dynamic
	Case Study
	More Experiments in Appendix

	Conclusions
	More Details about Related Works
	-bounded Linear Approximation Methods
	Data-layout-optimization based Methods

	Connecting Prediction Error with Searching Strategy
	Notations
	Inheriting the Abilities of Existing Works
	Proof of Theorem 1
	Learned Slopes of Other -Bounded Methods
	The Algorithm of Dynamic Adjustment
	Implementation Details
	Dataset Details
	Additional Experimental Results
	Overall Index Performance.
	Ablation Study
	Theoretical Results Validation
	CV as an Indicative Quantity

