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Abstract

Federated Learning (FL) aims to train machine
learning models for multiple clients without shar-
ing their own private data. Due to the hetero-
geneity of clients’ local data distribution, recent
studies explore the personalized FL that learns
and deploys distinct local models with the help of
auxiliary global models. However, the clients
can be heterogeneous in terms of not only lo-
cal data distribution, but also their computation
and communication resources. The capacity and
efficiency of personalized models are restricted
by the lowest-resource clients, leading to sub-
optimal performance and limited practicality of
personalized FL. To overcome these challenges,
we propose a novel approach named pFedGate
for efficient personalized FL by adaptively and
efficiently learning sparse local models. With a
lightweight trainable gating layer, pFedGate en-
ables clients to reach their full potential in model
capacity by generating different sparse models
accounting for both the heterogeneous data dis-
tributions and resource constraints. Meanwhile,
the computation and communication efficiency
are both improved thanks to the adaptability be-
tween the model sparsity and clients’ resources.
Further, we theoretically show that the proposed
pFedGate has superior complexity with guaran-
teed convergence and generalization error. Exten-
sive experiments show that pFedGate achieves su-
perior global accuracy, individual accuracy and ef-
ficiency simultaneously over state-of-the-art meth-
ods. We also demonstrate that pFedGate performs
better than competitors in the novel clients par-
ticipation and partial clients participation scenar-
ios, and can learn meaningful sparse local models
adapted to different data distributions.

1Alibaba Group. Correspondence to: Yaliang Li
<yaliang.li@alibaba-inc.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Federated Learning (FL) gains increasing popularity in ma-
chine learning scenarios where the data are distributed in
different places and can not be transmitted due to privacy
concerns (Muhammad et al., 2020; Meng et al., 2021; Yu
et al., 2021; Hong et al., 2021; Yang et al., 2021). Typical
FL trains a unique global model from multiple data owners
(clients) by transmitting and aggregating intermediate infor-
mation with the help of a centralized server (McMahan et al.,
2017; Kairouz et al., 2021). Although using a shared global
model for all clients shows promising average performance,
the inherent statistical heterogeneity among clients chal-
lenges the existence and convergence of the global model
(Sattler et al., 2020; Li et al., 2020). Recently, there are
emerging efforts that introduce personalization into FL by
learning and deploying distinct local models (Yang et al.,
2019; Karimireddy et al., 2020; Tan et al., 2021). The
distinct models are designed particularly to fit the hetero-
geneous local data distribution via techniques taking care
of relationships between the global model and personalized
local models, such as multi-task learning (Collins et al.,
2021), meta-learning (Dinh et al., 2020a), model mixture
(Li et al., 2021c), knowledge distillation (Zhu et al., 2021)
and clustering (Ghosh et al., 2020).

However, the heterogeneity among clients exists not only
in local data distribution, but also in their computation and
communication resources (Chai et al., 2019; 2020). The
lowest-resource clients restrict the capacity and efficiency
of the personalized models due to the following reasons: (1)
The adopted model architecture of all clients is usually as-
sumed to be the same for aggregation compatibility and (2)
The communication bandwidth and participation frequency
of clients usually determine how much can they contribute
to the model training of other clients and how fast can they
agree to meet a converged “central point” w.r.t their local
models. This resource heterogeneity is under-explored in
most existing personalized FL (PFL) works, and instead,
they gain accuracy improvement with a large amount of
additional computation or communication costs. Without
special design taking the efficiency and resource heterogene-
ity into account, we can only gain sub-optimal performance
and limited practicality of PFL.

To overcome these challenges, in this paper, we propose
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a novel method named pFedGate for efficient PFL, which
learns to generate personalized sparse models based on adap-
tive gated weights and different clients’ resource constraints.
Specifically, we introduce a lightweight trainable gating
layer for each client, which predicts sparse, continues and
block-wise gated weights and transforms the global model
shared across all clients into a personalized sparse one. The
gated weights prediction is conditioned on specific samples
for better estimation of the heterogeneous data distributions.
Thanks to the adaptability between the model sparsity and
clients’ resources, the personalized models and FL train-
ing process gain better computation and communication
efficiency. As a result, the model-adaption via sparse gated
weights delivers the double benefit of personalization and ef-
ficiency: (1) The sparse model-adaption enables each client
to reach its full potential in model capacity with no need for
compatibility across other low-resource clients, and to deal
with a small and focused hypothesis space that is restricted
by the personalized sparsity and the local data distribution.
(2) Different resource restrictions can be easily imposed
on the predicted weights as we consider the block-wise
masking under a flexible combinatorial optimization setting.
We further provide space-time complexity analysis to show
pFedGate’ superiority over state-of-the-art (SOTA) methods,
and provide theoretical guarantees for pFedGate in terms of
its generalization and convergence.

We evaluate the proposed pFedGate on four FL bench-
marks compared to several SOTA methods. We show that
pFedGate achieves superior global accuracy, individual ac-
curacy and efficiency simultaneously (up to 4.53% average
accuracy improvement with 12x smaller sparsity than the
compared strongest PFL method). We demonstrate the ef-
fectiveness and robustness of pFedGate in the partial clients
participation and novel clients participation scenarios. We
find that pFedGate can learn meaningful sparse local models
adapted to different data distributions, and conduct exten-
sive experiments to study the effect of sparsity and verify
the necessity and effectiveness of pFedGate’ components.

Our main contributions can be summarized as follows:

• We exploit the potential of co-design of model com-
pression and personalization in FL, and propose a novel
efficient PFL approach that learns to generate sparse
local models with a fine-grind batch-level adaptation.

• We provide a new formulation for the efficient PFL con-
sidering the clients’ heterogeneity in both local data
distribution and hardware resources, and provide the-
oretical results about the generalization, convergence
and complexity of the proposed method.

• We achieve SOTA results on several FL bench-
marks and illustrate the feasibility of gaining
better accuracy with improved efficiency for

PFL simultaneously. We release our codes at
https://github.com/yxdyc/pFedGate.

2. Related Works
Personalized FL. Personalized FL draws increasing at-
tention as it is a natural way to improve FL performance
for heterogeneous clients. Many efforts have been devoted
via multi-task learning (Smith et al., 2017; Corinzia & Buh-
mann, 2019; Huang et al., 2021; Marfoq et al., 2021), model
mixture (Zhang et al., 2020; Li et al., 2021c), clustering
(Briggs et al., 2020; Sattler et al., 2020; Chai et al., 2020),
knowledge distillation (Lin et al., 2020; Zhu et al., 2021;
Ozkara et al., 2021), meta-learning (Khodak et al., 2019;
Jiang et al., 2019; Khodak et al., 2019; Singhal et al., 2021),
and transfer learning (Yang et al., 2020; He et al., 2020;
Zhang et al., 2021a). Although effective in accuracy im-
provements, most works pay the cost of additional com-
putation or communication compared to non-personalized
methods. For example, Sattler et al. (2020) consider group-
wise client relationships, requiring client-wise distance cal-
culation that is computationally intensive in cross-device
scenarios. Fallah et al. (2020) leverage model agnostic
meta-learning to enable fast local personalized training that
requires computationally expensive second-order gradients.
Zhang et al. (2021a) learn pair-wise client relationships and
need to store and compute similarity matrix with square
complexity w.r.t. the number of clients. Marfoq et al. (2021)
learn a mixture of multiple global models which multiplies
the storing and communicating costs. Our work differs from
these works by considering a practical setting that clients are
heterogeneous in both the data distribution and hardware re-
sources. Under this setting, we achieve personalization from
a novel perspective, personalized sparse model-adaptation,
and show the feasibility of gaining better accuracy, compu-
tation and communication efficiency at the same time.

Efficient FL. Fruitful FL literature has explored the im-
provement of communication efficiency such as methods
based on gradient compression (Rothchild et al., 2020; Al-
istarh et al., 2017; Reisizadeh et al., 2020; Haddadpour
et al., 2021; Zhang et al., 2021b), model ensemble (Hamer
et al., 2020), model sub-parameter sharing (Liang et al.,
2020), sub-model selection (Tianchun et al., 2022; Minh
& Carl, 2021), and Bayesian neural network (Yurochkin
et al., 2019b;a). Few works improve computation and com-
munication efficiency with personalized local models via
quantization (Ozkara et al., 2021; Li et al., 2021a; Hong
et al., 2022) and model parameter decoupling (Diao et al.,
2021; Collins et al., 2021; Huang et al., 2022). We mainly
differ from them by adaptively generating the sparse model
weights at a fine-grained batch level, which estimates the
conditional distribution of heterogeneous local data well and
gains high accuracy as shown in our experiments. Besides
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the methodology, we present several new theoretical results.
Due to the space limit, we give more detailed descriptions
and comparisons with some related works in Appx.G.

3. Problem Formulation
The goal of traditional federated learning (FL) is to fit a
single global model by collaboratively training models from
a set C of clients without sharing their local data. In this
paper, we focus on the personalized federated learning prob-
lem in terms of not only client-distinct models, but also
client-distinct resource limitations. Specifically, consider
each client i ∈ C has its own private dataset Si that is drawn
from a local distribution Di over X × Y . In general, the lo-
cal data distributions {Di}i∈C are heterogeneous and thus it
is promising to learn personalized model hθi ∈ H : X 7→ Y
parameterized by θi for each local distribution Di, whereH
is the set of hypotheses with d dimensions. Besides, clients
may have heterogeneous computation and communication
resources especially in cross-device FL scenarios. To better
account for the data heterogeneity and system heterogeneity,
we aim to optimize the following objective:

min
{hθi}i∈C

∑
i∈C

pi · E(x,y)∼Di [f(θi;x, y)],

s.t. size(θi) ≤ di, ∀i ∈ C,
(1)

where f(θi;x, y) , `(hθi(x), y) and ` : Y × Y 7→ R+ is
the loss function, pi is non-negative aggregation weight for
client i and

∑
i∈C pi = 1. In typical FL setting (McMahan

et al., 2017; Kairouz et al., 2021), pi indicates the partic-
ipation degree of client i and is set to be proportional to
the size of local dataset |Si|. The size(θi) indicates the
number of parameters of θi, and di indicates the model size
limitation for client i. Without special designs to handle
the system heterogeneity (here the size restriction), most
PFL methods simply adopt another hypothesis space H̃ with
min({di}i∈C) dimensions that are constraints by the lowest-
resource clients, and the problem is degraded to the typical
one that minimizes the objective without constraints. We
consider model size constraint for simplicity and it fairly
reflects the computation and communication cost. The for-
mulation can be extended to other configurations such as
inference and communication latency in a similar manner.

4. Learning to Generate Sparse Model
In practice, one can solve the problem in Equation (1) with a
two-step manner: 1© find optimal local models via existing
personalized federated learning methods without sparsity
constraints, and then 2© compress the trained models into
required local model size via compression techniques such
as pruning, quantization and knowledge distillation (Deng
et al., 2020). However, the final local models from step 2©
usually gain worse performance to models found in step 1©
(Jiang et al., 2022). Besides, the post-compression process
still requires computational and communication costs corre-
sponding to the un-compressed models during the FL pro-
cess. To alleviate the performance degradation and further
improve the efficiency of FL process, we propose to jointly

learn and compress the federated models. Specifically, we
can directly learn sparse local models whose number of
non-zero parameters satisfy the size requirements:

min
{hθ′

i
}i∈C

∑
i∈C

pi · E(x,y)∼Di [`(hθ′i(x), y)], (2)

where hθ′i ∈ Hdi and Hdi indicates the subset of H with
hypotheses whose number of non-zero parameters is not
larger than di. However, the sparse models hθ′i can be arbi-
trarily different across clients due to the various dimension
requirements di and local data distributions Di. Directly op-
timizing hθ′i and aggregating them may lead to sub-optimal
performance and make the federated learning process un-
convergent. As (Marfoq et al., 2021) discussed, clients can
not benefit from each other without any additional assump-
tion to the local distributions. Here we consider the case of
bounded diversity as following assumption shows:
Assumption 1. (Bounded Diversity) Let Dg be a global
data distribution that is a mixture of all local data distribu-
tionDi, i ∈ C. Denote hθ∗g and hθ∗i as the optimal estimator
for the conditional probability of Dg and Di respectively.
There exist a Dg such that the variance between local and
global gradients is bounded

||∇θf(θ∗i )−∇θf(θ∗g)||2 ≤ σ2
i , ∀i ∈ C, (3)

where f(θ) is a compact notation as f(θ) , f(θ;x, y) for
all data points (x, y) ∈ X × Y .

Proposition 1. Denote (θ′i)
∗ be the parameter of any sparse

optimal estimator for Di, i ∈ C. If f is µ-strongly convex 1,
under Assumption 1, there exist continuous weights M∗i ∈
Rd such that (θ′i)

∗ = θ∗g ◦M∗i where ◦ indicates Hadamard
production over model parameters of θ, and {M∗i }i∈C can
be bounded as

||(M∗i − 1)◦4|| ≤ 1

16

(R4
θi
R4
θgr

4
θi
r4θg )

(σ4
i µ

4||(θ∗g)◦4||) ∀i ∈ C, (4)

where ◦4 indicates Hadamard power of 4, rθi and rθg are
the infimum of θi and θg respectively, Rθi and Rθg are the
supremum of θi and θg respectively.

The proofs of all propositions and theorems of our work are
in Appendix. Proposition 1 suggests that we can deal with
Problem (2) via indirectly generating personalized sparse
models hθ′i parameterized by θ′i = θg◦Mi with personalized
weights Mi and a shared global model θg, which helps to
transfer information across clients and leads to a controllable
optimization. Specifically, denote si be the model sparsity
constraint of client i, Problem (2) can be transformed into
following form:

min
θg,{Mi}i∈C ,

∑
i∈C

pi · E(x,y)∼Di [f(θg ◦Mi;x, y)],

s.t. count(Mi 6= 0)/d ≤ si, ∀i ∈ C.
(5)

1The strong convexity is only used in the motivated proposition
and not involved in the remaining theoretical analysis. We give
more discussion on all the Assumptions in Appx.E.
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Figure 1: The framework of pFedGate that learns to generate sparse personalized models conditioned on clients’ different
data samples and resource limitations. The serial numbers indicate the FL processes at each communication round.

With this re-formulation, Mi can be regarded as sparsity-
enforced gated weights that absorb the diversity of different
local data distribution into the global model, via scaling and
blocking the information flow through the shared model θg .

5. PFL with Conditional Gated Weights
5.1. Overall Framework

Note that for discriminative models (e.g., neural networks),
the personalized models are estimators for conditional distri-
bution PDi(y|x) associated with clients’ local data Di. To
achieve efficient PFL and optimize the objective described
in Equation (5), instead of learning client-level element-wise
weightsMi ∈ Rd, we propose to learn to predict batch-level
block-wise weights M ′i,j = gφi(xi,j), where φi indicates
the parameters of a trainable personalized gating layer, and
gφi is the predictive function conditioned on specific data
batch xi,j and sparsity limitation si. The gating layer φi
brings up benefits in both efficiency and effectiveness: (1)
predicting block-wise weights M ′i,j ∈ RL enables us to use
a lightweight φi for L ∈ N+ sub-blocks of θ with L � d,
and thus gain much smaller computational costs than the
element-wise manner; (2) predicting batch-wise weights can
estimate the conditional probability better than the client-
level manner since each client may have complex local data
distribution mixed by different classes, e.g., using different
sparse models to classify dog and bird can achieve better
performance than using the same one. We empirically verify
the effectiveness of these choices in Section 7.4.

Based on the introduced gating layer, we establish an effi-
cient PFL framework in server-client setting as shown in

Figure 1. To enable benefits from each other, all clients
share the same global model θg that is downloaded from
server. Each client i ∈ C has a private, lightweight and learn-
able gating layer φi, which is trained from local data in a
differentiable manner, and learns to achieve fine-grained per-
sonalized model-adaptation θ

′

i,j = θg ~M ′i,j=θg ~ gφi(xi,j)
given different data batches, where ~ indicates block-wise
production of θ. To handle diverse resource-limited scenar-
ios, φi ensures that the personalized adapted model θ

′

i,j has
required sparsity not larger than si. Moreover, the sparsity
speeds up the training and inference of local models, as
well as the communication via uploading the sparse model
updates (more discussion are in Sec.6.3 and Appx. F).

5.2. Adaptive Gating Layer

5.2.1. LAYER ARCHITECTURE

We adopt a simple two-path sandwich architecture for the
gating layer as shown in the left part of Figure 2. One path
predicts the block-wise gated weights M that may violate
the hard sparsity constraints, and the other path predicts the
block-wise importance scores that are used to adjust M into
a sparse oneM ′ such that the final sparse model satisfies the
hard limitation (we introduce the adjustment later). Let the
number of sub-blocks of θg be L and the dimension of flat-
tened input feature be dX , i.e., x ∈ RdX . The middle two
fully connected layers have the same size and each of them
has (dX ·L) parameters. Here the switchable normalization
(Luo et al., 2019) is used to handle batched data samples
and different input types via learning mixture of batch norm,
instance norm and layer norm with negligible additional
number of trainable parameters. Furthermore, the personal-
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Figure 2: The sparse model-adaptation via gating layer.

ized normalization parameters within client-distinct gating
layers enable our model-adaptation to absorb different fea-
ture distributions (similar empirical evidence is shown by Li
et al. (2021d)). The final batch normalization and sigmoid
activation are used to stabilize the optimization of θg and
{φi} by bounding M ′ and thus the scaling degrees on θg’s
parameters (recall that the upper bound in Proposition 1
is dependent on the infimum and supremum of parameters
after scaling). In total, the gating layer learns and predicts
the sparse gated weights M ′ = gφ(x) = g(φ; x) given spe-
cific data batch x where g : RdX 7→ RL, with a lightweight
parameter size dφ = 2dXL that is usually much smaller
than the size of model θg. We show the effectiveness and
necessity of these adopted components in Section 7.4.

5.2.2. OPERATOR-TYPE-FREE BLOCK SPLITTING

There are many alternatives to split a model into certain sub-
blocks, e.g., a convolutional operator can be split channel-
wise or filter-wise and an attention operator can be split
head-wise. Our gating layer is decoupled with specific
block splitting manners and thus can easily support users’
various splitting preferences. Besides, we propose a gen-
eral operator-type-free splitting manner by default to en-
hance the usability of our approach as illustrated in the
right part of Figure 2. Denote B ∈ N+ as a given block
split factor, and denote dl as the dimension of a flattened
vector that parameterizes the given learnable operator. We
group the vector’s first bdl · sminc elements as the first
sub-block, and equally split the remaining elements into
(B − 1) sub-blocks (the last sub-block may has fewer size
than b(dl · (1− smin)/(B − 1)c). Here B provides flexible
splitting granularity, smin ∈ (0, si] indicates a pre-defined
minimal sparsity factor and the predicted gated weights for
the first sub-block is enforced to be non-zero to avoid cut-
ting information flow through this operator. The proposed

splitting is simple to implement but effective for PFL as
shown in our empirical evaluations.

5.2.3. SPARSE GATED WEIGHTS

To ensure an equal or smaller sparsity of adapted model than
the limitation si, we propose to leverage the predicted block
importanceG to adjust the predicted gated weightsM into a
sparse one M ′. Specifically, denote W ∈ ZL be the param-
eter size look-up table of L sub-blocks, we transform M ′ =
MI∗ where I∗ ∈ {0, 1}L is binary index and a solution of
the following knapsack problem that maximizes total block
importance values while satisfying sparsity constraint:

max
I

I ·G, s.t. |I ·W |/d ≤ si. (6)

In practice, to enable gradient-based optimization of gating
layer, we leverage the straight-through trick (Hubara et al.,
2016) via differentiable G in backward pass. In Appx.A, we
summarize the overall algorithm and present more details
about the gradient flows through the gating layer.

6. Algorithm Analysis
6.1. Generalization

Following the parameter-sharing analysis from Baxter
(2000) and the generalization analysis from Shamsian et al.
(2021), here we give the generalization guarantee of our
sparse model. Based on the notations used in previous sec-
tions, let L̂(θg, φi) denote the empirical loss of the sparse

model in client i, and L̂(θg, φi) , 1
|Si|
∑

(x,y)∈Si f
((
θg ~

gφi(x)
)
;x, y

)
. The expected loss is denoted as L(θg, φi) ,

E(x,y)∼Dif
((
θg ~ gφi(x)

)
;x, y

)
.

Assumption 2. The parameters of global model and the
gating layer can be bounded in a ball with a radius of
R. The following Lipschitz conditions hold: |f(θ;x, y) −
f(θ′;x, y)| ≤ Lf ||θg − θ

′ ||, ||h(θi;x) − h(θ
′

i;x)|| ≤
Lh||θi − θ

′

i|| and ||g(φi;x) − g(φ
′

i;x)|| ≤ Lg||φi − φ
′

i||,
where h(θi; ·) is the sparse model parameterized by θi and
g(φi; ·) indicates the gating layer parameterized by φi.

Let the parameter spaces of the sparse model and gating
layer be of size d and dφ, separately. With the above as-
sumption, we have the following theorem regarding the
generalization error bound.

Theorem 1. Under Assumption 2, with probability at
least 1 − δ, there exist Ñ = O( d

|C|ε2 log
RLfLh(RLg+si)

ε

+
dφ
ε2 log

RLfLh(RLg+si)
ε − log δ

|C|ε2 ) such that for all θg, φi,

|L(θg, φi) − L̂(θg, φi)| ≤ ε when the number of client i’s
local data samples is greater than Ñ .

Theorem 1 indicates the generalization depends on the size
of the global model (i.e., d) reduced by the number of clients
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|C| (the first term), as the global model is shared by all
clients. It also depends on the size of the gating layers
(the second term), and it is not reduced by |C| since each
client has its own personalized parameters. Besides, the
generalization is also affected by the Lipschitz constants of
the global model, sparse model, and the gating layer, as they
together constrain the parameter space that our method can
search. Specifically, as the sparsity si decreases, the smaller
the Ñ , and the better the generalization. This is also to
some extent a reflection of Ockham’s Razor in our approach.
There is similar corroboration in other scenarios, such as the
positive effect of the sparsity regularity on generalization
ability (Maurer & Pontil, 2012).

6.2. Convergence

Under the following assumptions that are commonly used
in convergence analysis of many FL works (Kairouz
et al., 2021) (more discussion about the Assumptions are
in Appx.E), we can see that the global model updates
{∆θtg,i}i∈Cs become arbitrarily small, meanwhile the learn-
able parameters of pFedGate (both θg and gating layers
{φi}i∈C) converge to stationary points with comparable
convergence rate to many existing works.

Assumption 3. (Smoothness) For all clients i ∈ C,
(x, y) ∈ Di and all possible θg, the function f(θg;x, y) ,
`(hθg (x), y) is twice continuously differentiable and L-
smooth: ||∇f(θ

′

g;x, y)−∇f(θg;x, y)||2 ≤ L||θ′g − θg||.
Assumption 4. (Bounded Output) The function f is
bounded below by f∗ ∈ R.

Assumption 5. (Bounded variance) For client i ∈ C and all
possible θg , given data sample (x, y) drawn from local data
Si, the local gradient estimator∇θ`(hθg (x), y) is unbiased
and has bounded variance σ2.
Theorem 2. Under Assumptions 1–5, if clients use SGD
as local optimizer with learning rate η, there exist a large
enough number of communication rounds T

′
, such that

pFedGate converges with η = η0√
T ′

:

1

T ′

T
′∑

t=1

E
∥∥∥∇θf((θtg ~ gφti (x)

)
;x, y

)∥∥∥2 ≤ O( 1√
T ′

)
, ∀i ∈ C,

(7)
where the expectation is over the random samples and O(·)
hides polylogarithmic factors.

6.3. Space-Time Complexity

We briefly summarize the efficiency of pFedGate in
terms of space-time costs. With the structured block
sparsity (Sec.5.2.2), the training and inference cost of
pFedGate is O

(
d(si+sφi)

)
for client i at each round,

where the model sparsity si and relative sparsity of gat-
ing layer sφi=count(φi 6=0)/d are usually small and lead

to (si+sφi) < 1. By contrast, the computation cost of Fe-
dAvg and several SOTA PFL methods is at least O(d). The
introduced sparsity provides great potential for boosting
computation efficiency. For the communication, the upload
parameter number of pFedGate isO(qid) that can be smaller
than the one of baselines,O(d). The qi=count(∆θi 6= 0)/d
indicates the ratio of non-zero model updates, which de-
pends on si and local samples trained in the round. In
Appx.F, we provide detailed discussions to show superiority
of pFedGate over several SOTA competitors.

7. Experiments
7.1. Experimental Settings

We adopt four widely used FL datasets in our experiments:
EMNIST (Cohen et al., 2017), FEMNIST (Caldas et al.,
2018), CIFAR10 and CIFAR100 (Krizhevsky, 2009). They
are partitioned into several sub-datasets to simulate the local
dataset for a client, and each of them is randomly split into
train/val/test datasets with ratio 6:2:2. In the experiments,
the data partition follows the heterogeneous settings adopted
by Marfoq et al. (2021); Dinh et al. (2020b). For baselines,
we choose the classic FedAvg (McMahan et al., 2017) and
FedAvg with fine-tuning (FedAvg-FT), and as well as several
SOTA PFL methods, including pFedMe (Dinh et al., 2020b),
LG-FedAvg (Liang et al., 2020), Ditto (Li et al., 2021c)
and FedEM (Marfoq et al., 2021). In addition, we consider
several SOTA PFL methods that also improve efficiency
via shared model representations (FedRep (Collins et al.,
2021)), binary quantization (FedMask (Li et al., 2021a)),
and sparse sub-models (HeteroFL (Diao et al., 2021)). Due
to limited space, please refer to Appx.H for more details
about the datasets, models and baselines.

7.2. Overall Performance

Clients’ Average Performance. We first examine the over-
all performance by evaluating the accuracy on local test
set of each client, and averaging the results of all clients
with weights proportional to their local dataset sizes. The
detailed overall performance is shown in Table 1, where
s̄′ indicates the average of finally achieved sparsity across
all clients (our block-wise operation may lead to s̄′ ≤ s).
We can see that pFedGate achieves better accuracy (aver-
aged 3.1% to 4.53% accuracy improvements) and smaller
sparsity even with s=0.3 at the same time. Compared with
FedEM, the baseline with best accuracy, pFedGate doesn’t
have the heavy storage burden, since FedEM needs to store
multiple (3) global models in the client. These observations
demonstrate the effectiveness and efficiency of the proposed
method. Note that compared to the SOTA efficient method
HeteroFL, our method achieves better accuracy while with
smaller sparsity (0.25 v.s. 0.55). When s=1, we achieve
the best performance without sparsity constraints, verify-
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Table 1: Accuracy comparison on widely-adopted FL datasets. Acc (%) and

(

Acc (%) indicate the average accuracy of all
clients and accuracy of the bottom decile clients respectively. s̄′ indicates the average of finally achieved sparsity across all
clients. Bold and underlined numbers indicate the best and second-best results respectively.

EMNIST FEMNIST CIFAR10 CIFAR100 Average
Acc

(

Acc Acc

(

Acc Acc

(

Acc Acc

(

Acc Acc

(

Acc

Local 71.91 64.28 71.12 57.93 61.91 53.71 26.95 21.13 57.97 49.26
FedAvg 82.54 75.07 76.51 60.82 68.33 60.22 35.21 29.82 65.65 56.48
FedAvg-FT 83.19 76.83 78.43 64.22 69.91 61.55 37.15 30.91 67.17 58.38
pFedMe 83.29 76.48 75.29 57.63 70.29 62.13 36.14 30.13 66.25 56.59
LG-FedAvg 83.25 76.14 75.13 57.62 69.54 61.86 36.72 30.51 66.16 56.53
Ditto 82.75 78.12 79.29 63.24 73.14 62.59 37.32 30.11 68.13 58.52
FedEM 83.41 76.59 80.12 64.81 72.43 62.88 38.28 31.04 68.56 58.83

FedRep 82.42 77.71 79.17 62.89 72.77 63.44 36.68 30.51 67.76 58.64
FedMask, s̄′=0.5 81.95 77.26 78.69 62.18 72.43 62.88 36.21 30.13 67.32 58.11
HeteroFL, s̄′=0.55 85.64 77.76 77.22 59.13 70.97 63.64 37.01 31.27 67.71 57.95

pFedGate, s=1 87.11 81.43 87.32 77.14 75.18 66.67 42.01 35.03 72.91 65.07
s=0.5, s̄′=0.43 87.28 81.15 86.31 75.68 74.07 64.21 40.07 32.38 71.93 63.36
s=0.3, s̄′=0.25 87.09 82.52 86.75 76.47 73.65 64.39 39.53 31.63 71.76 63.75

ing that the batch-level block-wise adaptation has a strong
ability to achieve personalization. When s <1, we still gain
comparable performance with s=1, providing evidence that
there exist well-performed sparse models and they can be
effectively learned by our approach.

Individual Client Performance. We then examine whether
pFedGate improved the average performance by sacrificing
the performance of some clients. In Table 1, we mark the ac-
curacy of bottom decile local models

(

Acc as the b|C|/10c)-
th worst accuracy (following Marfoq et al. (2021), we ne-
glect the particularly noisy results from clients with worse
accuracy due to their very small local data sizes). We find
that pFedGate also gains significant

(

Acc improvement (av-
eraged 4.92% to 6.24% than FedEM). We plot the client-
wise accuracy difference between our method with s = 0.5
and the strongest baseline, FedEM in Figure 3, in which
pFedGate significantly improves most clients compared to
the strongest baseline. The results in Table 1 and Figure 3
show that pFedGate not only improves the average accuracy
and efficiency, but also fairly improves the individual client
performance by learning to generate personalized models
with adaptive gating layers.

7.3. Personalization Study

We propose to learn personalized gating layers [φi] that
estimate the heterogeneous data distribution with sparse
model-adaption. To investigate the level of personalization
achieved by pFedGate, we conduct experiments on another
CIFAR10 non-i.i.d. partition with 10 clients and pathologi-
cal splitting (McMahan et al., 2017) that sorts the data by
labels and assigns to clients with equal-sized shards.

We do hierarchical clustering for the parameters of learned

gating layers [φi] with Ward’s method (Ward Jr, 1963) and
euclidean distance. We illustrate the results in Figure 4
when the models of clients converge with s=0.3 and achieve
good performance (Acc=89.21%), where we mark the lo-
cal label categories of clients and common label categories
after merging in red numbers. Interestingly, we can see
that clients learn gating layers with smaller parameter dis-
tances along with they share more similarities in label cate-
gories. This indicates that pFedGate not only can achieve
good client-distinct personalization, but also implicitly learn
group-wise personalization with a strong sparsity constraint,
which could be beneficial to applications where there are
inherent partitions among clients.

7.4. Ablation Study

Choices of Gating Layer. To gain further insight into
our method, we ablate the gating layer w.r.t. its switchable
norm layer (pre-norm) and batch norm layer (post-norm)
within the sandwich structure and the sigmoid activation
that bounds the gated weights. We also change the batch-
wise adaption into client-wise manner by feeding the input
feature mean-pooled over all local training data samples of
each client. We show the results in Table 2 with s=0.5.

We find that the two normalization layers improve the con-
vergence speed. Besides, pre-norm has a larger impact on
performance than post-norm since it helps to handle the het-
erogeneous feature distribution. The sigmoid significantly
impacts both the convergence and accuracy, showing the
effectiveness of gated weights bounding operation, which
restricts the dissimilarity level between the personalized
model and global model, and in turn helps to learn a global
model suitable for different clients. Compared to batch-
level manner, although client-wise adaption achieves a faster
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Figure 3: The client-wise accuracy differ-
ence between pFedGate and FedEM on
CIFAR10 dataset.

个性化-层级聚类
• CIFAR10, 10 clients

• by client mask vector

Client 3 Client 5       Client 1      Client 4     Client 0       Client 7     Client 9     Client 2      Client 6 Client 8
Y: [7, 8 ,9]      Y: [7, 8]        Y: [1, 2]     Y: [0, 1, 9]     Y: [0, 2]      Y: [3, 4, 5]       Y: [3, 4]      Y: [5, 6]       Y: [5, 6, 9]         Y: [2, 3, 6, 7]

Y: [7, 8 ,9]

Y: [0, 1, 2, 9]

Y: [3, 4, 5]

Y: [5, 6, 9]

Y: [2, 3, 5, 6, 7, 9]
Y: [0, 1, 2, 9]

Figure 4: The hierarchical clustering result for parameters of clients’ gating
layers on CIFAR-10 with 10-clients partition.

Table 2: Average accuracy and round to achieve 0.8 · Acc
accuracy (T0.8) normalized by standard pFedGate.

EMNIST CIFAR100
Acc T0.8 Acc T0.8

pFedGate, s=0.5 87.28 1 39.72 1

w/o pre-norm 86.25 1.13 38.32 1.24
w/o post-norm 87.14 1.10 39.67 1.43
w/o sigmoid 83.55 1.85 31.29 1.93
client-wise adaptation 84.83 0.74 33.52 0.86

s
Figure 5: The accuracy on EMNIST when varying s.

training, it pays cost of significant accuracy drop due to the
coarser-grained modeling of conditional distribution of local
data and smaller parameter space could be explored under
sparsity constraints. In a nutshell, the ablation results verify
effectiveness and necessity of our choices in gating layer.

Effect of s. We further study the effect of the sparsity factor
s by varying s from 1 to 0.1 on EMNIST dataset and illus-
trate the results in Figure 5, in which “[0.5, 0.1]” indicates
that we randomly divide all clients into two equal-sized
parts and set s to be 0.5 and 0.1 for these two parts respec-
tively. We can see that our method is robust to keep a good
performance when adopting not very small sparsity degrees.
Another observation is that the performance variance in-
creases as s decreases. Besides, our method still performs
well in a sparsity-mixed setting, verifying the robustness of
our method again.

7.5. Overview of More Experiments in Appendix

Due to the space limitation, we provide further experiments
and analysis in Appendix in terms of

• Generalization: In Appx.I.1, we present additional results
of pFedGate for the un-seen clients that haven’t partici-
pated in the FL training stage (Diao et al., 2021; Marfoq
et al., 2021; Yuan et al., 2022), in which case pFedGate
achieves better performance than baselines since it only
needs to train the personalized lightweight gating layers
with a small number of parameters.

• Robustness: In Appx.I.2, we conduct experiments in par-
tial clients participation case with sampling technique
to further verify the effectiveness and robustness of
pFedGate in practical FL scenarios.

• Convergence: In Appx.I.3, we show that pFedGate can
achieve effective optimization, which supports the Theo-
rem 2 and further verifies the efficiency of pFedGate.

• Efficiency: In Appx.I.4, we demonstrate that pFedGate
can effectively reduce the training time and memory cost.

• Ablation Study: In Appx.I.5, we study the effect of s w.r.t.
global-local model gap, FL communication frequency and
data heterogeneity degree. In Appx.I.6, we vary the block
splitting factor B of pFedGate and make more detailed
comparison to FedMask (Li et al., 2021a).

8. Conclusion
Existing personalized Federated Learning (PFL) methods
usually focus on the heterogeneity of local data distribution
only and pay additional computation and communication
costs. In this paper, we explore the organic combination of
model compression and PFL by adaptively generating differ-
ent sparse local models at a fine-grained batch level, which
gains double benefit of personalization performance and
efficiency. Theoretical analyses are provided w.r.t. general-
ization, convergence and space-time complexity. Extensive
experiments are conducted to verify the effectiveness, effi-
ciency and robustness of the proposed method in various
benchmarks and scenarios. We demonstrate the feasibility
of obtaining superior accuracy and efficiency simultane-
ously for PFL, and believe this work can enlighten more
studies on efficient and practical PFL.
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Inequalities. Cambridge university press, 1952.

He, C., Annavaram, M., and Avestimehr, S. Group knowl-
edge transfer: Federated learning of large cnns at the
edge. NeurIPS, 33, 2020.

Hong, J., Zhu, Z., Yu, S., Wang, Z., Dodge, H., and Zhou, J.
Federated adversarial debiasing for fair and transferable
representations. In KDD, 2021.

Hong, J., Wang, H., Wang, Z., and Zhou, J. Efficient split-
mix federated learning for on-demand and in-situ cus-
tomization. In ICLR, 2022.

Huang, T., Liu, S., Li, S., He, F., Lin, W., and Tao, D.
Achieving personalized federated learning with sparse
local models. ArXiv, abs/2201.11380, 2022.

Huang, Y., Chu, L., Zhou, Z., Wang, L., Liu, J., Pei, J., and
Zhang, Y. Personalized cross-silo federated learning on
non-iid data. In AAAI, volume 35, pp. 7865–7873, 2021.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. NeurIPS, 29,
2016.
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Appendices for the Submission: Efficient
Personalized Federated Learning via Sparse
Model-Adaptation
We provide more details and further experiments about our
work in the appendices:

• Sec.A: the summarized algorithm of the proposed
method.

• Proofs: the full proof of Proposition 1 (Sec.B), The-
orem 1 (Sec.C), Theorem 2, and (Sec.D). The discus-
sions on the adopted assumptions are also presented
in Sec.E.

• Sec.F: the detailed discussion about the space-time
complexity comparing with other FL methods.

• Sec.G: the detailed comparison and discussion about
more related works.

• Sec.H: the implementation details of experiments
such as datasets, baselines, models, hyper-parameters
and sparse model aggregation procedure of pFedGate.

• Sec.I: further experimental results including Sec.I.1,
the performance in novel client participation case;
Sec.I.2, the performance in partial clients participa-
tion case; Sec.I.3, the convergence study; Sec.I.4, the
efficiency study; Sec.I.5, the effect of s w.r.t. global-
local model gap, FL communication frequency and
data heterogeneity degree; and Sec.I.6, the model com-
pression manner study, in which we compare pFedGate
to the SOTA binary quantization method FedMask (Li
et al., 2021a).

A. The Algorithm of the proposed pFedGate
method

We summarize the overall algorithm in Algorithm 1. Be-
sides, we present more details about (1) the gradients flow
via the gating layer, which contains a knapsack solver; and
(2) the global model aggregation.

Differentiability. We leverage the straight-through trick
(Hubara et al., 2016) to make the combination of the two
flows predicted by the gating layer (red G and blue M in
Figure 2) still differentiable. Recall that the combination is
M ′ = M · I∗ where I∗ is a binary index and a solution to
the knapsack problem (Section 5.2). The “straight-through”
(ST) here means that we build such a computation graph, in
which we only use binary variable I∗ in the forward pass
stage, while replace I∗ into the differentiable variable G in
backward gradient propagation. Specifically, this can be
implemented by the following demonstrative PyTorch code:
I∗ST = I∗ - G.detach() + G. In this way, the tensor I∗ST

Algorithm 1: Efficient Personalized FL with pFedGate

Input: T , ηg , η, θ0g , {φ0i }i∈C , smin, {si}i∈C
1 for t = 1, · · · , T do
2 Server sends θt−1g to clients Cs sampled from C
3 for client i ∈ Cs in parallel do
4 for data batch (x, y) ∈ Si do
5 Get sparse gated weight: M ′i = g(φt−1i ; x)
6 Do personalized model-adaption:

θ
′

i = θt−1g ~M ′i
7 Update global model and local gating layer:

θtg = θt−1g − ηg(∇θf(θ
′

i; x, y))

8 φti = φt−1i − η(∇φθ
′

i∇θf(θ
′

i; x, y))

9 Upload sparse ∆θtg,i := θtg − θt−1g

10 Server updates global model:
θtg = AGGREGATE

(
θt−1g , {∆θtg,i}i∈Cs

)
11 return θg , {φi}i∈C

and M are both differentiable and can be used to pass the
gradient flow via their combination tensor M ′ = I∗ST ∗M
and the following adapted tensor of the sparse model θ

′

i =
θt−1g ~M ′i . And thus we can train the personalized model
and the gating layer as Algorithm 1, lines 6 and 7 shown.

Global Model Aggregation. We present more details about
the global model aggregation of pFedGate. After local train-
ing, the client only uploads the updates of the parameters
in the global model that are selected to form the client’s
local model. In other words, the client uploads the non-
zero parameters updates with their corresponding index in
the global model. The server then aggregates the received
model updates according to their index.

Considering the following toy example: there are four
clients, and the global model has a total of three param-
eter blocks. Each client uploads a dictionary whose key
denotes the index and the value denotes the corresponding
parameter updates.

• Client 1: 0: δ0, 2: δ2;

• Client 2: 1: δ0, 2: δ2;

• Client 3: 0: δ0, 1: δ2;

• Client 4: 0: δ0, 1: δ0, 2: δ2.

After receiving the above updates, the server aggregates
the parameter updates with index 0 by weighted averaging
the δ0s from clients 1, 3, and 4. The other parameters are
aggregated similarly.
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B. Proof of Proposition 1
Since f is µ-strongly convex, by definition we have

f(θ′) ≥ f(θ)+∇θf(θ)T (θ′−θ)+
µ

2
‖θ′−θ‖2, ∀θ, θ′. (8)

We have f ′(θ) = f(θ) − µ
2 ||θ||

2 is also convex due to the
first order condition of f with Equation (8). Considering
the monotone gradient condition for convexity of f ′, we get

(∇θf(θ)−∇θf(θ′))T (θ− θ′) ≥ µ‖θ− θ′‖2, ∀θ, θ′. (9)

Applying Cauchy-Schwartz inequality on Equation (9), we
get

‖∇θf(θ)−∇θf(θ′)‖‖θ − θ′‖
≥ (∇θf(θ)−∇θf(θ′)T (θ − θ′)
≥ µ‖θ − θ′‖2.

(10)

Dividing ‖θ − θ′‖ on both sides of Equation (10), we get

‖θ − θ′‖ ≤ ‖∇θf(θ)−∇θf(θ′)‖/µ, ∀θ, θ′. (11)

Under Assumption 1, for all (θ∗i , θ
∗
g) pairs with Equation

(11), we have

‖(M∗i − 1)θ∗g‖2 ≤ ·
σ2
i

µ2
, ∀i ∈ C. (12)

Using the reversed Cauchy-Schwarz inequality (Hardy et al.,
1952), we have

Ai‖(M∗i − 1) ◦ θ∗g‖ ≥
√
‖(M∗i − 1)◦4‖‖(θ∗g)◦4‖, (13)

where ◦ indicates element-wise multiplication, and ◦4 in-

dicates Hadamard power of 4, Ai = 1
4

(R2
θi
R2
θg

+r2θi
r2θg )

2

R2
θi
R2
θg
r2θi

r2θg
is

a positive constant and ≤ 1
4

R2
θi
R2
θg

r2θi
r2θg

, rθi and rθg are the

infimum of θi and θg respectively, Rθi and Rθg are the
supremum of θi and θg respectively.

Combining Equation (12) and Equation (13), we get the
upper bound in Propostion 1 and finish the proof.

C. Proof of Theorem 1
Let Hn denote the function space with its elements
parametrized by θg, φ1, · · · , φn and the distance metric
is defined as:

d((θg, φ1, · · · , φn)− (θ
′

g, φ
′

1, · · · , φ
′

n))

=
1

n
Ex,y∼Di

[∣∣∣∑(f(θg, φi;x, y)−
∑

f(θ
′

g, φ
′

i;x, y)
∣∣∣] ,

(14)

With the Lipshitz conditions in Assumption 2, we have:

d((θg, φ1, · · · , φn)− (θ
′

g, φ
′

1, · · · , φ
′

n))

≤
∑
i

1

n
Ex,y∼Di

[
`(hθg,φi(x), y)− `(hθ′g,φ′i(x), y)

]
≤Lf ||hθg,φi − hθ′g,φ′i ||

=Lf ||hs(θi)− hs(θ
′

i)||

≤LfLh||θgMi − θ
′

gM
′

i || (Lipshitz condition)

≤LfLh||θgMi − θgM
′

i + θgM
′

i − θ
′

gM
′

i ||

≤LfLh
[
||θg|| · ||Mi −M

′

i ||+ ||M
′

i || · ||θg − θ
′

g||
]

≤LfLh
[
R||Mi −M

′

i ||+ si||θg − θ
′

g||
]

(Assumption 2)

≤LfLh
[
R||g(φi)− g(φ

′

i)||+ si||θg − θ
′

g||
]

≤LfLh
[
RLg||φi − φ

′

i||+ si||θg − θ
′

g||
]
, (Lipshitz condition)

(15)
where R is radius of the ball that can bound the param-
eters of global model and the gating layer (mentioned
in Assumption 2). We can get an ε-covering in metric
d((θg, φ1, · · · , φn)− (θ

′

g, φ
′

1, · · · , φ
′

n)) if we select a cov-
ering of in the parameter space with both ||φi − φ

′

i|| and
||θg − θ

′

g|| equal to ε
LfLg(RLg+si)

. Therefore, the covering

number of H|C|, denoted as B(ε,H|C|) is: log(B(ε,H|C|) =

O
(

(|C|dφ + d) log
RLfLh(RLg+si)

ε

)
.

According to (Baxter, 2000; Shamsian et al., 2021),
there exit Ñ and Ñ = O

(
1
nε2 log B(ε,H

|C|)
δ

)
=

O
(

d
|C|ε2 log

RLfLh(RLg+si)
ε +

dφ
ε2 log

RLfLh(RLg+si)
ε − log δ

|C|ε2

)
.

D. Proof of Theorem 2
We note that (Marfoq et al., 2021) extends the surrogate op-
timization into the FL setting and provides convergence
results for the algorithms which approximate the target
objective functions using first-order surrogate or partial
first-order surrogate functions. For simplicity, we use two
more compact notations for all the learnable parameters
introduced in our formulation as ~vM ′ , {Mi}i∈C and
~vM ′ ,φ , {M ′

i = g(φi;x)}i∈C,x∈Xi . Here we prove that
our method described in Algorithm 1 can be regarded as to
optimize the objective function F (θg, ~vM ′ ) in Equation (5)
with another partial first-order surrogate function, and the
convergence results from (Marfoq et al., 2021) can be ap-
plied into our method. We first recap the formal definition
of partial first-order surrogate:

Definition 1 (Partial first-order surrogate (Marfoq et al.,
2021)). A functionF ′(~u,~v) : Rdu×V → R is a partial-first-
order surrogate of F (~u,~v) wrt ~u near (~u0, ~v0) ∈ Rdu × V
when the following conditions are satisfied:
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1. F ′(~u,~v) ≥ F (~u,~v) for all ~u ∈ Rdu and ~v ∈ V;

2. e(~u,~v) , F ′(~u,~v) − F (~u,~v) is differentiable and
L-smooth with respect to ~u. Moreover, we have
e(~u0, ~v0) = 0 and ∇~ue(~u0, ~v0) = 0.

3. F ′(~u,~v0)−F ′(~u,~v) = dV (~v0, ~v) for all ~u ∈ Rdu and
~v ∈ arg min~v′∈V F

′(~u,~v′), where dV is non-negative
and dV(~v,~v′) = 0 ⇐⇒ ~v = ~v′.

Definition 1 indicates that in the partial parameter set V ,
F ′ is majorant to F and the smoothness is satisfied in the
neighborhood of a given point.

Denote F ′i (θg, ~vM ′,φ) as the transformed local objective
function depicted by the gating layer φi, i.e., the sparse
gated weight M

′

i is generated by the process described in
Section 5.2 and intermediate objective in Equation (6). We
then restrict our attention from the function F (θg, ~vM ′ )
over all clients into |C| local functions Fi(θg, ~vM ′ ,φ) for
each client i, since the weighted sum operation is con-
vex and holds the partial majorization and smoothness
properties. Consider the iterative version of Fi and
F ′i corresponding to the produce in Algorithm 1. We
have the partial set of gated weights Vφ = {{M ′

i =
g(φti;x)}x∈Xi}φti=argminφ(F

′
i (θ

t−1
g ,~vt−1

φ )) for all t ∈ [T ].

For ~vM ′ ,φti ∈ Vφ, due to the optimality of φti and equal-
ity between ~vM ′ and ~vM ′ ,φti using block-to-element scatter
operation on the gated weights, we have F ′i (θg, ~vM ′ ) =
Fi(θg, ~vM ′ ,φti

) and Condition 1 satisfied.

Note that the difference between F ′i (θg, ~vM ′ ) and
Fi(θg, ~vM ′ ,φ) is differentiable w.r.t. θg since both of them
is differentiable by adopting either element-wise or block-
wise production on θg and the sparse gated weights. With
the smoothness Assumption 3, we have Condition 2 sat-
isfied. For Condition 3, it is clear that if the right state-
ment holds, i.e., ~vM ′ ,φ = ~v′

M ′ ,φ
, then dV(~vM ′ ,φ, ~v

′
M ′ ,φ

) =

F ′i (θg, ~vM ′ ,φ) − F ′i (θg, ~v′M ′ ,φ) = 0 and we have the suffi-
ciency between the two statements of Condition 3 satisfied.
For the necessity between the two statements of Condition
3, we can consider such a set Vφ \(Ṽφ∪Vφ), where Ṽφ indi-
cates the subset of Vφ in which t ∈ [T̃ , T ] if F ′i converges at
step T̃ ≤ T , and Vφ indicates the subset of Vφ in which t ∈
{t′|F ′i (θt−1g , ~vt−1φ ) = F ′i (θ

t′−1
g , ~vt

′−1
φ ),∀t, t′ ∈ [T ], t′ 6=

t}. The new partial subset ensures the optimal ~vM ′ ,φ is
unique by discarding the redundant ~vM ′ ,φ that have the same
F ′i (θg, ~vM ′ ,φ). For such a new partial subset Vφ\(Ṽφ∪Vφ),
we have the necessity between the two statements of Con-
dition 3 satisfied due to the uniqueness of the solutions
of arg min~v′

M
′
,φ
∈Vφ\(Ṽφ∪Vφ) F

′(~θg, ~v
′
M ′ ,φ

), and the Condi-

tion 1 and Condition 2 still hold since Vφ \ (Ṽφ ∪ Vφ) is a
subset of Vφ.

We finally show that the assumptions required by the con-
vergence proof in (Marfoq et al., 2021) hold when using our
approach.

Proposition 2. Under the assumptions 1–5, when taking
the parameter from θg to θφi = θg ~ φi(x) over all i ∈
C, x ∈ Xi, the gradient variance of f and diversity across
clients is also bounded, and the smoothness of f holds.

Proof. Note that using the chain rule, the gradients on φi
can be written as∇φ(f(θφi ;x, y)) = ∇φθφi∇θf(θφi ;x, y)
for (x, y) ∈ Di. For simplicity, we denote
∇φ(f(θφi ;x, y)) , f(θφi). Since we generate sparse
model as θφi = θg ~M

′

i , we have ∇φθφi = M
′

i∇φM
′

i .
The block-wise production operation ~ is differentiable and
f over θg is differentiable according to Assumption 3, thus
f over φi is also differentiable. Then recall that the opti-
mal gated weights are bounded as shown in Proposition 1.
Further, we explicitly bound the sparse gated weight during
FL training process in [0, 1]L using the sigmoid function as
introduced in Section 5.2. We thus can assume that

||∇φθφ′i −∇φθφi || ≤ Lφ||θφ′i − θφi ||
2, (16)

where Lφ is a Lipshitz constant corresponding to our
bounded gated weights. We get

||∇φf(θφ′i)−∇φf(θφi)||2

=||∇φθφ′i∇θf(θφ′i)−∇φθφi∇θf(θφi)||2 (Chain Rule)

=||∇φθφ′i∇θf(θφ′i)−∇φθφ′i∇θf(θφi)+

∇φθφ′i∇θf(θφi)−∇φθφi∇θf(θφi)||2

≤||∇φθφ′i∇θf(θφ′i)−∇φθφ′i∇θf(θφi)||2+

||∇φθφ′i∇θf(θφi)−∇φθφi∇θf(θφi)||2

≤L||∇φθφ′i ||
2||θφ′i − θφi ||

2+

Lφ||∇θf(θφi)||2||θφ′i − θφi ||
2 (Assumption 3 & Eqn. (16))

≤2LLφ||θφ′i − θφi ||
2,

(17)

where the last two lines are because of that Lipschitz implies
bounded gradients. Thus we get that f is (2LLφ)-smooth
using our method. Similar to the proof of smoothness that
leverages the chain rule and bounded Mi, we can generalize
Assumption 1 and Assumption 5 for our method such that
the gradients dissimilarity is bounded and f has bounded
variance characterized by another constant factor.

Now we see that each client can optimize a partial first-order
surrogate function and the necessary assumptions satisfied
with Proposition 2. Applying the Theorem 3.2

′
in (Marfoq

et al., 2021), we conclude the proof of our Theorem 2.
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E. Discussion on the Assumptions
We note that the adopted theoretical assumptions are rea-
sonable, fairly mild in FL scenarios and widely used by
numerous related FL works. To recap, there are five As-
sumptions including assumption 1 (bounded data diversity),
assumption 2 (bounded parameters of the global model and
the gating layer, 3 (smoothness of gradients), 4 (bounded
output of f ) and 5 (bounded gradients variance).

And there are three theoretical results: the motivated Propo-
sition 1 is based on Assumption 1; the Theorem 1 (gener-
ation) is based on Assumption 2, the Theorem 2 (conver-
gence) is based on Assumption 1 ∼ 5.

• About the Assumption 1 (used in Proposition 1 and The-
orem 2), it is necessary to a feasible and effective FL
process, in which there is knowledge that can be shared
and mutually beneficial between the FL participants. We
would like to clarify that we adopt a weaker form than
the similar assumption that is also widely used in related
literature such as (Ma et al., 2022; Dinh et al., 2020b;
Marfoq et al., 2021; Liang et al., 2020). For example, let’s
consider assumption 3 in (Dinh et al., 2020b): “(Bounded
diversity). The variance of local gradients to global gradi-
ent is bounded as 1

N

∑N
i=1 ||∇fi(w)−∇θf(w)||2 ≤ σ2

f .”.
By contrast, our assumption is “There exists a such
that the variance between local and global gradients is
bounded as ||∇θf(θ∗i ) − ∇θf(θ∗g)||2 ≤ σ2

i , ∀i ∈ C”.
Note that our assumption is actually a special case of
their form on sparse model, with our f(θ∗i ) term corre-
sponding to their fi(w) term, and our fi(w) term corre-
sponding to their f(w) term.

• As for the assumption 2 (used in Theorem 1), it is depen-
dent on the hypothesis space of the adopted global model
and gating layer, which are controllable by users. For
example, we can hard clip their model parameters, and
introduce bounded activation functions such as sigmoid
into the gating layer structure as the proposed method
does. A more specific example of this is our implementa-
tion, where we use zero initialization, kaiming-uniform
initialization and (0, 1)-uniform initialization for the pa-
rameters of the adopted global model and gating layer,
which leads to all these init parameters are bounded by
one of 0, 1, or constants calculated by the bounded fan in
(usually determined by the data shape). Then during the
FL courses, we clip the gradients at each backpropagation
step (via torch.nn.utils.clip grad norm ()), resulting in
the bounded parameters and thus the assumption holds.

Besides, assumptions similar to our assumption 2 can be
found in the related PFL works, such as pFedHN (Sham-
sian et al., 2021), in which the authors assume that their
introduced weights of the hyper-network and the embed-
dings are bounded and follow several Lipschitz conditions

with constants different from ours.

• The assumptions 3 and 4 are easily satisfied for most
discriminative models such as neural networks (Tan et al.,
2021; Kairouz et al., 2021; Li et al., 2019). And the
assumption 5 is necessary to a feasible and effective FL
course, in which there is knowledge that can be shared
and mutually beneficial between the FL participants (Ma
et al., 2022; Dinh et al., 2020b; Liang et al., 2020; Marfoq
et al., 2021).

• As for the strong convexity, it is only used only in Propo-
sition 1, which shows the motivation of the proposed
method, and the detailed upper bound of M∗i is not in-
volved in our remaining theoretical analysis (Theorem
2 and Theorem 1). Although many SOTA FL and PFL
works and PFL works with provable analysis are also
based on the strong convexity of loss function, we leave it
as future work to relax the convexity assumption.

F. Space-Time Complexity
We now examine the efficiency of pFedGate described in
Algorithm 1 in terms of computation, communication, and
storage costs. Table 3 summarizes the costs for pFedGate
and competitors including FedAvg and two SOTA personal-
ized FL methods, where the training and inference costs on
clients are considered for each training batch (or each sam-
ple when the batch size is 1), and the communication cost is
considered for each FL round. We also mark some specific
example values when taking the default hyper-parameters
of different methods in Table 3. For comparison simplic-
ity, here we assume that for the computation costs, the
inference and back-propagation times are proportional to
the model size. We hide both constants and polylogarith-
mic factors dependent on the specific model architectures
in O(·), since we compare these methods with the same
model architectures and the same trained data samples. As
for communication and storage, O(·) hides constants and
lower-order factors dependent on specific implementations
such as platforms, storage, and communication protocols.

Computation. Recall that our method is based on struc-
tured block sparsity (Sec.5.2.2), i.e., pFedGate will remove
some blocks and generate a sparse sub-network. It actually
reduces the computation cost in both inference and train-
ing even without sparse matrix computing libraries. The
training and inference cost of pFedGate is O

(
d(si+sφi)

)
for client i at each round.

Communication. In the communication stage, we do not
need to transmit the zero sub-blocks (a detailed example is in
Sec.A) with very light additional meta-data for indexing. As
a result, the pFedGate uploads parameters in O(qid), where
qi = count(∆θi 6= 0)/d indicates the ratio of non-zero
model updates. Specifically, qi can be regarded as the proba-



Efficient Personalized Federated Learning via Sparse Model-Adaptation

Table 3: The proposed pFedGate achieves better computation, communication and storage complexity over state-of-
the-art personalized FL methods. The underlined results indicate the examples when taking default hyper-parameters:
the embedding and hyper-network size dv = 0.25|C|, dh = 100 for pFedHN (Shamsian et al., 2021), the component
model number k = 3 for FedEM (Marfoq et al., 2021), the client sparsity si = 0.5, and relative sparsity of gating layer
sφi = d/2dXL = 0.05 for pFedGate. Besides, for pFedGate, we report the average non-zero parameter ratio qi = 0.67,
which is dependent on datasets and local training steps. Here we report the average value of qi when we run FL experiments
3 times on FEMNIST and CIFAR10 with si = 0.5, local update step as 1 epoch, and batch size as 128.

FedAvg pFedHN FedEM pFedGate

Computation

Train (Client) O(2d) O(2d) O(2kd) O
(
2d(si + sφi)

)
O(6d) O(1.1d)

Infer (Client) O(d) O(d) O(d) O
(
d(si + sφi)

)
O(0.55d)

Train (Server) O(1) O
(
(dv + dh)|Cs|

)
O(1) O(1)

O(6d) O
(
(0.25|C|+100)|Cs|

)
Communication

Client O(d) O(d) O(kd) O(qid)
O(3d) O(0.67d)

Server O(d|Cs|) O(d|Cs|) O(kd|Cs|) O(d|Cs|)
O(3d|Cs|)

Storage

Client (Peak Memory) O(rd) O(r′d) O(krd) O(d+ r′′sφid)

Client (Disk) O(d) O(d) O(kd) O
(
(1 + sφi)d

)
O(3d) O(1.05d)

Server O(d) O(dvdh + dv|C|) O(kd) O(d)
O(25|C|+0.25|C|2) O(3d)

bility that a parameter is finally not masked in the local train-
ing process. We can consider qi =

(
1−

∏|S|
j=1(1− pj)

)
,

where pj indicates the probability that a parameter is not
within the sub-blocks the gating layer predicts to mask when
taking the j-th data batch as input, and |S| indicates the num-
ber of data batches trained in each local FL round. Note
that p1 is equal to the sparsity factor si at client i, and pj
becomes smaller as j increases, due to the fact that the local
data batches usually share some similarities, and the newly
predicted sub-blocks are more likely to be the same as the
sub-blocks have been selected.

Storage. (1) For the peak memory cost on clients, note
that FL requires training on client-side, in addition to the
model parameters, the memory cost in FL training process
also contains the intermediate tensors in both the forward
and the backward propagation phases, whose size depends
on the model architecture, the shape of the inputs, and the
specific implementation (we abstract this factor as r, r′, r′′

for FedAvg, pFedHN and pFedGate respectively in Table 3).
Thus once the model-adaption of pFedGate is completed,
the intermediate tensor involved in the forward and back-
ward processes through the sparse model is correspondingly
smaller based on block sparsity, allowing us to get a lower
peak training memory than compared methods (empirical
results are in Section I.4). (2) For the disk storage, com-
pared FedAvg, the introduced additional storage overhead

of pFedGate is very small as the gating layer structure has a
simple and small structure, whose shape is about the mul-
tiplication of the dimension of the input feature and the
number of the total sub-blocks. For example, the size of gat-
ing layer dφi is only 6.3% of the original model for the CNN
model used on CIFAR-10. We would like to point out that
pFedGate actually has great potential for further storage
savings for multi-task applications. Considering that if we
use one dense original model but learn E distinct gating lay-
ers for different E downstream tasks on a client, the storage
cost will be d+ T ∗ dφi , which has a much smaller model
storage cost than saving multiple distinct local models. It
is promising to extend the current batch-level adaptation to
task-level adaptation to further reduce the storage cost, and
we leave it as future work.

Cross-methods Comparison. From Table 3 we can see
that pFedGate achieves better efficiency than FedAvg in
training, inference, and uploading with negligible additional
storage cost on clients (as marked in red). By contrast, to
achieve good personalization, FedEM introduces more than
one global model and pays larger costs in training, commu-
nication, and storage (as marked in blue). And pFedHN
learns client-wise embedding in the server, which may lead
to a single-point bottleneck for cross-device settings and po-
tentially disclosing personal information. To further verify
the analysis, we present empirical supports in Section I.4.
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G. More Related Work Comparison
Here we present more details about the works related to
our method. QuPeD (Ozkara et al., 2021) combines quan-
tization and knowledge distillation for personalized feder-
ated learning. FedMask (Li et al., 2021a) freezes the local
models during the whole FL process, learns distinct binary
masks for the last several layers of the models, and only
transmits and aggregates the learned masks. Different from
the quantization-based methods, we adopt continuous gated
weights on all sub-blocks of the local model and transmit the
sparse model updates, enabling flexible model size reduc-
tion and high capability to capture the client relationships
via the shared global model.

FedRep (Collins et al., 2021) proposes to upload partial sub-
parameters as shared representation and leave the others
locally trained. HereroFL (Diao et al., 2021) selects dif-
ferent subsets of global model parameters for clients based
on their computational capabilities. Different from these
model-decoupling-based works that use the same param-
eter subset for those clients having the same computation
capability, our method generates different sub-models from
the whole global model with a larger learnable parameter
space to handle heterogeneous data distribution. More im-
portantly, our method differs from these works by adaptively
generating the sparse model weights at a fine-grained batch
level, which achieves a good estimation for the conditional
probability of heterogeneous local data and high accuracy
as shown in our experiments.

FedPNAS (Minh & Carl, 2021) leverages neural architecture
search (NAS) to search suitable sub-networks for clients,
and FedMN (Tianchun et al., 2022) proposes to use routing-
hypernetwork to select personalized sub-blocks. For the
FedPNAS, we differ from it in the target and studied prob-
lem. FedPNAS mainly focuses on improving the person-
alization performance with sufficient hardware resources.
For example, they adopt 5 clients in their experiments that
usually correspond to the cross-silo case. While pFedGate
focuses on the cross-device setting, where the clients’ re-
sources are usually very limited. Compared with FedMN,
the performance of pFedGate is theoretically guaranteed for
both generalization and convergence. While FedMN doesn’t
provide any theoretical analyses for generalization or con-
vergence. Besides, the proposed pFedGate method adopts a
much larger hypotheses space than FedMN. In FedMN, each
modular is either connected or dropped. While pFedGate
doesn’t only decide the connections of the network (con-
nected or dropped), but also scales the weights of the re-
mained blocks simultaneously to improve the personalized
performance.

There are FL works considered sparsity, FedDST (Bibikar
et al., 2022) and ZeroFL (Qiu et al., 2022). However, we
are different from them in several aspects: First, from the

view of the studied problem, both of these two works focus
on non-personalized FL that finds a single global model to
perform well on all clients, while we consider the personal-
ized case to learn client-wise models. Second, both of them
don’t provide any theoretical analyses for generalization or
convergence, while pFedGate performs well with theoretical
guarantees in terms of both generalization and convergence.
Third, from the view of methodology, they are based on
element-wise unstructured sparsity while ours is based on
block-wise structured sparsity, which is easier to gain effi-
ciency benefits in extended implementations. Finally, from
the experimental results, we can see that FedDST works in
sparsity with 0.5 or 0.8 (Figure 3 in their paper) while ours
works in even s=0.1. Another method ZeroFL reported the
results of sparsity 0.1 on CIFAR10 and gained 0.42% accu-
racy improvement compared to vanilla FedAvg (their Table
1, NIID column), while we gained 3.02% improvement
over FedAvg with sparsity 0.1 (our Table 1).

We also compared meta-learning-based PFL methods in-
cluding Per-FedAvg (Fallah et al., 2020) and pFedMe (Dinh
et al., 2020b). Per-FedAvg leverages model agnostic meta-
learning to enable fast local personalized training. How-
ever, it requires computationally expensive second-order
gradients, which challenges real-world applications, espe-
cially with limited system resources. pFedMe improves
Per-FedAvg with faster convergence and smaller computa-
tion complexity. We empirically show that our methods can
achieve better performance than theirs in Table 4.

Besides, knowledge distillation-based methods can also deal
with hardware heterogeneity by allowing different local
models to use different architectures. However, many ex-
isting KD-based FL/PFL works rely on some common ref-
erence object shared among clients, to enable knowledge
alignment between the teacher and student models. For ex-
ample, works (Li & Wang, 2019; Zhu et al., 2021) introduce
additional public data for all clients and perform FL with
the help of the model logits on the public data. It’s worth
noticing that such additional common references may not
always be available in some scenarios. Further, we conduct
empirical comparisons to a known KD-based FL method,
FedMD (Li & Wang, 2019). We list the results on FEM-
NIST and CIFAR-10 in Table 4, where “FedMD, Far-Trans”
indicates a far-transfer case by adopting the CIFAR-10 as
the public dataset for FEMNIST experiment, and adopting
the FEMNIST as the public dataset for CIFAR-10 experi-
ment. The “FedMD, Near-Trans” indicates a near-transfer
case by adopting the EMNIST as the public dataset for FEM-
NIST experiment, and adopting the CIFAR-100 as the public
dataset for CIFAR-10 experiment. We find that pFedGate
still shows superiority in terms of the average/bottom accu-
racy, and robustness when we vary the sparsity for pFedGate
and vary the public dataset for FedMD.
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Table 4: Performance comparison to some baselines in FEM-
NIST and CIFAR-10 datasets.

FEMNIST CIFAR-10
Acc

(

Acc Acc

(

Acc
FedAvg 76.51 60.82 68.33 60.22
Per-FedAvg 77.18 61.42 70.35 60.96
pFedMe 75.29 57.63 70.29 62.13
FedMD, Far-Trans 61.25 51.37 55.28 52.04
FedMD, Near-Trans 75.87 60.29 67.52 59.43
FedEM 80.12 64.81 72.43 62.88
pFedGate, s=1 87.32 77.14 75.18 66.67
pFedGate, s=0.5 86.31 75.68 74.07 64.21
pFedGate, s=0.3 86.76 76.47 73.65 64.39

H. Implementation Details
Datasets. We conduct experiments on several widely
used FL datasets including EMNIST (Cohen et al., 2017)
and FEMNIST (Caldas et al., 2018) for 62-class hand-
written character recognition, and CIFAR10/CIFAR100
(Krizhevsky, 2009) for 10-class/100-class image classifi-
cation. We follow the heterogeneous partition manners used
in (Marfoq et al., 2021; Caldas et al., 2018; Diao et al.,
2021; Fallah et al., 2020): FEMNIST was partitioned by
writers and we generate the other three FL datasets using
Dirichlet allocation of parameter α=0.4. We adopt 10%
sub-samples of EMNIST (81,425 samples) and 15% sub-
samples of FEMNIST (98,671 samples), and allocate the
sub-datasets to 100 and 539 clients for EMNIST and FEM-
NIST respectively. For CIFAR10/CIFAR100 (60,000 sam-
ples), we allocate them to 100/50 clients. All datasets are
randomly split into train/valid/test sets with a ratio 6:2:2.

Baselines and models. We consider the following com-
petitive baselines including SOTA personalized and efficient
FL methods in this work:

• FedAvg (McMahan et al., 2017): the classical FL
method that simply aggregates model updates in a
weighted averaging manner;

• FedAvg-FT: a basic personalized baseline that fine-
tunes the global model with local data before model
local evaluation;

• Local: a naive personalized method that trains models
on local datasets without FL communication;

• pFedMe (Dinh et al., 2020b) decouples the personal-
ized model and global model with Moreau envelops
based regularization;

• LG-FedAvg (Liang et al., 2020) achieves personaliza-
tion with improved communication efficiency;

• Ditto (Li et al., 2021b) is a SOTA PFL method that
introduces a local personalized model for each client,
which is trained with model parameter regularization
according to the global model;

• FedEM (Marfoq et al., 2021) deals with data hetero-
geneity via the mixture of multiple global models. We
use 3 models according to the authors’ default choice;

• FedRep (Marfoq et al., 2021) proposes to improve the
FL performance and communication efficiency via
sharing partial model parameters among FL partici-
pants. Only the low layers of models for feature extrac-
tion are uploaded to the server and aggregated, and the
remaining head parameters are locally trained for per-
sonalization. Following the authors’ sharing manner,
we adopt the last classification layers as local personal-
ized model parameters;

• FedMask (Li et al., 2021a) learns distinct binary masks
for the last several layers of the local models, and
aggregates the masks with an intersection operation.
Following the mask layer choice manner similar to the
authors, in our experiments, the one-shot mask is ap-
plied in the last layer for the adopted 2-layer CNN and
the last 2 layers for the adopted 3-layer CNN respec-
tively;

• HeteroFL (Diao et al., 2021) uses heterogeneous model
architectures for different clients to achieve personal-
ization and improvements in both computational and
communication efficiency. Recall that we can vary
each client’s sparse ratio s to reflect the clients’ re-
source heterogeneity, since the affordable sparse ratio
s can fairly reflect the client’s computation and com-
munication capabilities. Clients with very limited com-
putation and communication resources have to set s
close to 0; On the contrary, clients with sufficient re-
sources can set s close to 1. Here we use the full model
parameters for 10% clients and 50% parameters for the
other 90% clients following the authors’ computation
complexity setting, which leads to an average sparsity
s̄′ = 0.55.

To align with previous works, we use a 2-layer CNN (Reddi
et al., 2021; Marfoq et al., 2021) for EMNIST/FEMNIST,
and two LeNet-based CNNs (Dinh et al., 2020b; Liang et al.,
2020; Shamsian et al., 2021) with different capabilities for
CIFAR10 and CIFAR100. Specifically, the model used for
EMNIST/FEMNIST two convolutional layers with 5 × 5
kernels, max pooling, and two dense layers with a total
of 2,171,786 parameters. The models used for CIFAR10
and CIFAR100 have a LeNet-based structure with an addi-
tional linear classification layer, and a total of 256,830 and
3,537,444 parameters respectively.
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Table 5: The adopted learning rates for pFedGate in all
datasets.

EMNIST FEMNIST CIFAR10 CIFAR100
ηg η ηg η ηg η ηg η

s=1 0.1 0.1 0.1 0.1 0.03 0.05 0.1 1.5
s=0.5 0.1 0.1 0.1 0.05 0.03 1.5 0.03 1.5
s=0.3 0.03 0.5 0.3 0.05 0.03 1.5 0.05 0.5

Platform and Hyper-parameters. We implement all
models with PyTorch, and run experiments on Tesla V100
and NVIDIA GeForce GTX 1080 Ti GPUs. For fair
comparisons, we adopt the same communication rounds
for all methods and search for the optimal configuration
of hyper-parameters using the validation sets. We run
each experiment 3 times with the optimal configurations
and different random seeds, and report the average re-
sults. For each method on each dataset, we use the
SGD optimizer and grid search the learning rate ηg from
[0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5], set the communica-
tion round T = 400, the batch size as 128 and the local up-
date step as 1 epoch. For pFedGate, the learning rate of gat-
ing layer η is searched from [0.01, 0.05, 0.1, 0.3, 0.5, 1, 1.5],
and we set the block size splitting factor B = 5 for all eval-
uated models. For FedAvg-FT, we use the local fine-tuning
step as 1 epoch. For pFedMe, we search its penalization pa-
rameter µ from [0.0001, 0.001, 0.01, 0.1, 1, 10]. For Ditto,
we search its regularization factor from [0.05, 0.1, 0.5, 0.8].
For FedRep, we search its learning rate for the personalized
model from [0.05, 0.005, 0.5, 0.01, 0.1]. For FedEM, we
set its number of global models as 3. We summarize the
adopted learning rates in Table 5.

I. Additional Experiments
I.1. Novel Clients Generalization

To evaluate the generalization of pFedGate for the novel
clients that haven’t participated in the previous FL training
stage, we conduct experiments with similar simulation set-
tings to Diao et al. (2021); Marfoq et al. (2021); Yuan et al.
(2022), where the novel clients only fine-tune the global
model on their local dataset. Specifically, we randomly se-
lect 20% clients as novel clients, and evaluate the selected
and remaining clients separately. The results are summa-
rized in Table 6, where Acc and Ãcc indicate the results of
FL-participated clients and novel clients respectively, and
∆ = Acc− Ãcc indicates the accuracy generalization gap.
The results show that the proposed method pFedGate can
generalize to novel clients well and gain smaller accuracy
gaps than compared methods. For the novel clients, instead
of re-training the over-parameterized global model on (pos-
sibly small amounts of) local data, pFedGate only needs to
train the personalized lightweight gating layers with a small

number of parameters, and thus achieves an efficient and
effective local adaptation.

Table 6: Averaged accuracy when testing on novel clients
that have not participated in the training stage of FL. The
Ãcc indicates the results of novel clients, and ∆ indicates
the generalization gap Acc− Ãcc.

FEMNIST CIFAR10
Acc Ãcc ∆ Acc Ãcc ∆

FedAvg 76.39 74.93 1.46 67.78 66.15 1.63
FedEM 79.21 78.26 0.95 71.92 70.75 1.17

ours, s=1 87.79 87.18 0.61 73.97 73.18 0.79
s=0.5 86.64 86.19 0.45 74.12 73.19 0.93
s=0.3 85.69 85.12 0.57 73.64 72.78 0.86

I.2. Partial Clients Participation

Table 7: Averaged accuracy when randomly sampling 20%
clients at each round. The last two columns indicate the
average drop compared to non-sampled case.

FEMNIST (↑) CIFAR10 (↑) Drop (↓)
Acc

(

Acc Acc

(

Acc Acc

(

Acc

FedAvg 77.45 57.98 66.31 57.96 3.56 2.55
FedEM 78.54 63.37 71.12 60.76 1.45 1.78

ours, s=1 87.86 77.43 74.29 64.11 0.82 1.13
s=0.5 86.72 75.12 74.25 64.36 0.79 0.21
s=0.3 85.78 74.89 73.91 64.38 0.36 0.80

We have seen our method can consistently and simultane-
ously improve the efficiency and model accuracy as Table 1
shows. One can arise such a natural question: when com-
bined with other efficiency improvement techniques such
as client sampling, is pFedGate still effective? Here we run
experiments by uniformly sampling 20% clients without
replacement at each round, and summarize the results in
Table 7. It is observed that compared with baselines having
about 1.45% ∼ 3.56% performance drop, our method still
achieves strong and comparable performance to the non-
sampled case, verifying the effectiveness and robustness of
our proposed method again.

I.3. Convergence Study

We demonstrate the convergence curves of FedAvg, Het-
eroFL with average sparsity rate as 0.55, the strongest base-
line, FedEM, and the proposed pFedGate with different
sparsity rates on EMNIST dataset in Figure 6. We can
see that the proposed method achieves comparable conver-
gence speeds with the baselines, which provides empirical
evidence for the Theorem 2. In addition, to gain further
insights into the proposed method, we plot the histogram
of averaged gating weights of all clients on the CIFAR10
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Table 8: Convergence FL round to achieve 90% highest
accuracy.

EMNIST FEMNIST CIFAR10 CIFAR100
FedAvg 72.3 195.3 253.1 226.9
FedEM 77.4 212.8 265.7 245.1
ours, s=1 54.6 152.9 190.9 183.8

s=0.5 57.9 174.1 219.3 196.5
s=0.3 75.2 214.4 271.8 260.7

dataset in Figure 7. We can see that the sparse pattern be-
comes stable as we train the gating layer with more local
datasets, showing that the proposed method can achieve
effective optimization and converge to certain global points
under distinct personalized local models.

Besides, we summarize the convergence FL round that each
method achieves the 90% of its highest average accuracy
in Table 8, where the values are averaged over three ex-
periments with different random seeds. We observe that
pFedGate gains comparable convergence speed with Fe-
dAvg and FedEM, providing empirical evidence for The-
orem 2. Besides, with the results and discussion of the
single-FL-round and single-client efficiency given in I.4, we
can see that pFedGate is indeed able to achieve significant
accuracy improvements while at the same time improving
system efficiency.

Figure 6: The convergence curves of FedAvg, HereroFL,
pFedGate and the strongest baseline, FedEM on EMNIST.
The pFedGate achieves comparable or even better (s=1)
convergence speeds than baselines.

I.4. Efficiency Comparison

We have seen that pFedGate can achieve good accuracy
with sparse personalization. To examine its efficiency as
we analyzed in Appx.F, we track training time in ms and
peak memory in Mb for one client during one FL round.
The results on the CIFAR-10 dataset with different batch
sizes are listed in Table 9. We can see that pFedGate can
effectively improve the training efficiency and memory cost,
where the results are averaged by the number of trained data

batches. For example, when s=0.3 and bz=128, pFedGate
uses 66% peak memory and 72% training time compared
with FedAvg, meanwhile having 5.32% Acc and 4.17%(

Acc improvements (Table 1). When compared to FedEM
that leverages 3 global models, the efficiency is more sig-
nificantly improved (66% Mem and 28% t) with superior
accuracy (1.22% Acc and 1.51%

(

Acc improvements).

Table 9: Training time t (ms) and peak memory Mem (Mb)
for one FL round. bz indicates the batch size.

bz = 32 bz = 128 bz = 512
Mem t Mem t Mem t

FedAvg 26.0 3.07 27.1 3.89 31.8 4.51
FedEM 29.4 9.02 31.2 11.38 36.3 13.11
ours, s=1 26.8 3.65 27.9 4.09 32.4 4.66
s=0.5 21.0 2.44 22.2 3.21 26.7 3.58
s=0.3 16.9 2.32 18.0 2.81 22.9 3.33

It is worth noting that in addition to the model parameters,
the training process (including the backward propagation
phase) also requires storing the intermediate tensors, whose
size depends on the model architecture, the shape of the
inputs, and the specific implementation. Thus once the
model-adaption is completed, the intermediate tensor in-
volved in the forward and backward processes through the
sparse model is correspondingly smaller based on block
sparsity, allowing us to get a lower training memory peak
and less training time than FedAvg and FedEM. In addition,
we empirically see that pFedGate has a comparable conver-
gence speed to the baselines (Appx I.3), with the results of
the single-FL-round and single-client efficiency given above,
we can see that pFedGate is able to improve accuracy while
at the same time improving system efficiency.

I.5. More Studies for the Effect of s

Global v.s. Local Models. In Section 7.4, we vary the
sparsity factor s from 1 to 0.1 to examine the accuracy
of pFedGate. Here we further compare the accuracy of
both the local (personalized) models and the global (shared)
model. We firstly directly examined the accuracy of the
global model for the same number of FL rounds when the
local model achieved the best performance, and find that
the accuracy of the global model can be very bad as in
the proposed pFedGate method, the global model does not
receive a direct correction signal for the ground truth (but
rather via a sparse adaptation). We thus train the global
model with one more local epoch, then aggregate the trained
one and evaluate it. The results on EMNIST dataset are
listed in Table 10.

Interestingly, we found that pFedGate’s local model consis-
tently achieved better accuracy than the global model, the
accuracy advantage is more significant on bottom accuracy
than on average accuracy. Furthermore, as the sparsity de-
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Round Round

Round Round

Figure 7: The convergence curves of pFedGate in terms of the histogram of averaged gating weights over all clients on the
CIFAR10 dataset.

Table 10: Effect of s when comparing the performance of
global and local (personalized) models on EMNIST dataset.

Local Model Global Model Local-Global Gap
Acc

(

Acc Acc

(

Acc ∆Acc ∆

(

Acc
s=1 87.11 81.43 79.47 71.28 7.64 10.15
s=0.5 87.28 81.15 76.46 66.98 10.82 14.17
s=0.3 87.09 82.52 77.14 66.29 9.95 16.23
s=0.1 83.58 75.14 76.45 66.98 7.13 8.16

creases, the advantage increases (from s =1 to 0.3) and then
decreases (s =0.3 to 0.1). This suggests that introducing
moderate sparsity helps generalization, but at very high spar-
sity our method is at risk of degradation and the degradation
outweighs the benefits of increasing sparsity, requiring fur-
ther enhancement with small. A discussion of the relevant
theoretical intuition is given in Theorem 1.

Communication Frequency and Data Distribution. In
addition, to investigate the effect of s w.r.t. FL character-
istics, we (1) change the local update steps (the smaller
the number of steps, the more frequently the Federation
updates) and (2) change the Dirichlet factor to simulate dif-
ferent Non-IID degrees (the smaller the α, the higher the
heterogeneity of the data). The results on EMNIST with

different local update steps and results on CIFAR-10 with
different αs are listed in Table 11 and Table 12 respectively.

Generally speaking, we can find that pFedGate gains com-
parable performance when the local update step increases
from 1 to 4, but a significant drop when the step becomes 8.
Besides, as the Non-IID degree increases, the accuracy of
pFedGate mostly decreases especially when α=0.01. These
observations suggest that there is still room to improve the
robustness of pFedGate, particularly in terms of how to
effectively aggregate the local models for gaining high ac-
curacy when the local and global models can easily differ
greatly. For example, in the future, we could consider com-
bining asynchronous federal learning (Nguyen et al., 2022)
and more advanced aggregation mechanisms in the model
parameter space (Ainsworth et al., 2022) to allow for larger
variations of the participants’ models.

I.6. Model Compression Manner Study

We gain sparse local models in the proposed framework via
learning personalized gating layers and predicting sparse
gated weights for model sub-blocks. As introduced in Sec-
tion 5.2, we propose a simple and general split manner that
chunks the model parameters into B equal-sized sub-blocks,
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Table 11: Effect of s when changing the FL communication frequency on FEMNIST dataset. The smaller the number of
steps, the more frequently the Federation updates.

Step=1 Step=2 Step=4 Step=8
Acc

(

Acc Acc

(

Acc Acc

(

Acc Acc

(

Acc
pFedGate, s=1 87.11 81.43 86.87 81.21 87.01 81.07 84.28 79.53
s=0.5 87.28 81.15 87.25 80.99 87.09 80.65 84.62 78.45
s=0.3 87.09 82.52 87.48 82.63 86.39 82.08 85.31 80.86
s=0.1 83.58 75.14 83.27 74.81 82.99 74.58 80.75 73.05

Table 12: Effect of s when changing the Dirichelet factor α of Non-IID CIFAR-10 dataset. The smaller the α is, the higher
the heterogeneity of the data.

α=0.4 α=0.2 α=0.1 α=0.01
Acc

(
Acc Acc

(

Acc Acc

(

Acc Acc

(

Acc
pFedGate, s=1 75.18 66.67 74.29 65.71 73.55 65.23 72.63 64.64
s=0.5 74.07 64.21 73.05 63.44 72.55 63.03 71.76 62.02
s=0.3 73.65 64.39 72.58 64.05 71.95 62.83 71.58 62.68
s=0.1 70.26 60.45 69.74 59.56 68.96 59.38 67.45 58.04

where the split factor B provides flexible splitting granular-
ity. Here we study the sparsification technique proposed in
our method by varying the split factor B and comparing it
with a SOTA PFL method FedMask (Li et al., 2021a), that
adopts binary masks to compress the parameters of mod-
els’ last layers. The results are shown in Table 13, where
we examine the FL accuracy by setting B = [2, 5, 10] and
s = [0.3, 0.5].

From Table 13 we have the following observations: Our
method achieves better performance than FedMask in vari-
ous sparsity settings. Besides, when increasing the sparsity
(s = 0.5 to s = 0.3), our method with B = 5 still achieves
good or even better performance (the accuracy change is
+0.248 on average) while FedMask gains large performance
drops (the accuracy change is -1.543 on average). These re-
sults verify the effectiveness of the proposed adaptive sparse
weights prediction again. Note that FedMask freezes the
local models during the whole FL process and only learns
the binary masks for the last several layers of the models.
Instead, we train both the local models and the personal-
ized gating layers, which generate continuous gated weights
to mask some sub-blocks and scale the weights of other
sub-blocks, leading to high capacities for the learnable per-
sonalized models. With a smaller sparsity hyper-parameter
value, the size of the model’s hypothesis space searched by
FedMask (depicted by only the masks for the last several
layers) is much smaller than the one of pFedGate (depicted
by both the whole model and the gating weights for all the
sub-blocks).

As for the impact of B, on the one hand, we can see that too
small B = 2 gains relatively worse results than B = 5 as

there may be insufficient sub-blocks to model the clients’
diversity. On the other hand, the larger B = 10 achieves
similar results to B = 5 while larger performance drop
when increasing sparsity. We empirically found that B = 5
has good robustness and adopt it as the default value in our
experiments.
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Table 13: Averaged accuracy comparison for PFL methods with and without model compression. The numbers in the
parentheses indicate the accuracy difference between sparsity s = 0.5 and s = 0.3 for FedMask and pFedGate.

FEMNIST CIFAR10
Acc

(

Acc Acc

(

Acc

FedAvg 76.51 60.82 68.33 60.22
FedEM 80.12 64.81 72.43 62.88

FedMask s=0.5 78.69 62.18 70.54 61.37
s=0.3 77.41 (−1.28) 60.69 (−1.49) 68.46 (−2.08) 59.05 (−1.32)

pFedGate

B=5 s=0.5 86.31 75.68 74.07 64.21
s=0.3 86.75 (+0.44) 76.47 (+0.79) 73.65 (−0.42) 64.39 (+0.18)

B=2 s=0.5 81.10 71.28 70.81 61.03
s=0.3 80.03 (−1.07) 70.72 (−0.56) 70.65 (−0.16) 60.66 (−0.37)

B=10 s=0.5 85.38 74.91 72.94 63.59
s=0.3 84.67 (−0.71) 75.10 (+0.19) 72.48 (−0.46) 63.58 (−0.11)


