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Abstract
Research in the field of hyperparameter opti-
mization (HPO) has been greatly accelerated by
existing HPO benchmarks. Nonetheless, existing
efforts in benchmarking all focus on HPO for
traditional learning paradigms while ignoring
federated learning (FL), a promising paradigm for
collaboratively learning models from dispersed
data. In this paper, we first identify some unique-
ness of federated hyperparameter optimization
(FedHPO) from various aspects, showing that
existing HPO benchmarks no longer satisfy the
need to study FedHPO methods. To facilitate the
research of FedHPO, we propose and implement
a benchmark suite FEDHPO-BENCH that
incorporates comprehensive FedHPO problems,
enables flexible customization of the function
evaluations, and eases continuing extensions.
We conduct extensive experiments based on
FEDHPO-BENCH to provide the community with
more insights into FedHPO. We open-sourced
FEDHPO-BENCH at https://github.
com/alibaba/FederatedScope/tree/
master/benchmark/FedHPOBench.

1. Introduction
Most machine learning algorithms are sensitive to their hy-
perparameters. Hyperparameter optimization (HPO) (Feurer
& Hutter, 2019) aims at making the right choices automat-
ically. To this end, HPO methods often solve an optimiza-
tion problem, where evaluating the objective function at a
specific hyperparameter configuration f(λ) corresponds to
executing the considered algorithm configured by λ. Re-
search in this line has been greatly facilitated by HPO bench-
marks (Gijsbers et al., 2019; Eggensperger et al., 2021;
Pineda-Arango et al., 2021), which prepare many HPO
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problems so that different HPO methods can be effortlessly
compared in a fair and reproducible way.

However, existing HPO benchmarks all focus on tradi-
tional learning paradigms. Federated learning (FL) (McMa-
han et al., 2017; Li et al., 2020a), as a privacy-preserving
paradigm for collaboratively learning a model from dis-
tributed data, has not been considered. Actually, along with
the increasing privacy concerns from the whole society, FL
has been gaining increasing attention from academia and
industry. Meanwhile, HPO for FL algorithms (denoted by
FedHPO from now on) is identified as a critical and promis-
ing open problem in FL (Kairouz et al., 2019).

In this paper, we first elaborate on several aspects of
FedHPO’s uniqueness against traditional HPO (see Sec. 3),
including (1) the concurrent exploration strategy FedHPO
methods often adopt to improve efficiency, (2) personal-
ization strategy potentially benefiting FedHPO methods,
(3) multi-objective FedHPO problems raised from privacy
and fairness concerns of FL, (4) runtime estimation and
system-dependent trade-offs between fidelity dimensions
required for studying FedHPO methods, and (5) Byzantine
fault tolerance desired to be possessed by FedHPO methods.
We attribute them to FL’s distributed nature and the hetero-
geneity among federation partners. On the one hand, the
HPO problems existing benchmarks prepared correspond
to centralized learning tasks and thus fail to possess the
above unique properties, such as the necessity for making
personalization. On the other hand, the implementations of
FedHPO methods need to be fused with the FL algorithm
for studying the above unique strategies and desiderata. Ex-
isting HPO benchmarks are not built on an FL framework
and thus cannot satisfy this need. Thus, recently proposed
FedHPO methods (Zhou et al., 2021; Dai et al., 2020; Kho-
dak et al., 2021; Zhang et al., 2021; Guo et al., 2022) are
evaluated on different problems and have not been uniformly
implemented in one FL framework and well benchmarked.

To promote the research and application of FedHPO, we
present FEDHPO-BENCH, which is (1) Comprehensive:
FEDHPO-BENCH provides a comprehensive collection of
FedHPO problems for drawing an unbiased conclusion from
comparisons of related methods; (2) Flexible: FEDHPO-
BENCH allows users to flexibly tailor a FedHPO problem
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to their privacy protection needs, fairness demands, and
system conditions; and (3) Extensible: FEDHPO-BENCH is
designed and implemented as a benchmarking tool that can
effortlessly incorporate novel ingredients.

To our knowledge, we are the first to systematically analyze
the uniqueness of FedHPO, and FEDHPO-BENCH is the
first dedicated benchmark. We conduct extensive experi-
ments with FEDHPO-BENCH to validate its usability and,
with its facility, explore several facets of FedHPO’s unique-
ness that have not been studied before. We open-source
FEDHPO-BENCH and hope that both itself and the find-
ings gained from our empirical studies are helpful for the
community to push the research of FedHPO forward.

2. Background
In the literature (Feurer & Hutter, 2019), HPO is often for-
mulated as solving minλ∈Λ1×···×ΛK

f(λ), where each Λk

corresponds to candidate choices of a specific hyperparam-
eter, and their Cartesian product (denoted by ×) constitute
the search space. In practice, such Λk is often bounded and
can be continuous or discrete. Each function evaluation at
a specified hyperparameter configuration λ means to exe-
cute the corresponding algorithm accordingly and return the
value of the considered metric (e.g., validation loss) as the
result f(λ). HPO methods generally solve such a problem
with a series of function evaluations. As a full-fidelity func-
tion evaluation is extremely costly, multi-fidelity methods
exploit low-fidelity function evaluation, e.g., training for
fewer epochs (Swersky et al., 2014; Domhan et al., 2015) or
on a subset of data (Klein et al., 2017; Petrak, 2000; Swersky
et al., 2013), to approximate the exact result. Thus, it would
be convenient to extend f as f(λ, b), b ∈ B1 × · · · × BL,
where each Bl corresponds to the possible choices of a spe-
cific fidelity dimension.

HPO benchmarks (Gijsbers et al., 2019; Eggensperger et al.,
2021; Pineda-Arango et al., 2021) have prepared many HPO
problems, i.e., various kinds of objective functions, for com-
paring HPO methods. To evaluate these functions, HPO
benchmarks, e.g., HPOBench (Eggensperger et al., 2021),
often provide three modes: (1) “Raw” means truly executing
the corresponding algorithm; (2) “Tabular” means querying
a lookup table, where each entry corresponds to a specific
f(λ, b); (3) “Surrogate” means querying a surrogate model
that might be trained on the tabular data. In addition to
encouraging fair and reproducible comparisons, the tabular
and surrogate modes significantly reduce the overhead of
experiments. Thus, the research progress in HPO has been
boosted by such benchmarks. However, as we will explain
in Sec. 3, existing HPO benchmarks cannot be used for
studying those recently proposed FedHPO methods (Kho-
dak et al., 2021; Zhou et al., 2021; Koskela & Honkela,
2020; Guo et al., 2022; Zhang et al., 2021), which thus

were compared on respective FedHPO problems, and with
inconsistent implementations.

More related works are discussed in Appendix B.

3. Uniqueness of FedHPO
Generally, traditional HPO methods (Bergstra & Bengio,
2012; Hutter et al., 2011; Li et al., 2017) are applicable to
FedHPO problems. In each trial, a specific configuration
(λ, b) is proposed, then an accordingly configured FL train-
ing course is conducted to produce f(λ, b), as the dashed
black box in Fig. 1 illustrates. In such an FL training course,
there are N clients, each of which has its specific data,
and a server coordinates them to learn a model θ collabora-
tively by an FL algorithm such as FedAvg (McMahan et al.,
2017) and FedOpt (Asad et al., 2020). In the t-th round
of a course, the server broadcasts the current model θ(t) to
sampled clients; then, these clients make local updates and
send the updates back; finally, the server aggregates these
updates to produce θ(t+1). After executing the FL algorithm
configured by λ for several such rounds, e.g., #round= T
according to the specified fidelity b, the performance, e.g.,
best validation loss ever achieved is returned as f(λ, b).

Concurrent exploration. The procedure of each round
consists of two subroutines—aggregation and local update.
Thus, λ can be divided into server-side and client-side
hyperparameters according to which subroutine each hy-
perparameter influences. Denoting it as λ = (λ(s), λ(c)),
the original optimization problem can be restated as its
bi-level counterpart minλ(s) f(λ(s), λ(c)∗), s.t., λ(c)∗ =
minλ(c) f(λ(s), λ(c)). With such a point of view, suppose a
traditional HPO method has proposed a specific (λ(s), b);
the idea of concurrent exploration leverages the distributed
nature of FL to solve this lower-level sub-problem effi-
ciently, as the dashed blue box in Fig. 1 shows. Specifically,
clients are regarded as replicas of the black-box function
f(λ(s), ·) or, at least, similar such functions whose eval-
uation results help fit f(λ(s), ·). Then it is natural to try
client-side hyperparameter configurations client-wisely to
collect f(λ(s), λ(c)) for more than one λ(c)s in each full or
partial FL training course.

Recently proposed FedHPO methods, such as FedEx (Kho-
dak et al., 2021) and FTS (Dai et al., 2020), have instantiated
this idea. Taking FedEx as an example, in each trial of the
outer loop, the traditional HPO method (see left-bottom of
Fig. 1) proposes the arms (hyperparameter configurations)
to be evaluated. Then, such a trial corresponds to one FL
training course (see the dashed blue box), which consists of
a specified number of communication rounds. In each round,
FedEx samples client-wise arms, and the server broadcasts
both model and arms. Then clients conduct local updates
according to each one’s assigned arm. At the end of each
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Figure 1. Solving a FedHPO problem by a traditional HPO method solely or as the wrapper of a FedHPO method: the t-th round of a trial
is shown in the dashed black box and dashed blue box, respectively. The faded clients are not sampled in that round; “aggr” denotes a
certain aggregation operation; here FedEx is considered as the wrapped FedHPO method, which learns a policy π to determine λ(c)∗; each
f
(c)
i (·) is regarded as a client-specific approximation of f(λ(s), ·).

round, the model is updated by aggregation of uploaded
updates, and FedEx updates the policy according to the con-
currently collected client-wise feedback. The differences
between FedEx and FTS lie in that, in FedEx, the weight-
sharing trick (Liu et al., 2019) is incorporated to learn a
policy π for determining the optimal lower-level response
λ(c)∗ in a one-shot manner, where the local update procedure
of each round corresponds to a low-fidelity function eval-
uation; in FTS, each client conducts full-fidelity Bayesian
Optimization. A noteworthy point is that all the checkpoints
of models of these methods for different hyperparameters
and fidelities can be maintained and saved by the server.

As such FedHPO methods are fused with the training course,
existing HPO benchmarks become unusable for comparing
them. Moreover, since this fusion makes the implementa-
tions of such FedHPO methods tightly coupled with that
FL algorithms, and no existing FL framework has incorpo-
rated such FedHPO methods, researchers cannot compare
them in a unified way. How we incorporate several FedHPO
methods into FEDHPO-BENCH and make it extensible is
discussed in Sec. 4.3, and whether concurrent exploration is
useful is empirically answered in Sec. 5.1.2.

Personalization. The heterogeneity among clients is likely
to give them different optimal configurations (Koskela &
Honkela, 2020), where making decisions by the same policy
would become unsatisfactory. This phenomenon tends to
become severer when federated hetero-task learning (Yao
et al., 2022) is considered. Trivially solving the personalized
FedHPO problem min

λ(s),λ
(c)
1 ,...,λ

(c)
N

f(λ(s), λ
(c)
1 , . . . , λ

(c)
N ),

where λ
(c)
i denotes the i-th client’s choice, is intractable, as

the search space exponentially increases with N . To pro-
mote studying personalized FedHPO, we provide a novel
problem featured by heterogeneous tasks among the clients

(see Sec. 4.1). Meanwhile, whether personalization is bene-
ficial to FedHPO is explored in Sec. 5.2.1.

Multi-objective optimization. Despite the model’s perfor-
mance, researchers are often concerned about other issues,
such as privacy protection and fairness. Regarding privacy,
the FL algorithm is often incorporated with privacy protec-
tion techniques such as differential privacy (DP) (Kairouz
et al., 2019), which also exposes its hyperparameters. Intu-
itively, a low privacy budget specified for DP algorithms in-
dicates a lower risk of privacy leakage yet a more significant
degradation of the model’s performance. As for fairness,
namely, the uniformity of the model’s performances across
the clients, more and more FL algorithms have taken it into
account (Li et al., 2021a; Wang et al., 2021b), which con-
tains some hyperparameter(s) concerning fairness. There-
fore, researchers may be interested in searching for a hy-
perparameter configuration that guarantees an acceptable
privacy leakage risk (e.g., measured by Rényi-DP (Mironov,
2017)) and fairness measurement (e.g., the standard devi-
ation of client-wise performances) while optimizing the
model’s performance.

Thus, the interface of FEDHPO-BENCH exposes a vector-
valued objective function instead of a scalar-valued one,
where the entries of a returned vector could be the quantita-
tive measures corresponding to performance, privacy leak-
age risk, fairness, etc. Then, researchers can flexibly cus-
tomize the objective (see Sec. 4.2) and study multi-objective
HPO (Hernández et al., 2021; Deb et al., 2002).

Runtime estimation and system-dependent trade-offs.
For the HPO purpose, an FL training course is usually
simulated in a single computer rather than executed in a
distributed system. As a result, simply recording the con-
sumed time is meaningless for comparing actual runtimes.
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from fedhpob.benchmarks import TabularBenchmark

benchmark = TabularBenchmark('cnn', 'femnist', 'avg')

# get hyperparameters space
config_space = benchmark.get_configuration_space()

# get fidelity space
fidelity_space = benchmark.get_fidelity_space()

# get results
res = benchmark(config_space.sample_configuration(),
                fidelity_space.sample_configuration(),
  fairness_reg_func=np.var, 
  fairness_reg_coef=1.0,
                seed=1)

... ...

1e-3 ... 2 81 ... 0.6 0.09

1e-2 ... 4 3 ... 0.4 0.11

... ... ... ... ... ... ...
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Figure 2. Overview of FEDHPO-BENCH.

Meanwhile, FL’s distributed nature introduces a new fi-
delity dimension—client_sample_rate, which determines
the fraction of clients sampled in each round. A smaller
client_sample_rate often means less time each round would
take because there is less likely to be a straggler. Mean-
while, it often leads to federated aggregation with larger
variance, which is believed to need a larger #round for
convergence. How we should balance these two fidelity
dimensions to achieve more economical accuracy-efficiency
trade-offs strongly depends on the system condition, e.g.,
choosing large #round but small client_sample_rate when
the straggler issue is severe. As most existing HPO bench-
marks overlook a runtime estimation functionality for study-
ing FedHPO, in Sec. 4.2, we present our system model, with
which we conduct an empirical study to show the effect of
balancing client_sample_rate and #round in Appendix G.

Byzantine fault tolerance. Regarding fault tolerance, tra-
ditional HPO methods are desired to be robust w.r.t. noisy
function evaluation results. As for FedHPO, some clients
may report noisy or even adversarial function evaluation
results. Then FedHPO methods should be able to solve for a
satisfactory λ(c)∗ when, at least, more than half of all clients
are trustworthy. With FEDHPO-BENCH, in Sec. 5.2.3,
we provide the first empirical investigation of a FedHPO
method’s Byzantine resilience property.

Due to all the facets of uniqueness discussed above, existing
HPO benchmarks are inappropriate for studying FedHPO. A
dedicated benchmark suite that can fill this gap must boost
the research progress of FedHPO.

4. Our Proposed Benchmark Suite
We present an overview of FEDHPO-BENCH in Fig. 2.
Conceptually, FEDHPO-BENCH encapsulates function
evaluation and provides a unified interface for HPO
methods to interplay with it. Following the design of
HPOBench (Eggensperger et al., 2021), function evalua-
tions can be conducted in either of the three modes: raw,
tabular, or surrogate. For the raw mode, we chose to build
FEDHPO-BENCH upon the well-known FL platform Fed-
eratedScope (FS) (Xie et al., 2023), which has provided
its docker images so that we can containerize FEDHPO-
BENCH effortlessly by executing each FL algorithm in an
FS docker container. To generate the lookup table for tabu-
lar mode, we truly execute the corresponding FL algorithms
with the grids of search space as their configurations. These
lookup tables are adopted as training data for the surrogate
models, which are expected to approximate the objective
functions (more details about this approximation are dis-
cussed in Appendix H.4.2). It’s important to note that the
distributed nature of FL makes it very expensive to run an
FL course, so, in FedHPO, the tabular and surrogate modes
are much in demand to meet the efficiency requirement. For
users’ convenience, we keep FEDHPO-BENCH’s interface
basically the same as HPOBench’s yet expose extra argu-
ments for customizing the instantiation of a benchmark. The
relationship between FEDHPO-BENCH and HPOBench is
discussed in Appendix B.1. We elaborate on three highlights
of FEDHPO-BENCH as follows.
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4.1. Comprehensiveness

There is no universally best HPO method (Gijsbers et al.,
2019). For the purpose of fairly comparing HPO methods, it
is necessary to compare them on a variety of HPO problems
that correspond to diverse objective functions and thus can
comprehensively assess their performances.

To satisfy this need, we prepare various FL tasks, where
their considered datasets and model architectures are quite
different. Some datasets are provided by existing FL bench-
marks, which are readily distributed and thus conform to
the FL setting. Some are centralized initially, which we
partition by FS’s splitters to construct their FL counterparts
with various kinds of Non-IIDness among clients. All these
datasets are publicly available and can be downloaded and
preprocessed by our prepared scripts. More details of these
datasets can be found in Appendix D. Then the correspond-
ing suitable model architecture is applied to handle each
dataset. It is worth noticing that our prepared FL tasks cover
both cross-silo and cross-device scenarios. In cross-device
scenario, there are a lot more clients and a much lower
client_sample_rate than in cross-silo scenario.

For each FL task, we basically employ two FL algorithms,
FedAvg and FedOpt, to learn the model, respectively. Then
the FedHPO problem is defined as optimizing the design
choices of FL algorithm on each specific FL task. So we use
the triple <dataset, model, algorithm> to index a particular
benchmark from now on. We summarize provided FedHPO
problems in Table 1, and more details can be found in Ap-
pendix H. For each problem, #round and client_sample_rate
are adopted as the fidelity dimensions.

We study the empirical cumulative distribution function
(ECDF) for each model type in the cross-silo benchmarks.
Specifically, in creating the lookup table for tabular mode,
we have conducted function evaluations for the hyperpa-
rameter configurations located on a very dense grid over
the search space, resulting in a finite set {(λ, f(λ))} for
each benchmark. Then we normalize the performances (i.e.,
f(λ)) and show their ECDF in Fig. 3, where these curves
exhibit different shapes. For example, the ratio of top-tier
configurations for GNN on PubMed is remarkably less than
on other datasets, which might imply a less smoothed land-
scape and difficulty in seeking the optimal configuration. As
the varying shapes of ECDF curves have been regarded as
an indicator of the diversity of benchmarks (Eggensperger
et al., 2021), we can conclude from Fig. 3 that FEDHPO-
BENCH enables evaluating HPO methods comprehensively.

4.2. Flexibility

We allow users to instantiate each benchmark with argu-
ments other than the <dataset, model, algorithm> triple to
further specify the underlying objective function and system

model, flexibly tailoring to their specific cases.

Objective function. Despite the models’ performance,
users may have concerns about privacy (Qin et al., 2023)
and fairness. For privacy protection, we employ a represen-
tative FL+DP algorithm NbAFL (Wei et al., 2020), where
users can specify any valid value for the privacy budget. As
for fairness, FS has provided many personalized FL algo-
rithms, and FEDHPO-BENCH can record client-wise per-
formances. In designing the interface of FEDHPO-BENCH,
we allow users to specify their preferred measurements of
privacy leakage risk and fairness. Then the execution of
an FL algorithm can be regarded as evaluating a vector-
valued function rather than a scalar-valued one. By default,
FEDHPO-BENCH transforms the vector result into a scalar
one by treating privacy and fairness-related values as soft
constraints to penalize.

System model. It is very helpful to customize the system
model as the runtime of the same FL training course can
vary a lot when deployed in environments with different
system conditions. Many existing HPO benchmarks record
the runtime of training courses ever executed, which cannot
be adapted to users’ system conditions. Despite recorded
runtimes, we provide a system model to estimate the time
consumed by evaluating f(λ, b) in realistic scenarios, which
is configurable so that users with different system conditions
can calibrate the model to their cases (Mohr et al., 2021).
Based on the analysis of such a system model and a basic
instance (Wang et al., 2021a), our system model estimates
the execution time T (f, λ, b) for each round in evaluating
f(λ, b) as the summation of time consumed by computation
and communication. Roughly, the time for communication
is the summation of the time for downloading and upload-
ing transferred information and the latency for establishing
connections. The time for computation is the summation of
the time for the server’s aggregation step and that for the
straggler client’s local update. Our system model exposes
several adjustable parameters, for which we provide default
choices based on the records collected from creating the tab-
ular benchmarks. Meanwhile, users are allowed to specify
these parameters according to their cases or other system
statistic providers (Lai et al., 2022). We defer the details
about our system model to Appendix E.

4.3. Extensibility

As FedHPO is springing up, we must reduce the effort of
introducing more FedHPO problems and novel FedHPO
methods to FEDHPO-BENCH.

With FS, we can apply the off-the-shelf data splitters to
transform an arbitrary centralized dataset into an FL dataset,
reuse any open-sourced model implementation by register-
ing it in FS, and develop a novel FL algorithm via plugging
in the hook function that expresses its unique step(s).
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Table 1. Summary of benchmarks in current FEDHPO-BENCH: MF and LR refer to matrix factorization and logistic regression model,
respectively. Rec. and Algo. are short for recommendation and algorithm, respectively. #Cont. and #Disc. denote the number of
hyperparameter dimensions corresponding to continuous and discrete candidate choices, respectively. The unit of the budget is either day
(d) or second (s).

Scenario Model #Dataset Domain #Client #Algo. #Cont. #Disc. Budget

Cross-Silo

CNN 2 CV 200 2 4 2 20d
BERT 2 NLP 5 2 4 2 20d
GNN 3 Graph 5 2 4 1 1d
GNN 1 Hetero 5 1 1 1 1d
LR 7 Tabular 5 2 3 1 21,600s

MLP 7 Tabular 5 2 4 3 43,200s

Cross-Device MF 1 Rec. 480,189 2 3 1 -
LR 1 NLP ∼3300 2 3 1 1d
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Figure 3. Empirical Cumulative Distribution Functions: The normalized regret is calculated for all evaluated configurations of the
respective model on the respective FL task with FedAvg.

However, FedHPO methods, such as FTS and FedEx, are
fused with the FL training course to make concurrent explo-
ration, as the dashed blue box in Fig. 1 and the red color
“FedHPO” module in Fig. 2 shows. Thus, we need to imple-
ment such methods in FS if we want to benchmark them. At
a high level, we can utilize the event-driven programming
paradigm of FS to implement new FedHPO methods with
minimal effort. Specifically, A standard FL training course
is modularized into event-handler pairs that express all the
subroutines. Thus, all we need to develop are augmenting
the messages exchanged by FL participants (i.e., re-defining
events) and plugging those HPO-related operations into the
handlers. As a result, we have implemented FTS, FedEx,
and a personalized FedEx in FS, where their differences
mainly lie in just those plug-in operations. We defer more
implementation details to Appendix F.

5. Experiments
We conduct extensive empirical studies with our proposed
FEDHPO-BENCH, intending to (1) validate its usability and
(2) investigate several aspects of FedHPO’s uniqueness.

5.1. Usability of FEDHPO-BENCH

We exemplify the use of FEDHPO-BENCH in comparing tra-
ditional HPO methods (see Sec. 5.1.1) and comparing them
with FedHPO methods wrapped by them (see Sec. 5.1.2).

5.1.1. STUDIES ABOUT TRADITIONAL HPO METHODS

Protocol. We largely follow the experimental settings in
HPOBench (Eggensperger et al., 2021) but focus on the
FedHPO problems our FEDHPO-BENCH provides. We em-
ploy up to ten optimizers (i.e., HPO methods) from widely
adopted libraries (see Table 5 for more details). We apply
these optimizers to solve the cross-silo FedHPO problems
summarized in Table 1, where the time budget is relaxed
for these traditional HPO methods to satisfy multiple full-
fidelity function evaluations rather than a one-shot setting.
The best-ever-seen validation loss over time is monitored for
each optimizer (for multi-fidelity optimizers, higher fidelity
results are preferred over lower ones). We sort the optimiz-
ers by their best-seen results and compare their mean ranks
on all the considered FedHPO problems.

Results and Analysis. We show the overall results in Fig. 4,
and we defer detailed results to Appendix I. Overall, their
eventual mean ranks do not deviate remarkably. For black-
box optimizers (BBO), the performances of optimizers are
close at the beginning but become more distinguishable
along with their exploration. Ultimately, BOGP has success-
fully sought better configurations than other optimizers. In
contrast to BBO, multi-fidelity optimizers (MF) perform
pretty differently in the early stage, which might be rooted
in the vast variance of low-fidelity function evaluations.
Eventually, HB and BOHB become superior to others while
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Figure 4. Mean rank over time on all FedHPO problems (with FedAvg).

Table 2. Compare the searched configurations: Mean test accuracy (%) ± standard deviation. The upward arrow indicates improvements.

Methods FEMNIST PubMed
W/O FedEx W/ FedEx W/O FedEx W/ FedEx

RS 79.93 ± 2.45 82.03 ± 2.08↑ 72.92 ± 2.48 79.44 ± 3.02↑
BOGP 82.18 ± 0.94 83.20 ± 1.24↑ 85.52 ± 1.25 86.34 ± 2.05↑
BORF 81.86 ± 1.10 82.20 ± 0.54↑ 83.76 ± 2.96 80.63 ± 4.18
BOKDE 81.34 ± 1.75 82.11 ± 0.46↑ 75.78 ± 1.93 77.81 ± 4.94↑
HB 80.26 ± 2.02 82.47 ± 0.04↑ 72.92 ± 2.48 76.55 ± 4.66↑
BOHB 79.59 ± 2.09 84.02 ± 0.50↑ 71.75 ± 1.01 75.15 ± 5.90↑

achieving a very close mean rank.

Then we conduct sign (i.e., win, tie, or lose) tests to com-
pare the final rank of pairs of optimizers. Due to limited
space, we defer detailed results to Appendix I.1 yet sum-
marize the observations here: (1) Comparing model-based
optimizers with their corresponding baselines, i.e., RS or
HB, only BOGP, BORF, and DE win on more than half of the
FedHPO problems but have no significant improvement. (2)
Meanwhile, no MF optimizers show any advantage in ex-
ploiting experience, which differs from the non-FL case. We
presume the reason lies in the distribution of configurations’
performances (see Fig. 3). (3) MF optimizers always out-
perform their corresponding single-fidelity version, which
is consistent with the non-FL case. In the above discus-
sion, the phenomenon of the non-FL case is reported by
HPO-Bench (Eggensperger et al., 2021).

5.1.2. STUDIES ABOUT FEDHPO METHODS

Protocol. We select the superior optimizers from Sec. 5.1.1
to compare them with FedEx (Khodak et al., 2021) wrapped
by them on <FEMNIST, CNN, FedAvg>, <PubMed, GNN,
FedAvg>, and <FedNetflix, MF, FedAvg>. We use FedEx
but not other methods because it is a one-shot method and
satisfies our budget condition. As a full-fidelity function
evaluation consumes 500 rounds on these datasets, we spec-
ify the total budget to 2,500 (i.e., 5 times the budget of a
full-fidelity evaluation) in terms of #round. Precisely, each

BBO method consists of 50 trials, each of which runs for 50
rounds. For MF optimizers, we set η of Successive Halv-
ing Algorithm (SHA) (Jamieson & Talwalkar, 2016) to 3,
the min and max budget to 9 and 81 rounds, respectively.
Then we adopt these optimizers and FedEx wrapped by
them (X+FedEx) to optimize the design choices of FedAvg,
respectively. The wrapper is responsible for determining the
arms for each execution of FedEx. We consider validation
loss the metric of interest, and function evaluations are con-
ducted in the raw mode. We repeat each method five times
and report the best-ever-seen validation loss over budget.
Then, for each considered method, we entirely run the FL
course with the optimal solution it seeks. The averaged test
accuracies of all the methods are compared.

Results and Analysis. Due to the limited space, we de-
fer the plots of best-ever-seen validation loss over budget
to Appendix I.2, while summarizing the observations here:
The best-ever-seen validation loss of all wrapped FedEx de-
creases slower than their corresponding wrappers. We spec-
ulate that the client-wise exploration increases the variance
of local updates and thus hurts the aggregation. We present
the main averaged test accuracies of all the methods in Ta-
ble 2, and defer the results of <FedNetflix, MF, FedAvg> in
Appendix I.2. On these three problems, most X+FedEx’s
searched configurations show significantly better general-
ization performances than their wrappers, which strongly
confirms the effectiveness of concurrent exploration.
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5.2. Uniqueness of FedHPO

In addition to concurrent exploration, we now investigate
other aspects of FedHPO’s uniqueness with FEDHPO-
BENCH. Its extensibility enables us to effortlessly imple-
ment a personalized FedEx for studying personalization (see
Sec. 5.2.1) and plug attack steps in clients’ procedures for
studying Byzantine fault tolerance (see Sec. 5.2.3). Its flexi-
bility seamlessly lets us explore multi-objective optimiza-
tion on FedHPO problems (see Sec. 5.2.2) and examine the
system-dependent trade-offs between fidelity dimensions
(see Appendix G).

5.2.1. STUDIES ABOUT PERSONALIZED FEDHPO

Protocol. Following Sec. 5.1.2, yet focus on the
FedHPO problem <FEMNIST, CNN, FedAvg>, we compare
X+FedEx with X+pFedEx, where pFedEx stands for person-
alized FedEx, a straightforward personalization method we
quickly create with the help of FEDHPO-BENCH. Specif-
ically, pFedEx uses a parametric policy network to decide
each client’s hyperparameter configuration based on the
client-specific context. For simplicity, we just report all the
methods’ averaged test accuracies.

Table 3. Comparison between FedEx and pFedEx: Mean test ac-
curacy (%) ± standard deviation. The boldface indicates the best
performance.

Method FedEx pFedEx
RS 82.03 ± 2.08 80.07 ± 2.71
BOGP 83.20 ± 1.24 86.89 ± 1.07↑
BORF 82.20 ± 0.54 86.36 ± 1.95↑
BOKDE 82.11 ± 0.46 78.63 ± 2.77
HB 82.47 ± 0.04 80.39 ± 1.70
BOHB 84.02 ± 0.50 82.22 ± 1.13

Results and Analysis. We present the results in Table 3.
Overall, X+pFedEx show competitive performance against
X+FedEx, where the test accuracies corresponding to most
wrappers are slightly lower than their non-personalized base-
lines, but BOGP+pFedEx and BORF+pFedEx outperform
their respective baselines and achieve the best performances
among all methods. We also apply those traditional HPO
methods solely with a personalized search space, which
results in a test accuracy of around 4.50%. All these results
imply that (1) directly solving the personalized FedHPO
problem by traditional HPO methods is inviable; (2) There
is enormous potential for personalized FedHPO, but simply
personalizing a policy might not always give improvement.

5.2.2. STUDIES ABOUT MULTI-OBJECTIVE FEDHPO

Protocol. We largely follow the settings in Sec. 5.1.2
yet consider the FedHPO problem <CIFAR-10, CNN, Fe-
dAvg>. Furthermore, we instead optimize a vector-valued

objective function simultaneously considering the valida-
tion loss averaged over all clients and a fairness-related
metric, i.e., the standard deviation of client-wise valida-
tion loss. Then we examine a mean aggregation strategy
and ParEGO (Cristescu & Knowles, 2015) as the optimizers,
with different weights (i.e., 0.1, 1.0, and 10.0) of the fairness
metric to transform the multi-objectives into a weighted sum
of components. Meanwhile, to produce statistical hetero-
geneity among these clients, the CIFAR-10 dataset is split
into 5 clients by Latent Dirichlet Allocation (LDA) with
the α ∈ {0.05, 0.5, 5.0} to simulate different levels of het-
erogeneity among clients (the smaller the α, the greater the
heterogeneity). For each considered optimizer, we entirely
run the FL course with the optimal configuration it seeks.
The averaged test accuracies and the standard deviation of
client-wise test loss are compared.
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Figure 5. The performance of multi-objective optimization, where
the triple represents <optimizer, weight, α of LDA>. Considering
fairness, the standard deviation of test accuracy is lower the better,
while the test accuracy is higher the better.

Results and Analysis. We present the overall results in
Fig. 5. When the level of heterogeneity is the same (i.e., a
fixed α), greater weight leads to lower test accuracy std.,
and lower weight leads to higher test accuracy, obviously
because the weight controls the importance of each objec-
tive and makes the optimal configuration varies. Meanwhile,
severer heterogeneity makes the FL task more challenging,
and due to the uneven data distributions, the standard devia-
tion of the client-wise test accuracy increases. In conclusion,
(1) the interface of FEDHPO-BENCH enables researchers to
explore multi-objective FedHPO, and we establish several
baselines; (2) Despite the importance of objectives can be
effectively controlled, how to make trade-offs or even seek
a Pareto optimal solution deserves further studies.

5.2.3. STUDIES ABOUT BYZANTINE FAULT TOLERANCE

Protocol. We largely follow the settings in Sec. 5.1.2 yet
consider <FEMNIST, CNN, FedAvg>. Besides, we set
different numbers of clients (0, 4, 16, and 64 among 200) as
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attackers to assess the Byzantine resilience of FedEx. If a
client is an attacker, Gaussian white noise will be injected
into the local function evaluation results f (c)

i (λ
(c)
i ), which

are to be used by the server for updating the policy π (recall
Fig. 1). Consequently, the learned policy tends to fail in
searching for the optimal hyperparameter configuration.

Results and Analysis. We present the results in Table 4.
Overall, when there is no defense against the attack, al-
most all FedHPO methods perform worse as the number of
attackers increases. The performance of RS+FedEx does
not continue to degrade when the number of attackers is
increased from 16 to 64. Still, their performance is signifi-
cantly lower than when there is no attack or 4 attackers. In
conclusion, (1) FEDHPO-BENCH provides an easy-to-use
testbed and baselines for studying Byzantine fault tolerance;
(2) the robustness of FedEx against such attacks needs to
be improved; (3) Our experimental results encourage re-
searchers to study how to defend against such attacks.

Table 4. Compare the different number of attackers: Mean test
accuracy (%) ± standard deviation.

Method #Attacker
0 4 16 64

RS+FedEx 82.03 ± 2.08 79.05±0.67 74.21±2.98 76.40±2.08
BOGP+FedEx 83.20 ± 1.24 80.52±0.76 79.18±1.11 76.84±3.10
BORF+FedEx 82.20 ± 0.54 79.88±1.96 79.59±1.23 78.17±0.36
BOKDE+FedEx 82.11 ± 0.46 74.27±0.03 74.17±3.70 74.05±3.20
HB+FedEx 82.47 ± 0.04 79.37±0.98 76.58±2.20 76.30±2.98
BOHB+FedEx 84.02 ± 0.50 80.29±1.27 72.40±3.40 70.49±1.81

6. Conclusion and Future Work
In this paper, we first identify the uniqueness of FedHPO,
which we ascribe to the distributed nature of FL and its het-
erogeneous clients. These uniqueness calls for a dedicated
FedHPO benchmark for comparing related methods in a fair
and reproducible way that would otherwise be infeasible.
Hence, we open-source a comprehensive, flexible, and ex-
tensible FedHPO benchmark suite, FEDHPO-BENCH. We
conduct extensive experiments with it, validating its usabil-
ity and exploring various facets of FedHPO’s uniqueness.
We believe FEDHPO-BENCH can serve as the stepping
stone to developing reproducible FedHPO works.

In our next step, we will utilize the flexibility and exten-
sibility of FEDHPO-BENCH to incorporate more settings,
including federated unsupervised learning and vertical FL.
Meanwhile, some very recent research studies the privacy
leakage risk of HPO (Koskela & Honkela, 2020), which we
will provide related metrics and testbeds.
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A. Maintenance of FEDHPO-BENCH

In this section, we present our plan for maintaining FEDHPO-BENCH following (Eggensperger et al., 2021).

• Who is maintaining the benchmarking library? FEDHPO-BENCH is developed and maintained by FEDHPO-
BENCH team of Alibaba Group.

• How can the maintainer of the dataset be contacted (e.g., email address)? Users can reach out to the maintainer by
creating issues on the GitHub repository with FEDHPO-BENCH label.

• Is there an erratum? No.

• Will the benchmarking library be updated? Yes, as we discussed in Sec. 6, we will add more FedHPO problems
and introduce more FL tasks to the existing benchmark. We will track updates and GitHub release on the README. In
addition, we will fix potential issues regularly.

• Will older versions of the benchmarking library continue to be supported/hosted/maintained? All older versions
are available and maintained by the GitHub release, but limited support will be provided for older versions. Containers
will be versioned and available via AliyunOSS.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?
Any contribution is welcome, and all commits to FEDHPO-BENCH must follow the guidelines and regulations
at https://github.com/alibaba/FederatedScope/blob/master/benchmark/FedHPOBench/
README.md.

B. Related Work
Hyperparameter Optimization (HPO). Generally, HPO is an optimization problem where the objective function is
non-analytic, non-convex, and even non-differentiable. Therefore, most HPO methods solve such an optimization problem
in a trial-and-error manner, with different strategies for balancing exploitation and exploration. Model-free methods such
as random search (RS) (Bergstra & Bengio, 2012) and grid search query a set of initially determined hyperparameter
configurations without any exploitation. Model-based methods such as Bayesian Optimization (BO) (Shahriari et al., 2016)
employ a surrogate model to approximate the objective function. Methods in this line (Hutter et al., 2011; Lindauer et al.,
2022; Falkner et al., 2018) mainly differ from each other in their surrogate model and how they determine the next query.
There are also Evolutionary Algorithms (EAs) that iteratively maintain a population. We consider differential EAs (Storn &
Price, 1997; Awad et al., 2020) in our experiments.

Training a deep neural network on a large-scale dataset is costly, so the full-fidelity function evaluations made by BO
methods are often unaffordable in practice. Naturally, researchers consider trading off the precision of a function evaluation
for its efficiency by, e.g., training fewer epochs and training on a subset of the data. Hyperband (Li et al., 2017) is a
representative multi-fidelity method that calls the Successive Halving Algorithm (SHA) (Jamieson & Talwalkar, 2016)
again and again with a different number of initial candidates. However, in each execution of SHA, the initial candidates are
randomly sampled without any exploitation. To exploit the experience of previous SHA executions, researchers combine
BO methods with Hyperband (Falkner et al., 2018; Awad et al., 2021).

Benchmarking HPO. AutoML-related optimization benchmarks have been proven helpful for promoting fair comparisons
of related methods and reproducible research works. There have been many successful examples (Hutter et al., 2014; Hansen
et al., 2021; Hase et al., 2021; Turner & Eriksson, 2019; Dong & Yang, 2020; Dong et al., 2021; Gijsbers et al., 2019).
Noticeably, HPO-B (Pineda-Arango et al., 2021) is highlighted by its support for benchmarking transfer-HPO methods, and
HPOBench (Eggensperger et al., 2021) fills the gap of missing multi-fidelity HPO benchmarks.

However, existing HPO benchmarks mainly focus on centralized ML, yet FL, as a promising learning paradigm, has been
ignored. In this paper, we identify the uniqueness of FedHPO (see Sec. 3) and implement FEDHPO-BENCH to satisfy the
demand for a FedHPO benchmark suite.

Federated Learning (FL). In this paper, we restrict our discussion of FL to the “standard” scenario introduced in Sec. 3,
where FedAvg (McMahan et al., 2017) is widely adopted. Fancy FL optimization algorithms, including FedProx (Li
et al., 2020b) and FedOpt (Asad et al., 2020), are mainly designed to improve the convergence rate and/or better handle
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the non-IIDness among clients (Wang et al., 2021a). Despite these synchronous optimization algorithms, asynchronous
ones (Huba et al., 2022; Xie et al., 2023) are proposed to keep a high concurrency utility.

Sometimes, learning one global model is insufficient to handle the non-IIDness, which calls for personalized FL (Kairouz
et al., 2019; Wang et al., 2021a). Many popular pFL algorithms, such as FedBN (Li et al., 2021b) and Ditto (Li et al., 2021a),
have been incorporated into FS (Xie et al., 2023; Chen et al., 2022), with their unique hyperparameters exposed. Thus, we
can further extend FEDHPO-BENCH by considering FedHPO tasks of optimizing the hyperparameters of such algorithms.

FedHPO. When we consider HPO in the FL setting, as mentioned in Sec. 3, there is some uniqueness that brings in
challenges while, at the same time, it can be leveraged by deliberately designed FedHPO methods. For example, in contrast
to traditional HPO methods that query one configuration in each trial, FedEx (Khodak et al., 2021) maintains one policy for
determining the client-side hyperparameters and independently samples each client’s configuration in each communication
round. Different configurations may be evaluated with the same model parameters, which is in analogy to the weight-sharing
idea in neural architecture search (NAS) (Liu et al., 2019), as summarized by the authors of FedEx. However, due to the
non-IIDness among clients, clients’ HPO objective functions tend to be different, where determining their configurations
by only one policy might be unsatisfactory. Regarding this issue, FTS (Dai et al., 2020) can be treated as a personalized
FedHPO method, where each client maintains its own policy. During the learning procedure, the clients benefit each other
by sharing the policies in a privacy-preserving manner and conducting Thompson sampling.

It is worth mentioning that parallel algorithms have been utilized in HPO (Jones, 2001; Hutter et al., 2012). However,
in FedHPO, the clients actually do not correspond to the same black-box function due to the heterogeneity among them.
Essentially, FedHPO methods instantiate the concurrent exploration idea with extra assumptions. Besides, vanilla parallel
HPO methods may leak privacy in the aggregation step, which has been carefully taken into account by FTS.

Dynamic algorithm configuration methods (Biedenkapp et al., 2020; Adriaensen et al., 2022) employ reinforcement learning
to learn policies for online adjustments of algorithm parameters since different parameter values can be optimal at different
stages. In contrast to DAC methods, the policy π learned in FedEx is responsible for determining the optimal lower-level
response of the bi-level optimization problem discussed in Sec. 3, which can be regarded as a multi-armed bandit problem
rather than a Markov decision process. In other words, combined with the concurrent exploration strategy, FedEx tries out
one arm at a client in each round, where the underlying reward function is assumed to be unchanged across the clients and
the whole training course.

As an emerging research topic, existing works relating to FedHPO include Fed-Tuning (Zhang et al., 2021) concerning
system-related performance, learning rate adaptation (Koskela & Honkela, 2020), FLoRA for Gradient Boosted Decision
Trees (GBDT), online adaptation scheme-based method (Mostafa, 2020), Auto-FedRL (Guo et al., 2022) for RL-based
hyperparameter adaptation, and insightful comparison between local and global HPO (Holly et al., 2021). These methods
can also be easily incorporated into FS, enabling FEDHPO-BENCH to benchmark them.

B.1. Relation to HPOBench

HPOBench (Eggensperger et al., 2021) is a collection of multi-fidelity HPO benchmarks, highlighted by their efficiency,
reproducibility, and flexibility. These benchmarks can be accessed in either tabular, surrogate, or raw mode. On the one
hand, the tabular and surrogate modes enable function evaluation without truly executing the corresponding ML algorithm
and thus are efficient. On the other hand, the raw mode means execution in a docker container, which ensures reproducibility.
HPOBench provides twelve families of benchmarks that correspond to different data domains, model types, fidelity spaces,
etc., and thus flexible usages to validate HPO methods. This collection of HPO benchmarks can promote fair comparisons
of related works and reproducible research work, so HPOBench has gained more and more attention from the community.

As noted in Sec. 3 that evaluating the objective function that corresponds to an FL algorithm is extremely expensive,
FEDHPO-BENCH also prepares tabular and surrogate modes for users to avoid truly executing FL courses. Meanwhile, we
provide the raw mode to execute an FL course in the FederatedScope (FS) docker container (Xie et al., 2023).

Sharing the same modes, a question naturally arises—is it possible to reuse HPOBench’s interface for FEDHPO-BENCH?
We answer this question by discussing their commonality and the unique ingredients of FEDHPO-BENCH:

Commonality. As the code snippet in Fig. 2 shows, the instantiation of a benchmark class, the “ConfigSpace” package-based
specification of search space, and the protocol for the interaction between an HPO method and a benchmark object are
roughly consistent with HPOBench.
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Uniqueness. In addition to a collection of benchmarks, FEDHPO-BENCH is flexible in terms of enabling users to tailor one
benchmark to their scenarios (see Sec. 4.2). To this end, users are allowed to instantiate a specific benchmark object with
extra optional arguments:

• Privacy budget with which function evaluation corresponds to the execution of NbAFL (Wei et al., 2020) instead of
vanilla FedAvg. Taking the tabular mode, for example, means looking up a privacy budget-specific table.

• The type of fairness metric and its strength with which FEDHPO-BENCH will consider a vector-valued objective
function (i.e., client-wise results) rather than a scalar-valued objective function. Besides, the return value of calling the
function evaluation will be the mean performance regularized by the specified fairness regularizer.

• The parameter(s) for our system model with which the execution time is estimated regarding the user’s system condition.
Without using a system model, FEDHPO-BENCH can provide the recorded execution time in the creation of this
benchmark.

• The ability to compare FedHPO methods, such as FedEx, FTS, and FLoRA, where the fidelity of function evaluation is
controlled in finer-grained granularity, allows FedEx to use a subset of each client-specific validation set to estimate
the reward signal for updating a policy. Meanwhile, it allows FLoRA to use a subset of each client-specific dataset to
generate <hyperparameter configuration, validation loss> pairs, which are used to estimate the global loss surface.

Currently, we implement the interfaces of FEDHPO-BENCH by ourselves, where the style of our interfaces is kept similar to
HPOBench for the convenience of users who are familiar with HPOBench. We also provide several examples (https:
//github.com/alibaba/FederatedScope/tree/master/benchmark/FedHPOBench/demo) to access
our tabular, surrogate, and raw benchmarks by implementing HPOBench’s abstract base class. As a first step, we are going
to contribute more such subclasses to the repository of HPOBench so that users can access our benchmarks via HPOBench’s
interfaces, where flexible customization cannot be provided temporarily. In our next step, we plan to extend the interfaces of
HPOBench such that the benchmarks of FEDHPO-BENCH can be accessed with our proposed flexible customization.

C. HPO Methods
As shown in Table 5, we provide an overview of the optimizers (i.e., HPO methods) we use in this paper. For black-box
optimizers (BBO), we consider random search (RS), the evolutionary search approach of differential evolution (DE (Storn &
Price, 1997; Awad et al., 2020)), and bayesian optimization with a GP model (BOGP), a random forest model (BORF (Hutter
et al., 2011)), and a kernel density estimator (BOKDE (Falkner et al., 2018)), respectively. For multi-fidelity optimizers (MF),
we consider Hyperband (HB (Li et al., 2017)), its model-based extensions with KDE-based model (BOHB (Falkner et al.,
2018)), and differential evolution (DEHB (Awad et al., 2021)), and Optuna’s implementations of TPE with median stopping
(TPEMD) and TPE with Hyperband (TPEHB) (Akiba et al., 2019).

Table 5. Overview of the optimizers from widely adopted libraries.

Name Model Packages version

RS (Bergstra & Bengio, 2012) - HPBandster 0.7.4
BOGP (Hutter et al., 2011; Lindauer et al., 2022) GP SMAC3 1.3.3
BORF (Hutter et al., 2011) RF SMAC3 1.3.3
BOKDE (Falkner et al., 2018) KDE HPBandster 0.7.4
DE (Storn & Price, 1997; Awad et al., 2020) - DEHB git commit
HB (Li et al., 2017) - HPBandster 0.7.4
BOHB (Falkner et al., 2018) KDE HPBandster 0.7.4
DEHB (Awad et al., 2021) - DEHB git commit
TPEMD (Akiba et al., 2019) TPE Optuna 2.10.0
TPEHB (Akiba et al., 2019) TPE Optuna 2.10.0
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C.1. Black-box Optimizers

RS (Random search) is a priori-free HPO method, i.e., each step of the search does not exploit the already explored
configuration. The random search outperforms the grid search within a small fraction of the computation time.

BOGP is a Bayesian optimization with a Gaussian process model. BOGP uses a Matérn kernel for continuous hyperparameters,
and a hamming kernel for categorical hyperparameters. In addition, the acquisition function is expected improvement (EI).

BORF is a Bayesian optimization with a random forest model. We set the hyperparameters of the random forest as follows:
the number of trees is 10, the max depth of each tree is 20, and we use the default setting of the minimal samples split,
which is 3.

BOKDE is a Bayesian optimization with kernel density estimators (KDE), which is used in BOHB (Falkner et al., 2018). It
models objective function as Pr(x | ygood) and Pr(x | ybad). We set the hyperparameters for BOKDE as follows: the number
of samples to optimize EI is 64, and 1/3 of purely random configurations are sampled from the prior without the model; the
bandwidth factor is 3 to encourage diversity, and the minimum bandwidth is 1e-3 to keep diversity.

DE uses the evolutionary search approach of Differential Evolution. We set the mutation strategy to rand1 and the binomial
crossover strategy to bin 1. In addition, we use the default settings for the other hyperparameters of DE, where the mutation
factor is 0.5, crossover probability is 0.5, and the population size is 20.

C.2. Multi-fidelity Optimizers

HB (Hyperband) is an extension on top of successive halving algorithms for the pure-exploration nonstochastic infinite-
armed bandit problem. Hyperband makes a trade-off between the number of hyperparameter configurations and the budget
allocated to each hyperparameter configuration. We set η to 3, which means only a fraction of 1/η of hyperparameter
configurations goes to the next round.

BOHB combines HB with the guidance and guarantees of convergence of Bayesian optimization with kernel density
estimators. We set the hyperparameter of the BO components and the HB components of BOHB to be the same as BOKDE,
and HB described above, respectively.

DEHB combines the advantages of the bandit-based method HB and the evolutionary search approach of DE. The
hyperparameter of DE components and BO components are set to be exactly the same as DE, and HB described above,
respectively.

TPEMD is implemented in Optuna and uses Tree-structured Parzen Estimator (TPE) as a sampling algorithm, where on each
trial, TPE fits two Gaussian Mixture models for each hyperparameter. One is to the set of hyperparameters with the best
performance, and the other is to the remaining hyperparameters. In addition, it uses the median stopping rule as a pruner,
which means that it will prune if the trial’s best intermediate result is worse than the median (MD) of intermediate results of
previous trials at the same step. We use the default settings for both TPE and MD.

TPEHB is similar to TPEMD described above, which uses TPE as a sampling algorithm and HB as pruner. We set the
reduction factor to 3 for HB pruner, and all other settings use the default ones.

D. Datasets
As shown in Table 6, we provide a detailed description of the datasets we use in current FEDHPO-BENCH. For compre-
hensiveness, we use 16 FL datasets from 5 domains, including CV, NLP, graph, tabular, and recommendation (Xie et al.,
2023; Wang et al., 2022; Eggensperger et al., 2021). Some of them are inherently real-world FL datasets, while others are
simulated FL datasets split by the splitter modules of FS. Notably, the name of datasets from OpenML is the ID of the
corresponding task.

FEMNIST is an FL image dataset from LEAF (Caldas et al., 2018), whose task is image classification. Following (Caldas
et al., 2018), we use a subsample of FEMNIST with 200 clients, which is around 5%. And we use the default train/valid/test
splits for each client, where the ratio is 60% : 20% : 20%.

CIFAR-10 (Krizhevsky, 2009) is from Tiny Images dataset and consists of 60,000 32 × 32 color images, whose task is

1Please refer to https://github.com/automl/DEHB/blob/master/README.md for details.
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Table 6. Statistics of the datasets used in current FEDHPO-BENCH.
Name #Client Subsample #Instance #Class Split by

FMNIST 3,550 5% 805,263 62 Writer
CIFAR-10 5 100% 60,000 10 LDA
CoLA 5 100% 10,657 2 LDA
SST-2 5 100% 70,042 2 LDA
Cora 5 100% 2,708 7 Community
CiteSeer 5 100% 4,230 6 Community
PubMed 5 100% 19,717 3 Community
Hetero-task 5 100% 6,760 2~6 Task
credit-g31 5 100% 1,000 2 LDA
vehicle53 5 100% 846 4 LDA
kc13917 5 100% 2,109 2 LDA
blood-transf..10101 5 100% 748 2 LDA
Australian146818 5 100% 690 2 LDA
car146821 5 100% 1,728 4 LDA
segment146822 5 100% 2,310 7 LDA
FedNetflix 480,189 100% ≈100,000,000 5 User
Twitter 660,120 0.5% 1,600,498 2 User

image classification. We split images into 5 clients by latent Dirichlet allocation (LDA) to produce statistical heterogeneity
among these clients. We split the raw training set into training and validation sets with a ratio of 4 : 1, so that ratio of final
train/valid/test splits is 66.7%:16.67%:16.67%.

SST-2 is a dataset from GLUE (Wang et al., 2018) benchmark, whose task is binary sentiment classification for sentences.
We also split these sentences into 5 clients by LDA. In addition, we use the official train/valid/test splits for SST-2.

CoLA is also a dataset from GLUE benchmark, whose task is a binary classification for sentences—whether it is a
grammatical English sentence. We exactly follow the experimental setup in SST-2.

Cora & CiteSeer & PubMed (Sen et al., 2008; Yang et al., 2016) are three widely adopted graph datasets whose tasks
are node classification. Following FS-G (Wang et al., 2022), a community splitter is applied to each graph to generate five
subgraphs for each client. We also split the nodes into train/valid/test sets, where the ratio is 60%:20%:20%.

Hetero-task is a graph classification dataset which is constructed referring to Graph-DC (Yao et al., 2022), which contains 5
clients. Each client has a different but similar graph classification task, such as molecular attribute prediction. In addition,
we set the ratio of train/valid/test splits to 80%:10%:10%.

Tabular datasets consist of 7 tabular datasets from OpenML (Bischl et al., 2017), whose task ids (name of source data) are
31 (credit-g), 53 (vehicle), 3917 (kc1), 10101 (blood-transfusion-service-center), 146818 (Australian), 146821 (car) and
146822 (segment). We split each dataset into 5 clients by LDA, respectively. In addition, we set the ratio of train/valid/test
splits to 80%:10%:10%.

FedNetflix is a recommendation dataset from The Netflix Prize (Bennett & Lanning, 2007), whose task is to predict the
ratings between users and movies. Netflix consists of around 100 million ratings between 480,189 users and 171,770
movies. We split the Netflix dataset into 480,189 clients by users. In addition, we set the ratio of train/valid/test splits to
80%:10%:10%.

Twitter is a sentiment analysis dataset from LEAF (Caldas et al., 2018), whose task is to determine sentiment of sentences.
We use a subsample of Twitter with around 3300 clients. Moreover, we use the train/valid/test splits for each client, where
the ratio is 80% : 10% : 10%. It is worth noting that the average number of samples is only 1.94, which means some clients
do not have valid split or test split, and we evaluate the performance on a shared test split merged by all clients.
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E. System Model
In this section, we will discuss the system model in detail we have proposed and implemented. The total execution time of
FL consists of the time consumed by communication and the time consumed by calculation; thus, the system model is as
follows:

T (f, λ, b) = I · Tcomm(f, λ, b) + Tcomp(f, λ, b),

Tcomm(f, λ, b) =
Sdown(f, λ)

Bdown
+

Sup(f, λ)

Bup
+ α(N),

Tcomp(f, λ, b) = E
T

(client)
i ∼Exp(·| 1

c(f,λ,b)
),i=1,...,N

[

max({T (client)
i })] + T (server)(f, λ, b),

(1)

where I indicates whether the communication is needed in this round, N denotes the number of clients sampled in this
round, α(N) denotes the latency, which is an increasing function of N but is independent of the message size (contains the
time needed to establish the transmission between the server and the clients), S(f, λ) denotes the download/upload size, B
denotes the download/upload bandwidth of client, T (server) is the time consumed by server-side computation, and T

(client)
i

denotes the computation time consumed by i-th client, which is sampled from an exponential distribution with c(f, λ, b)
as its mean. This design intends to simulate the heterogeneity among clients’ computational capacity, where the assumed
exponential distribution has been widely adopted in system designs (Wang et al., 2021a) and is consistent with real-world
applications (Huba et al., 2022).

We provide default parameters of our system model, including c(f, λ, b), Bup, Bdown, and T (server), based on observations
collected from FL trials we have conducted and real-world network bandwidth. Users are allowed to specify these parameters
according to their scenarios or other system statistic providers, e.g., estimating the computation time of stragglers by sampling
from FedScale (Lai et al., 2022). As for the network bandwidth, we set Bdown ∼ 0.75MB/secs, Bup ∼ 0.25MB/secs
following (Lai et al., 2022; Wang et al., 2021a). The default value of c(f, λ, b) is obtained by averaging the recorded
client-wise time costs in trials of tabular mode benchmarks. Due to the limit on the number of ports of the server, we set the
default value of the maximum number of connections in calculating α(N) to 65535. For most FedHPO methods, such as
FedEx, we set I constant equal to 1. But for some methods that communicate only in specific rounds, such as FLoRA, the
value of I needs to be configured accordingly.

To implement our system model, we use the following proposition to calculate Eq. 1 analytically, where we use c as a
shorthand for c(f, λ, b) to keep clarity.

Proposition E.1. When the computation time of clients is identically independently distributed, following an exponential
distribution Exp(·| 1c ), then the expected time for the straggler of N uniformly sampled clients is

∑N
i=1

c
i .

What we need to calculate is the expected maximum of i.i.d. exponential random variable. Proposition E.1 states that, for N
exponential variables independently drawn from Exp(·| 1c ), the expectation is

∑N
i=1

c
i . There are many ways to prove this

useful proposition, and we provide proof starting by studying the minimum of the exponential random variables.

Server

Figure 6. A general algorithmic view for FedHPO methods: They are allowed to concurrently explore different client-side configurations
in the same round of FL, but the clients are heterogeneous, i.e., corresponding to different functions f (c)

i (·). Operators in brackets are
optional.
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Proof. At first, the minimum of N such random variables obeys Exp(·|Nc ) (Graham et al., 1989). Denoting the i-th
minimum of them by Ti, T1 ∼ Exp(·|Nc ) and TN is what we are interested in. Meanwhile, it is well known that exponential
distribution is memoryless; namely, Pr(X > s+ t|X > s) = Pr(X > t). Thus, T2 − T1 obeys the same distribution as the
minimum of N − 1 such random variables, that is to say, T2 − T1 is a random variable drawn from Exp(·|N−1

c ). Similarly,
(Ti+1 − Ti) ∼ Exp(·|N−i

c ), i = 1, . . . , N − 1. Thus, we have:

E[TN ] = E[T1 +

N−1∑
i=1

(Ti+1 − Ti)] =
c

N
+

N−1∑
i=1

c

N − i
=

N∑
i=1

c

i
, (2)

which concludes this proof.

It is worth noting that we provide several optional system models. For example, for point-to-point transport protocols, Tcomm
should contain the time the server sends the model to each client.

F. Details of the Implementations of FedEx and FTS
We first present a general algorithmic view in Fig. 6, which unifies several such methods as well as their personalized
counterparts. At a high level, a policy π for determining the optimal lower-level response λ(c)∗ = minλ(c) f(λ(s), λ(c)) is
to be federally learned, along with the FL course itself. In the t-th communication round: (1) In addition to the model
θ(t), either the policy π(t) or its decisions λ(c)

i is also broadcasted. (2) For the i-th client, if π(t) is received, it needs to
synchronize its local policy π

(t)
i with this global one and then sample a hyperparameter configuration λ

(c)
i from its local

policy. (3) Either received or locally sampled, λ(c)
i is used to specify the local update procedure of FL, which results

in updated local model θ(t+1)
i . (4) Then θ

(t+1)
i is evaluated to provide the result of (client-specific) function evaluation

f
(c)
i

(
λ
(c)
i

)
. (5) For personalized FedHPO methods that maintain a local policy πi, it is updated w.r.t. (λi, fi(λi)) to produce

π
(t+1)
i . (6) In addition to the local model θ(t+1)

i , either the local policy π
(t+1)
i or the feedback

(
λ
(c)
i , f

(c)
i

(
λ
(c)
i

))
is sent to

the server. (7) Finally, the server aggregates θ(t+1)
i s into θ(t+1) and π

(t+1)
i s/

(
λ
(c)
i , f

(c)
i

(
λ
(c)
i

))
s into π(t+1), respectively.

In FedEx (Khodak et al., 2021), λis are independently sampled from π, and the aggregation operator “aggrp” is exponential
gradient descent. In FTS (Dai et al., 2020), the broadcasted policy π(t) is the samples drawn from all clients’ posterior
beliefs. The synchronous operator “syncp” can be regarded as mixing Gaussian process (GP) models. The update operator
“updatep” corresponds to updating the local GP model. Then a sample drawn from local GP posterior belief is regarded as

π
(t+1)
i and uploaded. Finally, the aggregation operator “aggrp” is packing received samples together.

G. Studies about the New Fidelity
In FL, a larger client_sample_rate leads to a minor variance of the aggregated model in each round, which is believed to
need less #round for convergence and to perform better. Therefore, we tend to set the client_sample_rate as close to 1 as
possible. However, according to our system model in Sec. 4.2, a large client_sample_rate leads to an increase in latency
(α(N)), which makes the communication cost higher. We use tabular mode and study the trade-off between these two
fidelity dimensions: client_sample_rate and #round. We simulate two distinct system conditions by specifying different
parameters for our system model.

Protocol. We compare the performance of HB with different client_sample_rates to learn a 2-layer CNN with 2,048
hidden units on FEMNIST. To simulate a system condition with bad network status, we set the upload bandwidth Bup to
0.25MB/second and the download bandwidth Bdown to 0.75MB/second (Wang et al., 2021a). As for good network status,
we set the upload bandwidth Bup to 0.25GB/second and the download bandwidth B(down) to 0.75GB/second. In both cases,
we consider different computation overhead so that it is negligible and significant, respectively. As for the rest settings, we
largely follow that in Sec. 5.1.1.

Results and Analysis. As shown in Fig. 7, with the same time budget, the FL procedure with a lower client_sample_rate
achieves a better result than higher client_sample_rate with the bad network status. In comparison, that with a higher
client_sample_rate achieves a better result than lower client_sample_rate in the good network status. In conclusion, this
study suggests a best practice of pursuing a more economic accuracy-efficiency trade-off by balancing client_sample_rate
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Figure 7. Performances of different client_sample_rate under different system conditions.

with #round, w.r.t. the system condition. Better choices tend to achieve more economical accuracy-efficiency trade-offs for
FedHPO.

H. Details on FEDHPO-BENCH’s Benchmarks
FEDHPO-BENCH consists of several categories of benchmarks on the different datasets (see Appendix D) with three modes.
If not specified, we use the model as the name of the benchmark in the cross-silo scenario. In this part, we provide more
details about how we construct the FedHPO problems provided by current FEDHPO-BENCH and the three modes to interact
with them.

H.1. Category

We categorize our benchmarks by model types. Each benchmark is designed to solve specific FL HPO problems on its data
domain, wherein CNN benchmark on CV, BERT benchmark on NLP, GNN benchmark on the graphs, and LR & MLP
benchmark on tabular data. All benchmarks have several hyperparameters on configuration space and two on fidelity space,
namely the sample rate of FL and FL round. And the benchmarks support several FL algorithms, such as FedAvg and
FedOpt.

CNN benchmark learns a two-layer CNN with 2048 hidden units on FEMNIST and 128 hidden units on CIFAR-10 with five
hyperparameters on configuration space that tune the batch size of the dataloader, the weight decay, the learning rate, the
dropout of the CNN models, and the step size of local training round in client each FL communication round. The tabular
and surrogate mode of the CNN benchmark only supports FedAvg due to our limitations in computing resources for now,
but we will update FEDHPO-BENCH with more results as soon as possible.

BERT benchmark fine-tunes a pre-trained language model, BERT-Tiny, which has two layers and 128 hidden units, on
CoLA and SST-2. The configuration space of the BERT benchmark also contains five hyperparameters, the same as the
CNN benchmark. In addition, the BERT benchmark supports FedAvg and FedOpt with all three modes.

GNN benchmark learns a two-layer GCN with 64 hidden units on Cora, CiteSeer, and PubMed. The configuration space of
the GNN benchmark contains four hyperparameters that tune the weight decay, the learning rate, the dropout of the GNN
models, and the step size of the local training round in client each FL communication round. The GNN benchmark supports
FedAvg and FedOpt with all three modes.

Hetero benchmark learns a two-layer GCN with 64 hidden units as the backbone. The configuration space of the Hetero
benchmark contains two hyperparameters that tune the learning rate and the step size of the local training round in each FL
communication round client. Each client has a personalized encoder and classifier to handle different tasks. Thus, compared
to other benchmarks, the search space of the Hetero benchmark exponentially increases with the number of clients.

LR benchmark learns an LR on seven tasks from OpenML, see Appendix D for details. The configuration space of the LR
benchmark contains four hyperparameters that tune the batch size of the dataloader, the weight decay, the learning rate, and
the step size of the local training round in client each FL communication round. The LR benchmark support FedAvg and
FedOpt with all three modes.
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Table 7. The search space of our benchmarks, where continuous search spaces are discretized into several bins under the tabular mode.

Benchmark Name Type Log #Bins Range

CNN

Client

batch_size int × - {16, 32, 64}
weight_decay float × 4 [0, 0.001]

dropout float × 2 [0, 0.5]
step_size int × 4 [1, 4]

learning_rate float ✓ 10 [0.01, 1.0]

Server momentum float × 2 [0.0, 0.9]
learning_rate float × 3 [0.1, 1.0]

Fidelity client_sample_rate float × 5 [0.2, 1.0]
round int × 250 [1, 500]

BERT

Client

batch_size int × - {8, 16, 32, 64, 128}
weight_decay float × 4 [0, 0.001]

dropout float × 2 [0, 0.5]
step_size int × 4 [1, 4]

learning_rate float ✓ 10 [0.01, 1.0]

Server momentum float × 2 [0.0, 0.9]
learning_rate float × 3 [0.1, 1.0]

Fidelity client_sample_rate float × 5 [0.2, 1.0]
round int × 40 [1, 40]

GNN

Client

weight_decay float × 4 [0, 0.001]
dropout float × 2 [0, 0.5]
step_size int × 8 [1, 8]

learning_rate float ✓ 10 [0.01, 1.0]

Server momentum float × 2 [0.0, 0.9]
learning_rate float × 3 [0.1, 1.0]

Fidelity client_sample_rate float × 5 [0.2, 1.0]
round int × 500 [1, 500]

Hetero
Client learning_rate float ✓ 2 [0.001, 0.01]

step_size int × 2 [1, 4]

Fidelity client_sample_rate float × 5 [0.2, 1.0]
round int × 500 [1, 500]

LR

Client

batch_size int ✓ 7 [4, 256]
weight_decay float × 4 [0, 0.001]

step_size int × 4 [1, 4]
learning_rate float ✓ 6 [0.00001, 1.0]

Server momentum float × 2 [0.0, 0.9]
learning_rate float × 3 [0.1, 1.0]

Fidelity client_sample_rate float × 5 [0.2, 1.0]
round int × 500 [1, 500]

MLP

Client

batch_size int ✓ 7 [4, 256]
weight_decay float × 4 [0, 0.001]

step_size int × 4 [1, 4]
learning_rate float ✓ 6 [0.00001, 1.0]

depth int × 3 [1, 3]
width int ✓ 7 [16, 1024]

Server momentum float × 2 [0.0, 0.9]
learning_rate float × 3 [0.1, 1.0]

Fidelity client_sample_rate float × 5 [0.2, 1.0]
round int × 500 [1, 500]
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MLP benchmark’s the vast majority of settings are the same as the LR benchmark. But in particular, we add depth and width
of the MLP to search space in terms of the model architecture. The MLP benchmark also supports FedAvg and FedOpt with
all three modes.

Cross-device. In cross-device scenarios (Chen et al., 2023), there can be a large number of clients in total, but only a few
participate in each communication round. This benchmark contains two datasets, Twitter and FedNetflix. We use a bag of
words model with LR and tune the learning_rate, weight_decay, and step_size of the local training round in Twitter. As for
FedNetflix, we tune an HMFNet (Li et al., 2021c) in the learning_rate, batch_size, and step_size of local training round.
Due to the time limit, the results FedNetflix is incomplete, and we present the ECDF of Twitter in Fig. 8.
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Figure 8. ECDF on Twitter.

H.2. Mode

Following HPOBench (Eggensperger et al., 2021), FEDHPO-BENCH provides three different modes for function evaluation:
the tabular mode, the surrogate mode, and the raw mode. The valid input hyperparameter configurations and the speed
of acquiring feedback vary from mode to mode. Users can choose the desired mode according to the purposes of their
experiments.

Tabular mode. The idea is to evaluate the performance of many different hyperparameter configurations in advance so
that users can acquire their results immediately. For efficient function evaluation, we implement the tabular mode of
FEDHPO-BENCH by running the FL algorithms configured by the grid search space in advance from our original search
space (see Table 7). For hyperparameters whose original search space is discrete, we just preserve its original one. As
for continuous ones, we discretize them into several bins (also see Table 7 for details). We execute the FL procedure in
the Docker container environment to ensure the results are reproducible. Each specific configuration λ is repeated three
times with different random seeds, and the performances, including loss, accuracy, and f1-score under train/validation/test
splits, are averaged and adopted as the results of f(λ). Users can choose the desired metric as the output of the black-box
function via FEDHPO-BENCH’s APIs. Besides, we provide not only the results of f(λ) (i.e., that with full-fidelity) but also
results of f(λ, b), where b is enumerated across different #round and different client_sample_rate. Since executing function
evaluation is much more costly in FL than traditional centralized learning, such lookup tables are precious. In creating them,
we spent about two months of computation time on six machines, each with four Nvidia V100 GPUs. Now we make them
publicly accessible via the tabular mode of FEDHPO-BENCH.

Surrogate mode.

As tabular mode has discretized the original search space and thus cannot respond to queries other than the grids, we train
random forest models on these lookup tables, i.e., {(λ, b), f(λ, b))}. These models serve as a surrogate of the functions to
be optimized and can answer any query λ by simply making an inference. Specifically, we conduct 10-fold cross-validation
to train and evaluate random forest models (implemented in scikit-learn (Pedregosa et al., 2011)) on the tabular data.
Meanwhile, we search for suitable hyperparameters for the random forest models with the number of trees in {10, 20} and
the max depth in {10, 15, 20}. The mean absolute error (MAE) of the surrogate model w.r.t. the true value is within an
acceptable threshold. For example, in predicting the true average loss on the CNN benchmark, the surrogate model has
a training error of 0.00609 and a testing error of 0.00777. In addition to the off-the-shelf surrogate models we provide,
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FEDHPO-BENCH offers tools for users to build brand-new surrogate models. Meanwhile, we notice the recent successes of
neural network-based surrogate, e.g., YAHPO Gym (Pfisterer et al., 2022), and we will also try it in the next version of
FEDHPO-BENCH.

Raw mode. Although both of the above modes can respond quickly, they are limited to pre-designed search space. Thus,
we introduce raw mode to FEDHPO-BENCH, where user-defined search spaces are allowed. Once FEDHPO-BENCH’s
APIs are called with specific hyperparameters, a containerized and standalone FL procedure (supported by FS) will be
launched. It is worth noting that although we use standalone simulation to eliminate the communication cost, the raw mode
still consumes much more computation cost than tabular and surrogate modes.

H.3. New Hyperparameters

The FL setting introduces new hyperparameters such as server-side learning_rate, momentum for FedOpt (Asad et al., 2020)
and client-side #local_update_step. Different FL algorithms have different parameters, which correlate with hyperparameters
related to general ML procedures. In this section, we first adopt FedProx (Li et al., 2020b) to study the impact of server-side
hyperparameters mu, the coefficient of the regular term, on the results. And then we compare the landscape of federated
learning and non-federated methods.
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Figure 9. Landscape with the hyperparameters of the ML algorithm on FEMNIST.

ϵ learning_rate weight_decay dropout step_size Test Acc. (%)
1 1.0 0.001 0.5 7 63.87 ± 6.38
10 0.59948 0.0 0.5 6 87.02 ± 1.16
20 0.59948 0.001 0.5 6 87.30 ± 0.54

Table 8. Best configuration with different levels of privacy budgets in Cora.

H.3.1. TRENDS WITH DIFFERENT REGULARITY IN FEDPROX

To extend the tabular benchmarks with more FL algorithms, we adopt FedProx (Li et al., 2020b) to the GNN benchmark.
Based on Table 7, we tune the server-side hyperparameters mu, the coefficient of the regular term, in {0.1, 1.0, 5.0} to study
the trends with different regularity in FedProx. We show the landscape in Fig. 10 with a learning rate in [0.01, 1.0] and mu
in [0.1, 5.0], and we observe that when the learning rate is low, the effect of mu has little impact on the accuracy; however,
when the learning rate is large, the increase of mu can seriously damage the accuracy.
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H.3.2. LANDSCAPES ON ML-RELATED HYPERPARAMETERS

In this section, to study the validation loss landscape of the federated learning method (FedAvg) and non-federated method
(Isolated), we consider learning_rate and batch_size, the hyperparameters of the ML algorithm, as the coordinate axis to
build the loss landscapes. We fix other ML-related hyperparameters weight_decay to 0.0, dropout to 0.5 for both FedAvg
and Isolated, which is the best configuration chosen from the tabular benchmark <CNN, FEMNIST, FedAvg> under 1.0
client_sample_rate. As the loss landscapes shown in Fig. 9 with learning rate in [0.01, 1.0] and batch size in 16, 32, 64, we
observe that the FedAvg with a higher learning rate achieves better results, while the non-federated method (Isolated) prefer
a lower learning rate. Their differences suggest the uniqueness of FedHPO’s objective functions.

H.4. Data Analytics

H.4.1. TRENDS IN DIFFERENT PRIVACY BUDGETS

We extend the tabular benchmarks with different levels of privacy budgets in FEMNIST and Cora. To explore the trends
of optimal configurations under different privacy budgets, we adopt NbAFL (Wei et al., 2020) with ϵ ∈ {1, 10, 20}. We
observe that the best configuration varies under different levels of privacy budgets in Cora, as shown in Table 8. Under
different privacy budgets, a large step_size all leads to a good performance. However, when the noise is intense, a higher
learning_rate is preferred, while a lower learning_rate will perform better when the noise is weak.

H.4.2. ERRORS OF SURROGATE BENCHMARKS

As we mentioned in Sec. H.2, we report the regression error of the training surrogate model in Table 9. Meanwhile, we
present the mean rank over time of optimizers with surrogate modes in Fig. 23 and Fig. 24. Compared to the results of
tabular modes in Fig. 14 and Fig. 15, BOGP shows good performance in both modes, while Random Search does not. This
shows the consistent performance of the same optimizer when it interplays with surrogate and tabular benchmarks.

Model Dataset Algo. Train MAE Test MAE
CNN FEMNIST FedAvg 0.00609 0.00777

BERT
CoLA FedAvg 0.04724 0.05454

FedOpt 0.02426 0.02959

SST2 FedAvg 0.02597 0.03227
FedOpt 0.02802 0.03166

GNN

Cora FedAvg 0.04702 0.04839
FedOpt 0.05703 0.05893

CiteSeer FedAvg 0.01334 0.01381
FedOpt 0.01652 0.01717

PubMed FedAvg 0.04042 0.04148
FedOpt 0.04816 0.05699

Table 9. The regression error of surrogate models.

H.4.3. VARIANCE OF DIFFERENT SAMPLE RATE

As we build our tabular benchmark from FL courses executed in docker images provided by FS, we can fully reproduce all
the results given the same random seed in raw mode. Other than that, to study the noise of different federated optimization,
we analyze the variance of validation loss with 500 rounds under different sample rates in FEMNIST. And the average
standard deviation validation loss is {1.945e-2, 1.7e-2, 1.728e-2, 1.715e-2, 1.43e-2} with sample rate {0.2, 0.4, 0.6, 0.8,
1.0}, which shows that the higher sample rate tends to have lower variance. The reason is apparent: the lower the sampling
rate, the more inconsistent the set of clients sampled during the training process leads to this error.

H.4.4. ECDF WITH DIFFERENT HETEROGENEITY

We extend our LR benchmarks with different heterogeneity settings. As we discussed in Appendix D, we split the tabular
dataset with LDA, whose α is in {0.1, 0.5, 0.7} (the smaller the alpha, the more the heterogeneous). We show the ECDF of
the normalized regret of evaluated configurations with different α in Fig. 11, which shows that as the α decreases, it is harder
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Figure 10. Landscape with the different regularity of FedProx on Cora.

to find a good configuration. This phenomenon shows the necessity of tuning hyperparameters in FL with heterogeneous
data.
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Figure 11. Empirical Cumulative Distribution Functions with different heterogeneity in LR benchmark.

I. More Results
In this section, we show the more detailed experimental results. We first report the details about the sign test for comparing
optimizers as mentioned in Sec. 5.1.1. Then, we present the details about the experiment of concurrent exploration. Moreover,
we report the averaged best-ever-seen validation loss, from which the mean rank over time for all optimizers can be deduced
in Appendix I.3-I.4.

I.1. Sign test for comparing optimizers

Following HPOBench, we use sign tests to judge (1) whether advanced methods outperform their baselines and (2) whether
multi-fidelity methods outperform their single-fidelity counterparts. We refer our readers to Appendix C for more details. We
consider optimizers’ final performances on all the considered FedHPO problems, where one may win, tie, or lose against the
other for each pair of optimizers. Then we can conduct sign tests to compare pairs of optimizers, where results are presented
in Table 10 and Table 11. Comparing model-based optimizers with their baselines, almost all model-based optimizers have
no significant improvement, which is inconsistent with the non-FL setting (Eggensperger et al., 2021). It is worth noting that
a similar phenomenon can also be observed for HPO problems in general (Pushak & Hoos, 2022).
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I.2. Details about concurrent exploration

FL allows HPO methods to take advantage of concurrent exploration, which somewhat compensates for the number of
function evaluations. We are interested in methods designed regarding these characteristics of FedHPO and design this
experiment to see how much concurrent exploration contributes. i.e., FedAvg is applied to learn a 2-layer CNN on FEMNIST
for the former FedHPO problem, and FedAvg is applied to learn a 2-layer GNN on PubMed for the latter. As a full-fidelity
function evaluation consumes 500 rounds on these datasets, we specify RS, BOGP, BORF, BOKDE, HB, and BOHB to limit
their total budget to 2,500 (i.e., 5 times budget of a full-fidelity evaluation) in terms of #round. And we get the mean
validation cross-entropy loss over budget in FEMNIST in Fig. 12.
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Figure 12. Mean validation cross-entropy loss over budget in FEMNIST.

Following the protocol in Sec. 5.1.2, yet focusing on <FedNetflix, MF, FedAvg>, the averaged test MAE (the smaller, the
better) is reported in Fig. 12. Compared to Tab. 2 in our paper, the empirical studies on FedNetflix also show that most
X+FedEx’s searched configurations show significantly better generalization performances than their wrappers (i.e., X(a
traditional optimizer)), strongly confirming the effectiveness of concurrent exploration.

I.3. Tabular mode

Following Sec. 5.1.1, we show the overall mean rank overtime on all FedHPO problems with FedOpt, whose pattern
is similar to that of FedAvg in Fig. 4. Then, we report the final results with FedAvg and FedOpt in Table 13 and 14,
respectively. Finally, we report the mean rank over time in Fig. 14-22. Due to time and computing resource constraints, the
results on the CNN benchmark are incomplete (lacking that with FedOpt), which we will supplement as soon as possible.

I.4. Surrogate mode

We report the final results with FedAvg on FEMNIST and BERT benchmarks in Table 15. Then we present the mean rank
over time of the optimizers in Fig. 23 and Fig. 24.

Table 10. P-value of a sign test for the hypothesis—these advanced methods surpass the baselines.
BOGP BORF BOKDE DE

p-value against RS 0.0637 0.2161 0.1649 0.7561
win-tie-loss 13 / 0 / 7 12 / 0/ 8 7 / 0 / 13 11 / 0 / 9

BOHB DEHB TPEMD TPEHB

p-value against HB 0.4523 0.9854 0.2942 0.2454
win-tie-loss 7 / 0 / 13 9 / 0 / 11 9 / 0 / 11 9 / 0 / 11
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Table 11. P-value of a sign test for the hypothesis—MF methods surpass corresponding BBO methods.
HB vs. RS DEHB vs. DE BOHB vs. BOKDE

p-value 0.1139 0.2942 0.0106
win-tie-loss 13 / 0 / 7 13 / 0 / 7 16 / 0 / 4

Table 12. Compare the searched configurations: Mean absolute error. The upward arrow indicates improvements.

Methods FedNetflix
W/O FedEx W/ FedEx

RS 1.384850 1.419744
BOGP 1.430895 1.423417↑
BORF 1.352397 1.336225↑
BOKDE 1.357617 1.346154↑
HB 1.272980 1.232069↑
BOHB 1.321204 1.264139↑
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Figure 13. Mean rank over time on all FedHPO problems (with FedOpt).

Table 13. Final results of the optimizers on tabular mode with FedAvg (lower is better).
benchmark RS BOGP BORF BOKDE DE HB BOHB DEHB TPEMD TPEHB

CNNFEMNIST 0.4969±0.0054 0.4879±0.0051 0.4885±0.0065 0.5004±0.0068 0.4928±0.0054 0.4926±0.0052 0.4945±0.0059 0.498±0.0061 0.5163±0.0028 0.5148±0.0047
BERTSST-2 0.435±0.0142 0.4276±0.0082 0.4294±0.0071 0.4334±0.0081 0.437±0.0052 0.4311±0.0151 0.4504±0.0441 0.4319±0.0251 0.4341±0.0044 0.4251±0.0076
BERTCoLA 0.6151±0.0014 0.6148±0.0014 0.6141±0.0016 0.6133±0.0022 0.6143±0.0006 0.6143±0.0016 0.6168±0.0025 0.6178±0.0025 0.6158±0.0014 0.6146±0.0018
GNNCora 0.3265±0.0042 0.3258±0.0062 0.3260±0.0063 0.3347±0.0078 0.3267±0.0066 0.3324±0.0136 0.3288±0.0030 0.3225±0.0039 0.3241±0.0014 0.3249±0.0020
GNNCiteSeer 0.6469±0.0052 0.6442±0.0046 0.6499±0.0069 0.6442±0.0089 0.6453±0.0061 0.6387±0.0077 0.6425±0.0054 0.6452±0.0030 0.6324±0.0070 0.6371±0.0051
GNNPubMed 0.5262±0.0167 0.5146±0.0136 0.5169±0.0193 0.5311±0.0110 0.5001±0.0082 0.5006±0.0144 0.5194±0.0212 0.4934±0.0010 0.5060±0.0179 0.5044±0.0150
LR31 0.6821±0.1299 0.6308±0.0292 0.6382±0.0435 0.6385 ± 0.0459 0.667 ± 0.0888 0.6492 ± 0.0187 0.6461 ± 0.0472 0.6145 ± 0.0242 0.7228 ± 0.0427 0.758 ± 0.0460
LR53 1.6297 ± 0.1628 1.7288 ± 0.2306 1.6116 ± 0.2017 1.7142 ± 0.1663 1.6062 ± 0.1487 1.5765 ± 0.1416 1.5634 ± 0.1993 1.4755 ± 0.1126 1.5506 ± 0.0010 1.5506 ± 0.0010
LR3917 1.8892 ± 0.2647 1.7561 ± 0.2538 1.7186 ± 0.3562 2.4271 ± 1.1596 1.7519 ± 0.6093 3.948 ± 2.5432 1.6384 ± 0.1849 3.1183 ± 2.9336 2.1344 ± 1.0268 2.6576 ± 1.1446
LR10101 0.548 ± 0.0002 0.5483 ± 0.0002 0.5482 ± 0.0003 0.5487 ± 0.0008 0.5481 ± 0.0002 0.5504 ± 0.0049 0.5505 ± 0.0047 0.5516 ± 0.0064 0.5483 ± 0.0009 0.5487 ± 0.0017
LR146818 0.5294 ± 0.0006 0.5291 ± 0.0002 0.5295 ± 0.0006 0.5289 ± 0.0004 0.5291 ± 0.0007 0.5292 ± 0.0008 0.529 ± 0.0004 0.5293 ± 0.0002 0.5328 ± 0.0055 0.5387 ± 0.0186
LR146821 0.4733 ± 0.0025 0.464 ± 0.0068 0.4722 ± 0.0123 0.4843 ± 0.0205 0.4971 ± 0.0312 0.4678 ± 0.0109 0.4747 ± 0.0127 0.4707 ± 0.0095 0.4792 ± 0.0083 0.4688 ± 0.0086
LR146822 0.4581 ± 0.0202 0.4481 ± 0.0102 0.4505 ± 0.0182 0.4731 ± 0.0197 0.4587 ± 0.0118 0.4478 ± 0.0122 0.4446 ± 0.0066 0.4304 ± 0.0071 0.4376 ± 0.0071 0.4419 ± 0.0089
MLP31 0.5899 ± 0.0032 0.5891 ± 0.0052 0.5808 ± 0.0094 0.5904 ± 0.0035 0.5925 ± 0.0008 0.5921 ± 0.0017 0.5929 ± 0.0001 0.593 ± 0.0001 0.593 ± 0.0000 0.593 ± 0.0000
MLP53 0.7795 ± 0.0156 0.7373 ± 0.0186 0.7849 ± 0.0215 0.8215 ± 0.1220 0.8068 ± 0.0752 0.769 ± 0.0226 0.7577 ± 0.0222 0.8173 ± 0.1407 0.9491 ± 0.0951 1.0567 ± 0.0158
MLP3917 0.3863 ± 0.0099 0.3937 ± 0.0094 0.3858 ± 0.0105 0.3958 ± 0.0088 0.383 ± 0.0074 0.3895 ± 0.0049 0.3911 ± 0.0079 0.4084 ± 0.0407 0.3979 ± 0.0035 0.3988 ± 0.0036
MLP10101 0.4054 ± 0.0113 0.4217 ± 0.0065 0.4361 ± 0.0124 0.4162 ± 0.0154 0.418 ± 0.0083 0.4137 ± 0.0109 0.4152 ± 0.0142 0.4102 ± 0.0109 0.4522 ± 0.0491 0.4352 ± 0.0407
MLP146818 0.5089 ± 0.0092 0.4997 ± 0.0072 0.5125 ± 0.0076 0.5112 ± 0.0049 0.5138 ± 0.0107 0.5009 ± 0.0043 0.5199 ± 0.0118 0.5039 ± 0.0060 0.5392 ± 0.0129 0.54 ± 0.0197
MLP146821 0.184 ± 0.0187 0.1251 ± 0.0167 0.155 ± 0.0183 0.1769 ± 0.0410 0.1851 ± 0.0236 0.1561 ± 0.0279 0.1683 ± 0.0291 0.1572 ± 0.0305 0.1654 ± 0.0422 0.1761 ± 0.0409
MLP146822 0.2839 ± 0.0259 0.2892 ± 0.0363 0.317 ± 0.0147 0.3586 ± 0.0754 0.2928 ± 0.0325 0.2927 ± 0.0233 0.2823 ± 0.0445 0.2549 ± 0.0176 0.2745 ± 0.0334 0.2755 ± 0.0221
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Table 14. Final results of the optimizers on tabular mode with FedOpt (lower is better).
benchmark RS BOGP BORF BOKDE DE HB BOHB DEHB TPEMD TPEHB

BERTSST-2 0.441 ± 0.0049 0.4325 ± 0.0125 0.4301 ± 0.0087 0.4463 ± 0.0093 0.4351 ± 0.0185 0.4403 ± 0.0064 0.4295 ± 0.0066 0.4285 ± 0.0068 0.4293 ± 0.0106 0.4332 ± 0.0122
BERTCoLA 0.6160 ± 0.0008 0.6160 ± 0.0011 0.6141 ± 0.0022 0.6137 ± 0.0025 0.6159 ± 0.0005 0.6154 ± 0.0013 0.6157 ± 0.0018 0.6176 ± 0.0004 0.6172 ± 0.0005 0.6168 ± 0.0004
GNNCora 0.3264 ± 0.0027 0.3235 ± 0.0004 0.3268 ± 0.0032 0.3322 ± 0.0101 0.3256 ± 0.0009 0.3245 ± 0.0014 0.3347 ± 0.0121 0.3254 ± 0.0008 0.3405 ± 0.0129 0.3361 ± 0.0187
GNNCiteSeer 0.6483 ± 0.0028 0.6517 ± 0.0053 0.6497 ± 0.0050 0.6535 ± 0.0072 0.6458 ± 0.0028 0.6442 ± 0.0034 0.6543 ± 0.0112 0.6463 ± 0.0029 0.6488 ± 0.0008 0.6495 ± 0.0007
GNNPubMed 0.4777 ± 0.0118 0.4426 ± 0.0132 0.4718 ± 0.0204 0.4943 ± 0.0359 0.4318 ± 0.0001 0.4559 ± 0.0135 0.4699 ± 0.0248 0.4318 ± 0.0001 0.4368 ± 0.0098 0.4402 ± 0.0167
LR31 0.7358 ± 0.0937 0.6831 ± 0.0198 0.6849 ± 0.0523 0.8152 ± 0.1180 0.7085 ± 0.0660 0.6772 ± 0.0527 0.6877 ± 0.0561 0.6385 ± 0.0498 0.8652 ± 0.0851 0.7044 ± 0.0403
LR53 1.7838 ± 0.2698 1.5609 ± 0.1957 1.5241 ± 0.0547 1.5116 ± 0.0437 1.6208 ± 0.3794 1.6045 ± 0.2433 1.7236 ± 0.4056 1.3488 ± 0.1343 1.6654 ± 0.2338 1.7978 ± 0.2937
LR3917 2.254 ± 0.5724 2.0316 ± 0.5246 2.3952 ± 0.7949 1.9788 ± 0.5290 2.6261 ± 0.5535 2.3472 ± 1.2238 2.5452 ± 0.5266 2.3144 ± 0.8685 3.2131 ± 2.2754 2.0291 ± 0.3674
LR10101 0.5533 ± 0.0078 0.5500 ± 0.0036 0.5505 ± 0.0032 0.5509 ± 0.0032 0.549 ± 0.0012 0.5504 ± 0.0029 0.5476 ± 0.0017 0.5522 ± 0.0056 0.5612 ± 0.0201 0.8567 ± 0.6019
LR146818 0.511 ± 0.0099 0.506 ± 0.0103 0.5034 ± 0.0097 0.5133 ± 0.0078 0.5007 ± 0.0021 0.5032 ± 0.0054 0.5086 ± 0.0067 0.4974 ± 0.0030 0.4983 ± 0.0049 0.5104 ± 0.0157
LR146821 0.4017 ± 0.0272 0.3599 ± 0.0148 0.4121 ± 0.0188 0.4134 ± 0.0364 0.4079 ± 0.0242 0.3950 ± 0.0228 0.398 ± 0.0448 0.3902 ± 0.0300 0.4447 ± 0.0447 0.4625 ± 0.0735
LR146822 0.3972 ± 0.0060 0.4211 ± 0.0236 0.4037 ± 0.0191 0.4442 ± 0.0261 0.4075 ± 0.0127 0.4131 ± 0.0215 0.4008 ± 0.0085 0.3916 ± 0.0086 0.3878 ± 0.0074 0.3871 ± 0.0043
MLP31 0.5912 ± 0.0012 0.5914 ± 0.0024 0.5912 ± 0.0012 0.5912 ± 0.0023 0.5918 ± 0.0011 0.5923 ± 0.0007 0.5921 ± 0.0007 0.5911 ± 0.0023 0.5921 ± 0.0006 0.5921 ± 0.0006
MLP53 0.9096 ± 0.0690 0.8166 ± 0.0890 0.8111 ± 0.0998 0.8872 ± 0.1465 0.8546 ± 0.1223 1.0163 ± 0.0781 0.8565 ± 0.0574 0.9849 ± 0.1238 1.1276 ± 0.0394 1.0952 ± 0.0293
MLP3917 0.3798 ± 0.0126 0.3937 ± 0.0086 0.3862 ± 0.0075 0.3871 ± 0.0110 0.3867 ± 0.0086 0.4109 ± 0.0402 0.4262 ± 0.0687 0.3812 ± 0.0125 0.4003 ± 0.0000 0.4003 ± 0.0001
MLP10101 0.4219 ± 0.0168 0.4141 ± 0.0056 0.4197 ± 0.0138 0.4111 ± 0.0078 0.4303 ± 0.0369 0.4145 ± 0.0106 0.4256 ± 0.0286 0.4215 ± 0.0277 0.4502 ± 0.0390 0.4502 ± 0.0300
MLP146818 0.4943 ± 0.0018 0.4913 ± 0.0108 0.5022 ± 0.0090 0.5023 ± 0.0113 0.4884 ± 0.0058 0.4995 ± 0.0087 0.5046 ± 0.0298 0.4921 ± 0.0293 0.4978 ± 0.0135 0.4861 ± 0.0240
MLP146821 0.1169 ± 0.0128 0.0836 ± 0.0132 0.0915 ± 0.0149 0.1674 ± 0.0600 0.1079 ± 0.0444 0.0891 ± 0.0150 0.1389 ± 0.0465 0.0838 ± 0.0270 0.1051 ± 0.0138 0.1194 ± 0.0130
MLP146822 0.2963 ± 0.0264 0.2914 ± 0.0215 0.2705 ± 0.0240 0.3025 ± 0.0447 0.2779 ± 0.0063 0.2759 ± 0.0216 0.2621 ± 0.0201 0.2549 ± 0.0108 0.2570 ± 0.0020 0.2518 ± 0.0055
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Figure 14. Mean rank over time on CNN benchmark (FedAvg).

Table 15. Final results of the optimizers in surrogate mode (lower is better).

benchmark RS BOGP BORF BOKDE DE HB BOHB DEHB TPEMD TPEHB

CNNFEMNIST 0.0508 0.0478 0.0514 0.0492 0.0503 0.0478 0.048 0.0469 0.0471 0.0458
BERTSST-2 0.4909 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4917 0.4908 0.4908
BERTCoLA 0.5013 0.4371 0.4113 0.487 0.444 0.4621 0.4232 0.4204 0.3687 0.3955
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Figure 15. Mean rank over time on BERT benchmark (FedAvg).
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Figure 16. Mean rank over time on BERT benchmark (FedOpt).
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Figure 17. Mean rank over time on GNN benchmark (FedAvg).
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Figure 18. Mean rank over time on GNN benchmark (FedOpt).
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Figure 19. Mean rank over time on LR benchmark (FedAvg).
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Figure 19. Mean rank over time on LR benchmark (FedAvg). (cont.)

34



FEDHPO-BENCH: A Benchmark Suite for Federated Hyperparameter Optimization

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1
2
3
4
5
6
7
8
9

10

M
ea

n 
ra

nk

(a) ALLLR

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5

M
ea

n 
ra

nk

(b) BBOLR

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5

M
ea

n 
ra

nk

(c) MFLR

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1
2
3
4
5
6
7
8
9

10

M
ea

n 
ra

nk

(d) ALL31OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5

M
ea

n 
ra

nk

(e) BBO31OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5

M
ea

n 
ra

nk
(f) MF31OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1
2
3
4
5
6
7
8
9

10

M
ea

n 
ra

nk

(g) ALL53OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5

M
ea

n 
ra

nk

(h) BBO53OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5
M

ea
n 

ra
nk

(i) MF53OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1
2
3
4
5
6
7
8
9

10

M
ea

n 
ra

nk

(j) ALL10101OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5

M
ea

n 
ra

nk

(k) BBO10101OpenML

1e-4 1e-3 1e-2 1e-1 1
Fraction of budget

1

2

3

4

5

M
ea

n 
ra

nk

(l) MF10101OpenML

Figure 20. Mean rank over time on LR benchmark (FedOpt).
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Figure 20. Mean rank over time on LR benchmark (FedOpt). (cont.)
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Figure 21. Mean rank over time on MLP benchmark (FedAvg).
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Figure 21. Mean rank over time on MLP benchmark (FedAvg). (cont.)
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Figure 22. Mean rank over time on MLP benchmark (FedOpt).
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Figure 22. Mean rank over time on MLP benchmark (FedOpt). (cont.)
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Figure 23. Mean rank over time on CNN benchmark under surrogate mode (FedAvg).
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Figure 24. Mean rank over time on BERT benchmark under surrogate mode (FedAvg).
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