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Abstract—Local differential privacy (LDP) enables private
data sharing and analytics without the need for a trusted data
collector. Error-optimal primitives (for, e.g., estimating means
and item frequencies) under LDP have been well studied. For
analytical tasks such as range queries, however, the best known
error bound is dependent on the domain size of private data,
which is potentially prohibitive. This deficiency is inherent as
LDP protects the same level of indistinguishability between any
pair of private data values for each data downer.

In this paper, we utilize an extension of ε-LDP called Metric-
LDP or E-LDP, where a metric E defines heterogeneous privacy
guarantees for different pairs of private data values and thus
provides a more flexible knob than ε does to relax LDP and
tune utility-privacy trade-offs. We show that, under such privacy
relaxations, for analytical workloads such as linear counting,
multi-dimensional range counting queries, and quantile queries,
we can achieve significant gains in utility. In particular, for
range queries under E-LDP where the metric E is the L1-
distance function scaled by ε, we design mechanisms with errors
independent on the domain sizes; instead, their errors depend
on the metric E, which specifies in what granularity the private
data is protected. We believe that the primitives we design for E-
LDP will be useful in developing mechanisms for other analytical
tasks, and encourage the adoption of LDP in practice.

Full version of this paper at: https://arxiv.org/abs/1909.11778

I. INTRODUCTION

After more than a decade of research and development, differential
privacy (DP) [1] has become the de facto standard for privacy
protection, and is being used or actively explored by major companies
in various data applications and services, e.g., Apple [2], Google
[3], Uber [4], Microsoft [5], and Alibaba [6]. This privacy guarantee
allows releasing aggregate information of the population while pro-
tecting individual’s data. The degree of protection is characterized by
a parameter ε, which is used to tune a trade-off between the level of
privacy protection and the error of data analytics.

Two models of DP have been studied: centralized differential
privacy (CDP) and local differential privacy (LDP). In CDP, a trusted
centralized data curator receives data from data owners and ensures a
differentially private data release to mistrustful data analysts. In LDP,
there is no trusted data curator; each data owner perturbs her data
locally and sends the noisy output (LDP report) to the curator.

Recently, LDP has received a significant amount of attention in
the real-world deployments of DP [3], [5], as it prevents single-point
failures for data breaches and relieves the burden on the data curator
to keep data secure. For primitives such as frequency estimation, a
sufficient number of data owners and their LDP reports (e.g., refer
to lower bounds in [7], [8]) are required to achieve high utility.
In more useful tasks such as range queries, more error has to be
introduced with additional terms that depend on the domain size
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and the dimensionality. Improving the utility for queries on datasets
with large domain sizes and dimensionalities, where the additional
error terms are prohibitive, has been the research focus of LDP
algorithms [9]–[12], to encourage the adoption of LDP.

In many applications, LDP is too strict and not flexible, as not
all pairs of values require the same level of protection. For instance,
when website visits are collected, the website type, e.g., shopping or
video website, is less sensitive than the particular website, YouTube
or Hulu, or video being visited; when a person’s age is collected,
whether s/he is an adult or a kid is less sensitive than the exact year
or month of birth. Such relaxations have been formalized as Blow-
fish [13] and dX -privacy [14] in CDP, and geo-indistinguishability
[15] and Metric-LDP [16] in LDP. In fact, we can show that these
notations are equivalent in terms of how privacy is relaxed.

In this paper, we utilize Metric-LDP [16], which has a metric
function defining different levels of privacy requirements for different
pairs of values. We study how to make the best of such privacy relax-
ations to optimize utility-privacy trade-offs and to achieve provably
significant utility gains for analytical tasks. We first consider the tasks
of linear counting and range counting queries under Metric-LDP. For
multi-dimensional range counting queries and a concrete class of
metric, we introduce a novel mechanism whose error is independent
on the domain sizes of dimensions. It achieves significantly better
utility than the best known ε-LDP algorithms [9] and [6], whose
error is prohibitive when the domain sizes and dimensionality are
non-trivial under ε-LDP. Our algorithms can be applied as primitives
in other tasks such as quantile queries for provable utility gains. There
were no known algorithms utilizing such relaxations to gain utility
for multi-dimensional range counting in the local model. For the
equivalent relaxation in CDP, the best-known utility gain [17] (under
Blowfish [13]) is much less significant than ours (relatively).

A. Preliminaries

Let X denote the domain of private values. Suppose there are n
data owners, each holding a private value x ∈ X . A data collector
wants to collect these private values from data owners to conduct
analytical tasks. In the local model of differential privacy (LDP), a
data owner does not trust the data collector; she encodes her private
value x locally with a randomized algorithm A, and sends the LDP
report A(x) to the data collector. LDP formalizes a type of plausible
deniability: given any output A(x), the likelihoods to generate A(x)
with A from x and from any other value are approximately the same.

Definition 1 (Local Differential Privacy [18], [19]): A randomized
algorithm A : X → Y is ε-locally differentially private (or ε-LDP),
if for any pair of private values x, x′ ∈ X , and any subset of output
S ⊆ Y , we have that Pr[A(x) ∈ S] ≤ eε · Pr[A(x′) ∈ S].

Local differential privacy on metric spaces. ε-LDP guarantees the
same level of protection for all pairs of private values. However,
such homogeneous privacy definition may be too strong for many
applications. We adopt an extension of LDP called Metric-LDP [16],
which uses a metric function to customize heterogeneous (different



levels of) privacy guarantees for different pairs of private values and
to tune utility-privacy trade-offs in analytical tasks.

Definition 2 (Metric-based Local Differential Privacy [15], [16]):
Let E : X×X → R≥0 define a metric function on the input domain.
A randomized algorithm A : X → Y satisfies Metric-LDP or E-LDP
if for any pair of values x, x′ ∈ X and any subset of output S ⊂ Y ,
we have that Pr[A(x) ∈ S] ≤ eE(x,x′) · Pr[A(x′) ∈ S].

Here, smaller E(x, x′) implies that it is more sensitive to the data
owners whether the private value is x or x′. Similar to DP and LDP,
E-LDP also has the sequential composability.
Relationship to other relaxations. Metric-LDP is a generic form
of Blowfish [13] and dX -privacy [14] adapted to the local model. In
particular, Blowfish introduces the concept of policy graph, where
each vertex corresponds to a data value and the distance between
two vertices measures how strong the protection between the two
corresponding values is (the smaller the stronger). Indeed, distance
on graphs is a metric. One attempt to further generalize the relaxation
is to consider an arbitrary function E : X × X → R≥0, instead of
restricting E to the class of metric functions. However, as shown in
our full version [20], it is sufficient to focus on metrics on X (if E
is not a metric, an E-LDP algorithm A also satisfies E′-LDP, where
E′ defines a metric and E′-LDP is stronger than E-LDP [20]).

B. Problem Statement and Our Main Results
Each of the n data owners holds a private value xi ∈ X , and let

X = {xi}i∈[n] be the whole private dataset. An analytical task q(X)
is to be conducted on X by the data collector.

We focus on single-round LDP mechanisms in this work. With
E-LDP reports X̂ = {A(xi)}i∈[n] collected from data owners, the
data collector wants to estimate the answer to q(X) as q̂(X̂) from
X̂ . The privacy is guaranteed on each LDP report A(xi), and thus,
we do not need to worry about privacy in designing the estimator q̂
as it can be regarded as “post-processing” of LDP reports. A and q̂
often need to be co-designed, as a mechanism, for an analytical task.

Previous work [15], [16] define utility loss as the hardness of re-
constructing the real data distribution from LDP reports, represented
as the expected difference between the statistical properties based
on LDP reports and those based on the real data. However, for a
concrete analytical task, there is no guarantee on estimation errors
for the algorithms in [15], [16]. An important contribution of our
paper is that, for several tasks, we propose mechanisms that achieve
provable end-to-end utility (error bounds) under Metric-LDP.
Linear counting (Section III). Let’s consider a domain X = [m] =
{1, . . . ,m}. An indicator 1P is defined to be 1 if the predicate P is
true, or 0 if otherwise. The frequency vector on the dataset X is c =
[cx]ᵀx∈[m], where cx =

∑n
i=1 1xi=x represents the number owners

holding a private value x. A linear counting task q(X) is specified
by a q ×m workload matrix W with q rows, and asks for W · c.
In particular, each row of W is a linear counting query asking for a
linear combination of frequencies. We use the total expected squared
error, E[‖q̂(X̂)−W · c‖2], to measure the utility of an estimation
(the expectation is taken over the randomness of n instances of A).

As warm-up, for this class of counting queries, we introduce a
mechanism to minimize the above error based on a generic matrix
formulation, which is a reminiscence of the class of matrix mecha-
nisms, [21]–[23] and [17], under CDP. But here, we need to carefully
model the flexibility introduced by Metric-LDP to optimize the utility,
allowing noises of heterogeneous magnitudes to be added at each
dimension of the data. This mechanism can be applied for answering
one-dim range counting queries with provable error bounds.
Multi-dimensional range counting (Section IV). Let’s consider a
D-dim domain X = [m]D , and each data owner i has a private value
xi ∈ X = [m]D . A D-dim range query is specified by an interval
R = [l1, r1] × . . . × [lD, rD], asking for

∑n
i=1 1xi∈R. We want to

bound the expected squared error for any given range query.

A metric EL1 on X = [m]D is defined based on the L1-distance:
EL1(x, y) = ε‖x − y‖1 = ε

∑D
i=1 |x[i] − y[i]|. For any given

multi-dimensional range query on [m]D , we introduce an EL1 -LDP
mechanism with expected squared error bounded by O(n( 2

ε2
)D),

which completely removes the dependency on the domain size m
in error. Our algorithm can be extended for weighted range queries.

In comparison, the best known ε-LDP algorithms [6], [9] for multi-
dimensional range queries have error O(n log2Dm

ε2
). EL1 is equivalent

to the policy graph under Blowfish adopted by Haney et al. [17] for
answering range queries in the centralized setting. The techniques in
[17] can be extended to the local model, leading to the best previously
known error bound O(nD(logm)2(D−1)

ε2
) under EL1 -LDP.

Our algorithm replaces the term log2Dm (in previous works) with
1/ε2D in the error bound. As ε is usually chosen to be a constant no
smaller than 1 for reasonable utility in data analytics under LDP,
especially in the real-world deployments, e.g., ε ≥ 1 in [5] by
Microsoft and ε ≥ 4 in [2] by Apple, we have 1/ε � logm and
thus obtain a significant utility boost from the privacy relaxation.
Quantile queries (Section V). We consider quantile queries in a one-
dim domain X = [m]. We defer the formal definitions of quantile
queries and their errors to Section V, where we will apply our
algorithm for range queries as a primitive to answer quantile queries
with provable accuracy gain under EL1 -LDP.

All missing proofs are in the full version of this paper [20].

II. RELATED WORK

Generalized privacy notations. An orthogonal line of work under
CDP generalizes the quantification of privacy loss, i.e., the divergence
between the output distributions of an algorithm on neighboring
datasets. Examples are KL- [24], Renyi- [25] differential privacy,
and capacity bounded differential privacy [26]. These generalizations
aim to achieve tighter privacy composition properties of DP.

A more relevant line of work considers semantic privacy frame-
works which (i) clarify assumptions on the adversary and (ii) redefine
sensitive information to be kept secret, such as Pufferfish privacy [27],
[28] and membership privacy [29]. Specifying a weaker version of
adversary under a semantic framework [29], [30] or weaker protection
on the sensitive information [13], [17] allows the design of algorithms
with better utility than the standard differentially private algorithms.
In particular, Blowfish is an instance under such frameworks and
provides improved utilities for several tasks including k-means clus-
tering and estimating cumulative histograms [13]. Readers can refer
to [31] for a survey on other variants under the centralized setting.
Primitives under LDP. We give a brief summary on the analytical
primitives under LDP (without relaxation). Mean/median estimation
under ε-LDP has been well studied [5], [8], [18] with a matching
upper and lower bound. Frequency estimation under LDP is also
studied extensively in, e.g., [3], [5], [19], [32]–[35]. They use
techniques like hashing (e.g., [34]) and Hadamard transform (e.g.,
[33], [35]) for good utility. For locally differentially private range
queries, the work of [6], [9], [12] present the state-of-the-art.

III. WARMUP: LINEAR COUNTING QUERIES

We first consider the task of answering linear counting queries,
defined in Section I-B: how to collect each private value in X under
E-LDP, and estimate W · c for a given workload matrix W.

A. A Generic Matrix Formulation under Metric-LDP
In our mechanism introduced below, the matrix mechanism under

CDP [21]–[23] is adapted to the local setting, and more importantly,
extended to make the best of the flexibility in Metric-LDP.
E-LDP encoding algorithm AA,B,s(x). Data owners use the same
p×m strategy matrix A = [a1 . . .ap]

ᵀ to encode their data. Every
row of the workload matrix W can be reconstructed using a linear
combination of rows of A, i.e., W = BA for some q×p matrix B. A



properly chosen A can reduce the noise to be injected and enable the
reconstruction of W. Each data owner first encode her value x as a
length-m binary vector hx = [0, ..., 0, 1, 0, ..., 0]ᵀ where only the x-
th position is 1. We use Lap(s) to represent a random sample drawn
from Laplace distribution with parameter s. Each data owner draws
p independent random samples Lap(s) = [Lap(s1), . . . ,Lap(sp)]

ᵀ,
with parameters s = [s1, . . . , sp]

ᵀ, and reports:

AA,B,s(x) = A ·hx+[Lap(s1), . . . ,Lap(sp)]
ᵀ = A ·hx+Lap(s).

Proposition 1: AA,B,s is E-LDP, if for any pair of x, x′ ∈ [m],[
1
s1

1
s2

· · · 1
sp

]
|A(hx − hx′)| ≤ E(x, x′),

where |A(hx−hx′)| =
[
|aᵀ

1(hx − hx′)| · · · |aᵀ
p(hx − hx′)|

]ᵀ,
namely, |A(hx−hx′)| is the vector obtained by taking the absolute
values of entries in vector A(hx − hx′).
Answering linear counting workload. After collecting X̂ = {ri =
AA,B,s(xi)}i∈[n] from n data owners, the data collector estimates
the linear counting queries W · c as B ·

∑n
i=1 ri. We can show that

it is unbiased and its error depends on the choice of B.
Proposition 2: The estimation q̂(X̂) = B ·

∑n
i=1 ri is an unbiased

estimation of W · c. The total expected squared error of q̂(X̂) is

E[‖q̂(X̂)−W · c‖2] = 2n · Trace[BᵀB · diag(s21, . . . , s
2
p)]

where diag(s21, . . . , s
2
p) is a p × p diagonal matrix with diagonal

elements s21, . . . , s2p.
An optimization problem. Given a workload W and a metric E,
we can choose A, B, and s = [s1, . . . , sp]

ᵀ properly to gain utility,
i.e., minimizing the total expected squared error: formally,

min
A,B,s

2n · Trace[BᵀB · diag(s21, . . . , s
2
p)] (1)

s.t.
[

1
s1

1
s2

· · · 1
sp

]
|A(hx − hx′)| ≤ E(x, x′), ∀x, x′ ∈ [m]

BA = W, sk ≥ 0, ∀k ∈ [p]

It is hard to solve (1) efficiently, unless A is fixed (then it becomes
convex but a bad choice of A may lead to a suboptimal solution).

B. One-dimensional Range Queries
We consider one-dim range queries now. A range query is specified

by an interval R = [l, r] ⊆ [m], and asks for
∑n
i=1 1xi∈R.

Mechanisms are developed to handle range queries under ε-LDP [6],
[9]. It is natural to consider a metric EL1(x, x′) = ε|x − x′| for
x, x′ ∈ [m], which means values that are closer are more sensitive to
each other. We can achieve better utility under EL1 -LDP by solving
the optimization problem (1) for this special case.

Let Wm be the workload matrix for all possible one-dimensional
range queries on [m]. We consider a strategy matrix A = Lm (an
m×m {0, 1}-matrix with bottom-left triangular area filled with 1),
which intuitively means that each user creates an LDP report for
estimating every prefix sum of the frequencies (a range query can be
answered as the difference between two prefixes).

W3 =

1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 0 1 1

ᵀ

L3 =

1 0 0
1 1 0
1 1 1

 (2)

Above are examples of W3 and L3. With A = Lm, we can rewrite
the optimization problem (1) as:

min
s

2n

m∑
x=1

ms2x s.t.
r−1∑
i=l

1

si
≤ ε(r − l), ∀1 ≤ l < r ≤ m

sx ≥ 0, ∀x ∈ [m]

.

We can easily derive the optimal solution to the above problem as
sk = 1

ε
for k ∈ [m − 1] and sm = 0, and thus, the total expected

squared error is 2nm(m−1)

ε2
for m(m − 1)/2 range queries. For

each range query, the squared error is O( n
ε2

). This already gives an
O(log2m) improvement (indeed, under a relaxed privacy notation,
EL1 -LDP) on the utility in comparison to the mechanisms in [9] and
[6] (which have expected squared error O(n log2m

ε2
), under ε-LDP).

IV. MULTI-DIMENSIONAL RANGE COUNTING QUERIES

We now consider the task of answering range counting queries in
a D-dim domain, defined in Section I-B: a range query is specified
by a range R = [l1, r1]× . . .× [lD, rD] ⊆ [m]D , asking for c(R) =∑n
i=1 1xi∈R. We provide EL1 -LDP when collecting each xi.
Our results can be extended for ELp , due to the relation: ‖x‖p ≤

‖x‖1 ≤ D1− 1
p ‖x‖p for any p ≥ 1. Therefore, any algorithm that is

EL1 -LDP with parameter ε is also ELp -LDP with parameter D1− 1
p ε.

Notations. For x ∈ [m]D or a vector v, we use x[i] or v[i] to
denote the coordinate on the ith dimension, respectively. We assign
an index (ind : [m]D → [mD]) to each value in the D-dim domain
[m]D , which numbers all the values in [m]D from 1 to mD: ind(x) =
1+
∑D
d=1m

d−1(x[d]−1). If it is clear from the context, we will refer
to x as both a value in [m]D and its index ind(x), interchangeably.
Comparison to existing approaches. Existing methods for answer-
ing range queries under ε-LDP are either based on hierarchical
histograms [6], [9] or discrete Haar transform [9]; both schemes,
however, rely on (logm)O(D) independent frequency estimations per
query, and each frequency estimation as a black box is inherently
hard with error as least Ω( n

ε2
) [36], even under EL1 -LDP (consider

a domain with two possible values). And thus, the (logm)O(D)

term is inevitable for existing methods even under relaxation. In the
centralized Blowfish, under a policy equivalent to EL1 , Haney et
al. [17] made some improvement but failed to completely remove
the (logm)O(D) term. Their approach has expected squared error
O(D(logm)3(D−1)

ε2
) under EL1 -CDP, which is only better than the

Privelet mechanism [37] under ε-CDP by a Θ(log3m) factor. Haney
et al. [17]’s method can be extended to the local model EL1 -LDP,
with error O(nD(logm)2(D−1)

ε2
), reducing the expected squared error

in the methods [6], [9] under ε-LDP only by a factor of Θ(log2m).
Our goal here is to remove the prohibitive term (logm)O(D) from

error bounds under EL1 -LDP. Our mechanism in Section IV-A has
error bounded by O(n( 2

ε2
)D) when ε is small. Our error bounds are

completely independent on the domain size m. As ε is usually chosen
to be a constant ≥ 1 in real-world deployments, e.g., [2] and [5], we
have 1/ε� logm, and thus replacing log2Dm with 1/ε2D improves
the utility significantly. Our method can be considered as a special
type of transformation similar to discrete Haar transform, but with a
nice property that during the summation of frequency estimations of
single values, most noise from perturbation will be canceled out.

A. Multi-dimensional Range Query under EL1 -LDP
EL1 -LDP encoding algorithm A(x). Let x denote the D-dim private
value held by a data owner. She first encodes each dimension d of
x, x[d] ∈ [m], into a length-m vector bd:

bd = [−1,−1, . . . ,−1︸ ︷︷ ︸
x[d]−1

, 1, 1, . . . , 1︸ ︷︷ ︸
m−x[d]+1

],

where the first up to the (x[d]− 1)-th position are −1’s and the rest
are 1’s. She will then perturb the vector bd into rd with standard
random-flipping operation on each position k ∈ [m]:

rd[k] =

{
bd[k] with prob. eε

eε+1

−bd[k] with prob. 1
eε+1

.

Each data owner reports A(x) = R = [r1, r2, ..., rD]ᵀ (a D × m
matrix), to the data collector. It is easy to verify its privacy guarantee.

Proposition 3: A(x) is EL1 -LDP.



Range query estimation. After collecting data owners’ reports R1,
. . . , Rn, where Ri = A(xi), the data collector first obtains a length-
mD vector o = [o1, . . . , omD ]ᵀ, called observations:

ox =

n∑
i=1

D∏
d=1

Ri[d, x[d]], for each x ∈ [m]D, (3)

where R[a, b] denotes the value in row a and column b of matrix R.
Recall that the index ind : [m]D → [mD] numbers values x ∈ [m]D

as ind(x) = 1+
∑D
d=1m

d−1(x[d]−1). When referring to indexes of
entries in a vector, we will use x and ind(x), interchangeably. Thus,
by ox, we mean the ind(x)-th position oind(x) in the vector o.

For example, if n = 2, D = 2 and m = 3, with R1 =[
1 −1 1
−1 −1 −1

]
and R2 =

[
1 1 −1
1 −1 −1

]
, for x = (1, 1), ox =

R1[1, x[1]] ·R1[2, x[2]] +R2[1, x[1]] ·R2[2, x[2]] = 1 · (−1) + 1 ·1.
We will use o to estimate the frequencies of all values in [m]D . Let

c = [c1, ..., cmD ]ᵀ be the vector representing true frequencies of all
values x ∈ [m]D among the n data owners (cx =

∑n
i=1 1xi=x). As

proved in Theorem 1 of the full version [20], there exists a relation

E[o] = (
eε − 1

eε + 1
)DBm,D · c, (4)

where Bm,D is an mD×mD matrix that can be partitioned into m×
m submatrices Bm,D−1, satisfying the following recursive relation,

Bm,d =


Bm,d−1 −Bm,d−1 · · · −Bm,d−1

...
. . .

. . .
...

...
. . . −Bm,d−1

Bm,d−1 · · · · · · Bm,d−1

 , (5)

for 2 ≤ d ≤ D. That is, after partition, the submatrices in the
bottom-left triangle are all Bm,d−1 and rest of the submatrices are
all −Bm,d−1. For the base case when D = 1,

Bm,1 =


1 −1 · · · −1
...

. . .
. . .

...
...

. . . −1
1 · · · · · · 1

 .

• Estimating single-value frequencies. The estimated frequency vec-
tor ĉ = [ĉ1, ..., ĉmD ]ᵀ can be thus computed from (4) as follows:

ĉ = (
eε + 1

eε − 1
)DB−1

m,D · o. (6)

For any value x ∈ [m]D , ĉx is the estimated frequency of x.
• Estimating answers to range queries. For a D-dim range query
R = [l1, r1]×· · ·×[lD, rD], the data collector can estimate its answer
by directly summing up the estimated frequencies of all x ∈ R:

ĉ(R) =
∑
x∈R

ĉx = (
eε + 1

eε − 1
)D
∑
x∈R

exB
−1
m,D · o, (7)

where ex is a 0-1 row vector with only the ind(x)-th entry as 1, and
exB

−1
m,D gives the ind(x)-th row in B−1

m,D .

• Computing inverse B−1
m,D . The rest question is thus how to compute

the matrix inverse B−1
m,D . It turns out that we can efficiently compute

it in a recursive way. B−1
m,D can be partitioned into m×m submatrices

B−1
m,D−1, defined by the following recursive relation for 2 ≤ d ≤ D:

B−1
m,d =

1

2



B−1
m,d−1 0 · · · 0 B−1

m,d−1

−B−1
m,d−1 B−1

m,d−1

. . .
... 0

0 −B−1
m,d−1

. . . 0
...

...
. . .

. . . B−1
m,d−1 0

0 . . . 0 −B−1
m,d−1 B−1

m,d−1


.

(8)
Recursively, B−1

m,d−1 is a md−1 × md−1 matrix. In the base case,
B−1
m,1 is the m×m matrix:

B−1
m,1 =

1

2



1 0 · · · 0 1

−1 1
. . .

... 0

0 −1
. . . 0

...
...

. . .
. . . 1 0

0 . . . 0 −1 1


.

It can be shown that B−1
m,d is indeed the inverse of Bm,d. Please

refer to Lemma 2 in the full version [20] for more details.

B. Analysis of Algorithm
We focus on accuracy analysis here. Computational and space

complexity is also analyzed in Section 4.2 of the full version [20].
First, we can show that the estimations are unbiased.
Theorem 1 (Unbiasedness): The estimates for the frequency of any

single value and the answer to any range query R (Equations (6) and
(7), respectively) are unbiased, i.e., E[ĉ] = c and E[ĉ(R)] = c(R).

According to Equation (7), our mechanism estimates range query
by by summing up all estimations of single values’ frequencies in
the range R. Surprisingly, the range query’s estimation error has the
same upper bound as the single-value frequency’s estimation error,
instead of O(mD) times larger as one may expect naturally.

Theorem 2 (Single-value frequency): For any value x ∈ [m]D , the
expected squared error of estimation ĉx is E[‖ĉx − cx‖2] =

Var[ĉx] = O

(
(
eε + 1

eε − 1
)2D2−D(1− (

eε − 1

eε + 1
)2D)n

)
.

Theorem 3 (Range query): For any range query R = [l1, r1] ×
[l2, r2]× · · · × [lD, rD], the expected squared error of the estimated
answer ĉ(R) is E[‖ĉ(R)− c(R)‖2] =

Var[ĉ(R)] = O

(
(
eε + 1

eε − 1
)2D2−D(1− (

eε − 1

eε + 1
)2D)n

)
.

When ε is small, we have Var[ĉx], Var[ĉ(R)] ≈ O(( 2
ε2

)Dn).
Complete proofs of Theorems 1-3 are in the full version [20].

Here, let’s give some intuitive explanation on why the expected
squared errors for both range query and single value have the same
upper bound. This is from the nice property of the bias correction
matrix B−1

m,D . When calculating the estimation for the range query
in (7), the expected squared error of the estimation is affected by
the non-zero terms in

∑
x∈R exB

−1
m,D , which is a summation of

multiple rows of B−1
m,D with each row corresponding to one point in

R. Fortunately, instead of exploding the number of non-zero terms in
the summation by O(|R|) = O(mD), most of the terms are canceled
out, leaving the number of remaining non-zero terms to be equal
to that in a single-value frequency query. Therefore, the expected
squared error is not amplified from single values to range queries.
Simulation results. We perform a simulation to evaluate the em-
pirical error of our mechanism and verify our theoretical analysis
(Theorems 2 and 3). We use synthetic data generated as follows.



(a) D = 5, n = 1000, m = 10 (b) D = 6, n = 1000, m = 10

Fig. 1: Squared error in estimating single-value frequencies
and multi-dimensional range queries

For any D-dimensional private value, each of its dimension follows
Zipf distribution with parameter 1.1. We implement our mechanism
in Section IV-A and measure the average squared error of frequency
queries over all single values. We also randomly generate 100 range
queries and measure the average squared error of all these range
queries. The mechanism (both encoding and estimation) is repeated
three times. The analyzed error bound is the one in Theorem 2 or 3
with the constant set to be 1 in the big-oh upper bound – it is equal
to the analytical upper bound shown in the proofs in the full version
[20]. As we can observe from Figure 1, both the empirical squared
errors of single-value frequencies and range queries are below our
analyzed error bound, verifying the effectiveness of our mechanism.
Handling continuous domains. In general, the input may be vectors
from a real domain [0,Σ]D . To apply the mechanism introduced
in this section, a mapping from [0,Σ]D to [m]D is needed (e.g.,
partitioning each dimension [0,Σ] evenly into sub-intervals and
mapping each of them to a value in [m]). At first glance, it is
appealing to choose a larger m for such a discretization process,
since the truncation error (due to the rounding from [0,Σ] to [m])
can be smaller as a more accurate range in [m] can be used for
the range query in [0,Σ], while the error bounds in Theorems 2
and 3 are independent on m. However, a larger m means the “real”
distance between i and i+ 1 in [m] is smaller in the original domain
[0,Σ], and thus a smaller ε is needed to guarantee the same level
of privacy protection, resulting in a larger estimation error according
to Theorems 2 and 3. Therefore, it is possible to choose an optimal
value of m to minimize the total error of the two types introduced
above. The optimal selection of m may depend on the distribution
of the input data, which is hard to be quantified, and is private, too.
We leave it as an intriguing open question for future work.

C. Extensions to More Complex Range Queries
We briefly discuss how our method can be extended to the case

where each dimension has a different size, and weighted range query.
More details can be found in Section 4.3 of the full version [20].
When dimension sizes are different. When each dimension has a
different size, i.e., the private values are in domain [m1]×. . .×[mD],
our mechanism in Section IV-A also applies after a few changes: (1)
Each data owner reports a length-md vector instead of a length-
m vector for each dimension d, constructed in the same way as in
Section IV-A. (2) The data collector estimates the frequencies of all
single values using a (

∏D
j=1mj)× (

∏D
j=1mj) matrix C−1

D (defined
in [20]) instead of B−1

D . Any range query R is also answered by
ĉ(R) =

∑
x∈R ĉx. The correctness proof and accuracy analysis are

similar to the case with identical domain sizes, and the error bounds
of the estimations are identical to the bounds in Theorems 2-3.
Weighted range queries. Each data owner i may holds a weight
wi ∈ W . A weighted range query asks cw(R) =

∑n
i=1 wi1xi∈R.

W.l.o.g., we consider weights from the domain W = [0,∆]. If the
weights are non-private information, we can partition all data owners
into groups gw by their weights w, and construct an estimator of
unweighted multi-dimensional range queries ĉgw (·) for each group
gw. To answer a weighted range query, we sum up the weighted

answers from all groups, ĉw(R) =
∑
w∈W w · ĉgw (R). If the weights

are private information, we can treat the weight as an extra private
dimension for each data owner, and then use unweighted (D + 1)-
dimensional range query oracle to answer weighted D-dimensional
range queries. In both cases, the error bounds have an additional term
∆2 but are still independent on the domain size m.

V. APPLICATION: QUANTILE QUERIES

Consider quantile queries in a one-dim domain X = [m]. The
percentile of a value x in X = {xi}i∈[n] is σ(x) = 1

n

∑n
i=1 1xi≤x,

which calculates the fraction of values that are no larger than x in
X . The interval I(x) = (σ(x − 1), σ(x)] ⊆ [0, 1] is said to be the
percentile interval of x. The p-quantile of X is defined to be the value
x∗, such that σ(x∗ − 1) < p ≤ σ(x∗), i.e., p is in x∗’s percentile
interval. Let x̂∗ be an estimated p-quantile. The estimation goal is to
make sure that the percentile interval I(x̂∗) is close to p. We define
the error of the estimation x̂∗ to be Err[x̂∗] = inf p̂∈I(x̂∗) |p̂−p|. We
want to bound error Err[x̂∗] with high probability. Note that our error
definition is essentially the ε-approximate p-quantile in literature, e.g.,
[38] (with inf considered here as X is a multiset).
Answering quantile queries under EL1 -LDP. Our mechanism
follows the approach proposed in Section 4.7 of [9], which uses
one-dimensional range query mechanism as a primitive and perform
binary search to estimate the p-quantile. Our main contribution here
is to provide formal analysis on the utility of the mechanism, and
compare the mechanisms under ε-LDP and EL1 -LDP.

For data owners, private values are encoded using the algorithm
(its 1-dim case) in Section IV-A to guarantee EL1 -LDP. For the data
collector, let ĉ([l, r]) be the answer estimated using the mechanism
introduced in Section IV-A for a one-dim range query [l, r]. We can
then estimate the percentile of value x as σ̂(x) = ĉ([1, x])/n. Our
mechanism answers a p-quantile query as follows.

1) Construct an oracle (Section IV-A) for answering 1-dim range
queries on data owners’ reports.

2) Perform binary search on the domain [m] until a value x̂∗ s.t.
σ̂(x̂∗ − 1) < p ≤ σ̂(x̂∗) is found, with σ̂ defined above.

3) Output x̂∗ as the estimation for the quantile query.
Accuracy analysis. With high probability, the error is bounded.

Theorem 4: With probability at least 1 − δ, our quantile query
mechanism guarantees that for an estimated p-quantile x̂∗

Err[x̂∗] ≤ 2(eε + 1)

eε − 1
·
√

2

n
log

2 logm

δ
.

The proof of the above theorem can be found in Section 4.4 of
the full version [20]. From Theorem 4, the estimation error of our
mechanism is bounded by O( 1

ε
√
n

√
log logm) with high probability.

The state-of-the-art ε-LDP mechanisms [6], [9] for one-dim range
queries can be plugged in step 1 (as suggested in [9]), leading to error
O( 1

ε
√
n

logm
√

log logm) using our analysis, which is O(logm)
times larger compared to our mechanism under EL1 -LDP.

VI. CONCLUSION

This paper investigates local differential privacy on metric spaces
(or E-LDP), which is a relaxation of ε-LDP to customize the
levels of indistinguishability among different pairs of values using
a metric function E. In this work, we design a generic E-LDP
mechanism (generalizing matrix mechanisms in CDP) to trade-off
privacy for utility of linear counting queries. For multi-dimensional
range queries, we introduce a novel E-LDP algorithm under L1-
metric with an error which is independent on the size m of each
dimension. This technique can also help reduce the error of ε-LDP
algorithms for quantile queries by a factor of logm under E-LDP.
Our techniques apply to Lp-LDP as well. As future work, we would
apply techniques in this paper as primitives for other analytical tasks;
we would also expect that the transform matrices developed in this
paper can be used to improve algorithms in the centralized setting
under similar relaxations (e.g., in Blowfish privacy).
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