
AutoML: A Perspective where
Industry Meets Academy

Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, and Ce Zhang

Alibaba Group, ETH Zürich

1

Machine Learning Pipeline

Data/Feature
Preprocessing

Model
Selection

Hyperparameter
Tuning

So MANY choices
• Which feature transformation?
• Which model architecture?
• Which hyperparameters?

2

Machine Learning Pipeline

Data/Feature
Preprocessing

Model
Selection

Hyperparameter
Tuning

AutoML
• Auto Feature Generation
• Neural Architecture Search
• Hyperparameters Optimization
• Meta Learning

3

Automated Machine Learning

AutoML

Hyperparameter
Optimization

Auto Feature Generation

ML-Guided Database

Neural Architecture Search

Meta-Learning

AutoML: How to automate the process of applying machine
learning components to various real-world tasks?

4

Automated Machine Learning

Inductive bias (prior α): how we represent data, which kinds of models to be
considered, how to tune hyper-parameter, how to transfer knowledge across
tasks, etc…

5

Tutorial Schedule

Yaliang Li, Background and Overview of AutoML
Hyperparameter Optimization

Zhen Wang, Neural Architecture Search
Meta-Learning

Yuexiang Xie, Automatic Feature Generation

Ce Zhang, VolcanoML: End-to-End AutoML via
Scalable Search Space Decomposition

Bolin Ding, Machine Learning Guided Database

6

Hyperparameter
Optimization (HPO)

7

Model
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

Hyperparameter Optimization

8

Hyperparameter Configuration v.s. Schedule

• Hyperparameter configuration search

methods find a fixed hyperparameter

setting to maximize the model performance.

• Hyperparameter schedule search methods

seek a dynamic hyperparameter schedule

in the model training process.

Model
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

9

Hyperparameter Optimization

Model
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

❑Hyperparameter Configuration

• Random search, Grid Search

• Successive-halving, Hyperband

• Bayesian optimization

❑ Hyperparameter Schedule

• Population-based training

• Hypergradient

10

Search Methods

Image source: Bergstra & Bengio. JMLR, 2012.
11

Successive-Halving

• Uniformly allocate a budget to a set of
hyperparameter configurations

• Evaluate the performance of all configurations
• Throw out the worst half

Repeat until one configuration remains

Non-stochastic best arm identification and hyperparameter optimization. 2016.
12

Hyperband

• Successive-Halving needs to determine the number of configurations (i.e., 𝑛)

• Outer loop
• Grid search for different 𝑛

• Inner loop
• Successive-Halving for given 𝑛 configs

• s.t. at least one config is trained for 𝑅

𝑛𝑖

𝑟𝑖

Hyperband: A novel bandit-based approach to hyperparameter optimization. JMLR, 2018. 13

Bayesian Optimization

Given some tried {hyperparameter, performance} pairs,
which hyperparameter should be the next one to try?

14

Bayesian Optimization

Given some tried {hyperparameter, performance} pairs,
which hyperparameter should be the next one to try?

Independence assumption Follow a certain distribution

Bayesian Optimization

15

Bayesian Optimization

Fit a probabilistic function f(x) to model {x=hyperparameter, f(x)=performance}

• Function f(x) isn’t required to be convex, differentiable

• Rich theoretical results: convergence, sync v.s. async, various model choices

• Exploration-exploitation trade-off

• Costly

16

Hyperparameter Optimization

Model
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

❑Hyperparameter Configuration

• Random search, Grid Search

• Successive-halving, Hyperband

• Bayesian optimization

❑ Hyperparameter Schedule

• Population-based training

• Hypergradient

17

Hyperparameter Schedule

Population-based training Hypergradient

Self-tuning networks: Bilevel optimization of hyperparameters
using structured best-response functions. ICLR, 2019.

A generalized framework for population based
training. KDD, 2019.

18

Practical Challenge (1)

Model
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

Model Size

Data Size
19

ABC: Sampling

Model
Training

Model
Testing

Training
Data

Sampling
ratio: r

Testing
Data

Hyperparameter
Configuration: C

Performance: P

{r, C, P}

Efficient Identification of Approximate Best Configuration of Training in Large Datasets. AAAI, 2019.
20

Illustration of Hyperparameter optimization

❑ Existing methods
• Search-strategy based: Successive-halving, Hyperband, etc.

• Evolutionary algorithm: Population Based Training, etc.

• Bayesian optimization

Each category of hyperparameter optimization
methods has its advantages and disadvantages.
Can we adaptively combine them and utilize
their advantages for different tasks?

Model
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

A New Method: 𝜀GE

Hyperparameter Recommendation for Machine Learning Method. Patent, 2019. 21

Choose
C’

<r’, C’, P’>

Terminated

{r, C, P} Increase
r’

Train and test
model: P’

Output C with
the best P

• Random strategy: randomly choose a
configuration with probability 𝜺

• Greedy strategy: choose the best configuration
• Evolution strategy: choose the best

configuration and perturb it with mutation and
crossover

A New Method: 𝜀GE

22

The task-adaptively combination of different hyperparameter
optimization methods leads to faster solutions!

• A soft version of Hyperband

• Evolutionary operation

• A simplified version of
Bayesian optimization
(i.e., local smoothness
assumption)

HPO: Sampling method-𝜀GE

Hyperparameter Recommendation for Machine Learning Method. Patent, 2019. 23

Practical Challenge (2)

Mutation-driven global search

PBT, KDD2019

Hypergradient-guided local search

STN, ICLR2019

24

Hyperparameter Schedule

Trade-off between Evolutionary algorithm (PBT) and Hyper-gradient based method:
• Hyper-gradient based method performs better than PBT on the smooth optimization problems.
• Hyper-gradient based method performs worse than PBT on the cases of many local minima (non-

smooth).

How to learn a good trade-off between the global search and local search?

A smooth optimization problem A non-smooth optimization problem

25

26

HyperMutaion (HPM)

Learnable
Mutation

Hyper
Training

Randomly
Initialization

… Learnable
Mutation

Hyper
Training

Hyper
Training

Hyper
Training

…

� � , ℎ , � ∈{ 1,2,3}

�

�

�

�

�

�

�

�

�

�

�

�

(� , ℎ)

(� , ℎ)

(� , � ⊙ ℎ)

∇�

∇ℎ

∇�

∇ℎ

∇�

∇ℎ

Activate student

�

�

�

�

�

�

∇�

∇ℎ

∇ℎ

∇ℎ

∇�

∇�

Top student Middle student Bottom student

Learning to Mutate with Hypergradient Guided Population. NeurIPS, 2020.

27

Hypertraining: a joint optimization over 𝜃 and ℎ

Learnable
Mutation

Hyper
Training

Randomly
Initialization

… Learnable
Mutation

Hyper
Training

Hyper
Training

Hyper
Training

…

� � , ℎ , � ∈{ 1,2,3}

�

�

�

�

�

�

�

�

�

�

�

�

(� , ℎ)

(� , ℎ)

(� , � ⊙ ℎ)

∇�

∇ℎ

∇�

∇ℎ

∇�

∇ℎ

Activate student

�

�

�

�

�

�

∇�

∇ℎ

∇ℎ

∇ℎ

∇�

∇�

Top student Middle student Bottom student

Learning to Mutate with Hypergradient Guided Population. NeurIPS, 2020.

28

Exploit by a truncation selection

Learnable
Mutation

Hyper
Training

Randomly
Initialization

… Learnable
Mutation

Hyper
Training

Hyper
Training

Hyper
Training

…

� � , ℎ , � ∈{ 1,2,3}

�

�

�

�

�

�

�

�

�

�

�

�

(� , ℎ)

(� , ℎ)

(� , � ⊙ ℎ)

∇�

∇ℎ

∇�

∇ℎ

∇�

∇ℎ

Activate student

�

�

�

�

�

�

∇�

∇ℎ

∇ℎ

∇ℎ

∇�

∇�

Top student Middle student Bottom student

Learning to Mutate with Hypergradient Guided Population. NeurIPS, 2020.

29

Explore by the learnable mutation

Learnable
Mutation

Hyper
Training

Randomly
Initialization

… Learnable
Mutation

Hyper
Training

Hyper
Training

Hyper
Training

…

� � , ℎ , � ∈{ 1,2,3}

�

�

�

�

�

�

�

�

�

�

�

�

(� , ℎ)

(� , ℎ)

(� , � ⊙ ℎ)

∇�

∇ℎ

∇�

∇ℎ

∇�

∇ℎ

Activate student

�

�

�

�

�

�

∇�

∇ℎ

∇ℎ

∇ℎ

∇�

∇�

Top student Middle student Bottom student

Learning to Mutate with Hypergradient Guided Population. NeurIPS, 2020.

30

Learning mutations with a teacher network

Learnable
Mutation

Hyper
Training

Randomly
Initialization

… Learnable
Mutation

Hyper
Training

Hyper
Training

Hyper
Training

…

� � , ℎ , � ∈{ 1,2,3}

�

�

�

�

�

�

�

�

�

�

�

�

(� , ℎ)

(� , ℎ)

(� , � ⊙ ℎ)

∇�

∇ℎ

∇�

∇ℎ

∇�

∇ℎ

Activate student

�

�

�

�

�

�

∇�

∇ℎ

∇ℎ

∇ℎ

∇�

∇�

Top student Middle student Bottom student

▪ Student-teaching schema ▪ Teacher model with attention networks

31

Continue hypertraining after exploit & explore

Learnable
Mutation

Hyper
Training

Randomly
Initialization

… Learnable
Mutation

Hyper
Training

Hyper
Training

Hyper
Training

…

� � , ℎ , � ∈{ 1,2,3}

�

�

�

�

�

�

�

�

�

�

�

�

(� , ℎ)

(� , ℎ)

(� , � ⊙ ℎ)

∇�

∇ℎ

∇�

∇ℎ

∇�

∇ℎ

Activate student

�

�

�

�

�

�

∇�

∇ℎ

∇ℎ

∇ℎ

∇�

∇�

Top student Middle student Bottom student

32

Experiments on test functions

Figure: (a)-(b) The mean performance computed by different methods along with the standard

deviation over 10 trials, in terms of different given budget of iterations. (c) The average mutation

values learned by HPM over 10 trials. In each trial, HPM runs 30 iterations in total with a

population size of 5, resulting in 6 training steps and 5 mutations.

33

Experiments on test functions

Figure: (a)-(b) The mean performance computed by different methods along with the standard

deviation over 10 trials, in terms of different given budget of iterations. (c) The average mutation

values learned by HPM over 10 trials. In each trial, HPM runs 30 iterations in total with a

population size of 5, resulting in 6 training steps and 5 mutations.

34

Experiments on benchmark datasets

Takeaways

Model
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

❑Hyperparameter Configuration

• Random search, Grid Search

• Successive-halving, Hyperband

• Bayesian optimization

❑ Hyperparameter Schedule

• Population-based training

• Hypergradient

• HyperMutation (HPM)

35

Future Directions

➢ Faster, Green
▪ HPO via Meta-Learning

➢ HPO for a specific domain
▪ a group of algorithm, e.g. Graph-related

➢ Interactive, Human-in-the-loop

36

Neural Architecture
Search (NAS)

37

Neural Architecture Search

❑What is neural architecture search (NAS)?
• To find the optimal topology and/or size

configuration for the neural network.

• E.g., select a filter from {CNN3×3, CNN5×5,
DilatedCNN5×5}.

• E.g., determine the depth and width of a neural network.

❑Why NAS?
• Architecture matters a lot on the

performance!

• The choices cannot be exhausted.

• Useful prior knowledge, e.g., the invariance
possessed by the task, has been exploited.

Figure: Image classification on ImageNet (source: https://paperswithcode.com/sota/image-
classification-on-imagenet).

38

https://paperswithcode.com/sota/image-classification-on-imagenet

Elements of NAS

❑ Search strategy
• How to utilize experience?

• How to propose new configuration to try?

• E.g., RL, ES, and differentiable search.

❑ Search space
• All the possible configurations.

• E.g., filter size, activation functions, depth, etc.

❑ Performance estimation strategy
• How to evaluate a configuration?

• E.g., standard training and surrogate objective.

39

And the Theme of NAS

❑ Search strategy
• How to utilize experience?

• How to propose new configuration to try?

• E.g., RL, ES, and differentiable search.

❑ Search space
• All the possible configurations.

• E.g., filter size, activation functions, depth, etc.

❑ Performance estimation strategy
• How to evaluate a configuration?

• E.g., standard training and surrogate objective.

Exploitation v.s. Exploration

Incorporating prior knowledge reduces search space but
makes it constrained to some extent, e.g., Inception-v2/3
→ stacked cells [Zoph et al. 2018].

Instead of asymptotic regret, practitioners balance the
exploitation and exploration to achieve best solution
under a given finite horizon.

Standard training&validation is expensive but accurate.

The proposed surrogate objectives are efficient but less
correlated.

40

Pioneer Works of NAS

Neural Architecture Search with Reinforcement Learning. ICLR, 2017, https://arxiv.org/pdf/1611.01578.pdf

❑ Search space
• Consider both CNN and RNN cells.

• The configuration of each layer can be
determined respectively.

❑ Search strategy
• RL with the policy parameterized by a RNN.

❑ Performance estimation strategy
• Standard train&validation

Figure: How the controller (i.e., a RNN) samples a CNN with skip connection.

Figure: An overview o the trial-and-error process of NAS.

41

https://arxiv.org/pdf/1611.01578.pdf

Pioneer Works of NAS

Neural Architecture Search with Reinforcement Learning. ICLR, 2017, https://arxiv.org/pdf/1611.01578.pdf

❑ Search space
• Consider both CNN and RNN cells.

• The configuration of each layer can be
determined respectively.

❑ Search strategy
• RL with the policy parameterized by a RNN.

❑ Performance estimation strategy
• Standard train&validation

Figure: An overview o the trial-and-error process of NAS.

❑ Unfold the gain of NAS😄 and also its pain
☹️

• Searched CNN and RNN cells achieve competitive
performances against manually designed architectures
on CIFAR-10 and PTB respectively.

• Searched architecture can be transferred to other tasks.

• Trained 12,800 models in total on 800 GPUs.

42

https://arxiv.org/pdf/1611.01578.pdf

Weight Sharing for One-shot NAS
❑Weight sharing

• Represent NAS’s search space using a single DAG.

• An architecture can be realized by taking a subgraph.

• E.g., deducing a RNN cell as follow:

Efficient Neural Architecture Search via Parameter Sharing. ICML, 2018, http://proceedings.mlr.press/v80/pham18a/pham18a.pdf

❑ One-shot NAS
• Each architecture (i.e., subgraph) is evaluated

by inheriting the shared parameters.

• Shared parameters are trained with sampled
architecture.

• Parameters and the controller are updated
alternatively.

❑ Advantage and concern
• ENAS [Pham and Guan et al., 2018] uses 10h

of one GTX1080Ti, which is 1000x faster than
[Zoph et al., 2017].

• Does the performance of a stand-alone
training correlate with that of one-shot NAS
[Bender et al., 2018, Zhang et al., 2020]?

Figure: How a RNN cell (i.e., highlighted subgraph)
inherits the shared parameters.

43

http://proceedings.mlr.press/v80/pham18a/pham18a.pdf

Differentiable NAS

DARTS: Differentiable Architecture Search. ICLR, 2019, https://arxiv.org/pdf/1806.09055.pdf

❑ Continuous relaxation
• Each edge denotes a mixture of ops in Ο = {CNN3×3,DilatedCNN3×3 ,Zero,Identity, … }.

• For each edge 𝑖, 𝑗 , they parameterize the weights of ops by architecture parameter 𝛼 𝑖,𝑗 .

• Suppose the tensor at node𝑖 is 𝑥, then the tensor propagated to node𝑗 will be:

Figure: An overview of DARTS. (a) Operations are initially unknown. (b) Continuous relaxation.
(c) architecture parameters are optimized jointly. (d) Inducing the final architecture.

❑ Differentiable learning
• Formulated as a bilevel optimization

problem:

• Regarded as a Stackelberg game
• Architecture parameters as leader

• Model parameters as follower

44

https://arxiv.org/pdf/1806.09055.pdf

Differentiable NAS
❑ Differentiable learning (contd’)

• No way to estimate the ∇𝛼𝐿𝑣𝑎𝑙 𝑤
∗ 𝛼 , 𝛼

exactly.

• DARTS approximates the gradient by looking
ahead one-step for 𝜔 like meta-learning.

• It is further simplified by treating the
parameters equally [Li et al., 2021].

❑ Deriving discrete architecture
• Retain the top-k strongest predecessors for

each node 𝑗 where strength of 𝑖, 𝑗 is defined

as: argmax
𝑜∈𝑂

exp 𝛼𝑜
(𝑖,𝑗)

σ
𝑜′∈𝑂

exp 𝛼
𝑜′
𝑖,𝑗 .

• Replace each edge by the most likely op:

𝑜 𝑖,𝑗 = argmax
𝑜∈𝑂

𝛼𝑜
𝑖,𝑗

❑ Improve DARTS by annealing and pruning

ASAP: Architecture Search, Anneal and Prune. AISTATS, 2020,
http://proceedings.mlr.press/v108/noy20a/noy20a.pdf

45

http://proceedings.mlr.press/v108/noy20a/noy20a.pdf

Dealing with Scalability Issue

❑ Horrible memory occupation of one-shot NAS
• The supergraph cannot fit into GPU memory for large datasets.

• Usually search architecture on CIFAR-10 and transfer to ImageNet.

ProxylessNAS: Direct Neural Architecture Search of Target Task And Hardware. ICLR, 2019, https://arxiv.org/pdf/1812.00332.pdf

❑ Binarized architecture
• Transform real-valued path weights to binary gates.

• Only one path is active in memory at runtime.

Figure: ProxylessNAS directly optimizes neural architecture on target task and hardware.

Figure: Note the straight-through estimator (STE) trick.

46

https://arxiv.org/pdf/1812.00332.pdf

Rethinking the Search Space of NAS

❑ Explore less constrained search spaces
[Xie et al. 19]

• Consider stochastic network generator, e.g., ER, BA,
and WS.

• All yield >73% mean accuracy on ImageNet with a
low variance!

• Presented graph damage ablation.

❑ Design search space [Radosavovic et al. 20]
• Evaluate a search space by its error distribution.

• Input a search space and output a refined one.

Figure: two steps of refinement with the error distribution constantly improved.

Figure: randomly remove one node/edge.

47

Rethinking the Search Space of NAS

❑ From the view of graph structure [You et al. 20a]
• From DAG to relational graph.

• Sweet spots are consistent across different datasets and
architectures.

Figure: proposed WS-flex provides a larger search space.

Graph Structure of Neural Networks. ICML, 2020, http://proceedings.mlr.press/v119/you20b/you20b.pdf
48

http://proceedings.mlr.press/v119/you20b/you20b.pdf

Rethinking the Search Space of NAS

❑ From the view of graph structure [You et al.
20a]

• From DAG to relational graph.

• Sweet spots are consistent across different datasets and
architectures.

Figure: Key results.

Graph Structure of Neural Networks. ICML, 2020, http://proceedings.mlr.press/v119/you20b/you20b.pdf
49

http://proceedings.mlr.press/v119/you20b/you20b.pdf

Size Search Space

❑Model scaling
• Keep the architecture but adjust the size:

• Depth 𝐿

• Width 𝐶

• And resolution 𝐻,𝑊

• Maximize the performance w.r.t. the size.

❑ EfficientNet [Tan et al. 19]

• Compound scaling method: 𝑑 = 𝛼𝜙, 𝜔 = 𝛽𝜙, 𝑟 = 𝛾𝜙 where 𝛼 × 𝛽2 × 𝛾2 ≈ 2, 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1.

• Step1: Fix 𝜙 = 1 and do a small grid search for 𝛼, 𝛽, 𝛾. Step2: Fix 𝛼, 𝛽, 𝛾 and scale up 𝜙.

Figure: Model size v.s. ImageNet accuracy.

50

From CNN/RNN to GNN

❑ Uniqueness in search space
• More dimensions of choices:

• Micro: mainly aggregation and combine functions.

• Macro: how node embeddings in each layer produce the final one.

• Nodes are not independent, so how about in a node-wise manner?

❑ Challenges of weight-sharing one-shot NAS
• Different options lead to quite different output statistics [Zhou et al. 19].

❑ Transfer across datasets and tasks [You et al. 20b]
• Collect 32 (diverse) tasks.

• Use anchor models to calculate task similarities.

Figure: Comparing the correlations.

Figure: General message passing.

51

Beyond Accuracy: Efficiency and Robustness

❑Making latency differentiable [Cai et al. 19]

❑ Searching robust architecture [Guo et al. 20]

Figure: Introducing latency
regularization loss.

Figure: Performance of 1k sampled architecture. Figure: Analysis of top 300 robust v.s. non-robust architectures.
52

Beyond Accuracy: Compressed Model Search

AdaBERT: Task-Adaptive BERT Compression with D-NAS. IJCAI, 2020, https://arxiv.org/abs/2001.04246

Method Averaged
Performance

Inference
Speed

BERT 82.5 1x

BERT-PKD 80.6 1.9x

DistillBERT 76.8 3.0x

TinyBERT 80.6 9.4x

AdaBERT 80.1 12.7x ~ 29.3x

The proposed AdaBERT achieves significant speedup
in inference time while maintaining comparable
performance compared to uncompressed model.

• Pre-trained language model such as BERT achieves great performance on
various tasks, but it is difficult to be deployed to real-time applications.

• Can we task-adaptively compresses original BERT for different tasks?

53

https://arxiv.org/abs/2001.04246

Beyond Accuracy: Compressed Model Search

AdaBERT: Task-Adaptive BERT Compression with D-NAS, IJCAI, 2020, https://arxiv.org/abs/2001.04246

Figure: Searched structures of compressed models for different tasks

Table: Performance of searched structures across different tasks

These results demonstrate that the proposed
AdaBERT compresses original BERT adaptively
for different downstream tasks.

54

https://arxiv.org/abs/2001.04246

NAS Benchmarks

❑ NAS-Bench-101 [Ying et al. 19]
• Provides a lookup table for the 423k architectures.

• Including their train/valid/test accuracies, number of parameters, and training time.

❑ NATS-Bench [Dong et al. 21]
• Search space considers both size and topology factors.

Figure: The search space of NATS-Bench.
55

https://github.com/google-research/nasbench
https://xuanyidong.com/assets/projects/NATS-Bench

NAS Benchmarks

❑ NAS-Bench-101 [Ying et al. 19]
• Provides a lookup table for the 423k architectures.

• Including their train/valid/test accuracies, number of parameters, and training time.

❑ NATS-Bench [Dong et al. 21]
• Search space considers both size and topology factors.

Figure: Comparison the benchmarks.

56

https://github.com/google-research/nasbench
https://xuanyidong.com/assets/projects/NATS-Bench

Takeaways

❑ Search strategy

❑ Search space

❑ Performance estimation strategy

• Trial-and-error, e.g., RL and ES
• One-shot NAS
• Differentiable (+sampling ops)

• Layer by layer
• Pre-defined restricted design space
• Pre-defined size

• Repeated normal&reduction cell
• Search for design space
• Also search for optimal size

• Stand training&validation
• Single objective

• With weight-sharing
• Multiple objectives

57

Future Directions

❑ Reduce the variance of one-shot NAS
• The interference between child models is a main factor [Zhang et al. 2020].

• E.g., sharing unless some condition(s) are satisfied.

❑ Select the truly useful architecture
• The magnitude of architecture parameters does not necessarily indicate how much the operation

contributes to the supernet’s performance [Wang and Cheng et al. 2021].

Figure: Validation
performance of each
child model during the
last 120 steps.

58

Dynamic Neural Networks: A Survey,
https://arxiv.org/pdf/2102.04906.pdf

❑ Beyond NAS: From
static to dynamic
neural architecture.

• Fine-grained tuning.

• Mainly focusing on CNNs
and efficiency issue now.

59

https://arxiv.org/pdf/2102.04906.pdf

References of NAS
• [Zoph et al. 2017] Neural Architecture Search with Reinforcement Learning. ICLR. 2017.
• [Zoph et al. 2018] Learning Transferable Architectures for Scalable Image Recognition. CVPR. 2018.
• [Bender et al. 2018] Understanding and Simplifying One-Shot Architecture Search. ICML. 2018.
• [Zhang et al. 2020] Deeper Insights into Weight Sharing in Neural Architecture Search. arXiv. 2020.
• [Li et al. 2021] Geometry-aware Gradient Algorithms for Neural Architecture Search. ICLR. 2021.
• [Xie et al. 2019] Exploring Randomly Wired Neural Networks for Image Recognition. ICCV. 2019.
• [Radosavovic et al. 2020] Designing Network Design Spaces. CVPR. 2020.
• [You et al. 2020a] Graph Structure of Neural Networks. ICML. 2020a.
• [Zhou et al. 2019] Auto-GNN: Neural Architecture Search of Graph Neural Networks. Arxiv. 2019.
• [You et al. 2020b] Design Space for Graph Neural Networks. NeurIPS. 2020b.
• [Cai et al. 2019] ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. ICLR. 2019.
• [Guo et al. 2020] When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks.

CVPR. 2020.
• [Ying et al. 2019] NAS-Bench-101: Towards Reproducible Neural Architecture Search. ICML. 2019.
• [Dong et al. 2021] NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size. TPAMI.

2021.
• [Tan et al. 2019] EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICML. 2019.
• [Wang and Cheng et al. 2021] Rethinking Architecture Selection in Differentiable NAS. ICLR. 2021.

60

Meta-Learning

61

Meta-learning
❑What is meta-learning?

• Training on a meta-dataset consisting of many datasets, where each is a different task.

• Extract prior knowledge from it that accelerates the learning of new tasks.

Figure: Example of how meta-learning works (source: https://cs330.stanford.edu/slides/cs330_metalearning_bbox_2020.pdf).
62

https://cs330.stanford.edu/slides/cs330_metalearning_bbox_2020.pdf

❑ AutoML as a service
• What if users do not have a large dataset for training a deep model?

• What if users want to quickly learn a new task?

When Meta-learning Meets AutoML

AutoML

Hyperparameter
Optimization

Automatic
Feature
Generation

NAS

Figure: The distribution of the scales of
datasets. (source: https://cs330.stanford.edu/).

63

https://cs330.stanford.edu/

❑ AutoML as a service
• Assume different tasks share some common principles.

• Can we exploit the cumulated experience?

When Meta-learning Meets AutoML

AutoML

Hyperparameter
Optimization

Automatic
Feature
Generation

NAS Meta-Learning😄

64

Meta-learning Basics
❑ Exploit the meta-dataset

• Conventional ML:

• Meta-learning:

❑ Replace the meta-dataset by meta-parameters
• Sufficient to represent the meta-dataset.

this is the adaptation problem

65

Optimization-based Meta-learning

❑ Adaptation problem
• Acquire 𝜙𝑖 via optimization 𝜙𝑖 =
𝑎𝑟𝑔𝑚𝑎𝑥𝜙 log 𝑝 𝐷𝑖

𝑡𝑟|𝜙 + log 𝑝 𝜙|𝜃 .

• 𝜃 serves as a prior.

❑Which form of prior to take?
• Initialization and fine-tuning!

Figure: Illustrating the idea of optimization-based meta-
learning (source: https://arxiv.org/pdf/1703.03400.pdf).

Where 𝑔𝑖 =
𝜕

𝜕𝜃𝑖
𝐿 𝜃𝑖 , 𝐷

𝑡𝑟 , ҧ𝑔𝑖 =
𝜕

𝜕𝜃1
𝐿 𝜃𝑖 , 𝐷

𝑡𝑟 ,

ഥ𝐻𝑖 =
𝜕

𝜕𝜃1
ҧ𝑔𝑖 (Hessian w.r.t. 𝜃1)

66

https://arxiv.org/pdf/1703.03400.pdf

Optimization-based Meta-learning

Figure: Probabilistic interpretation of optimization-based
meta-learning (source: https://cs330.stanford.edu/).

😄Model-agnostic
😄Maximally expressive with sufficiently deep neural networks
☹️Typically requires second-order computation/memory intensive

❑ Probabilistic interpretation
• Maximize a posterior (MAP) with 𝜃 as the prior.

❑MAML [Finn et al. 17] approximates hierarchical
Bayesian inference!

• Gradient descent with early stop = MAP inference under Gaussian prior
with mean at initial parameters.

• Other forms, e.g.,

67

https://cs330.stanford.edu/

Model-based Meta-learning
❑ Adaptation problem

• From solving optimization problem to black-box adaptation 𝜙𝑖 = 𝑓𝜃 𝐷𝑖
𝑡𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜙 log 𝑝 𝜙|𝐷𝑖

𝑡𝑟 , 𝜃

• Train a neural networks to represent 𝑝 𝜙𝑖|𝐷𝑖
𝑡𝑟 , 𝜃

• E.g., RNN, Neural Turing Machine, memory-augmented NN [Santoro et al. 16], etc.

Figure: Memory-augmented neural networks (source: https://proceedings.mlr.press/v48/santoro16.pdf).

𝐷𝑖
𝑡𝑟 𝐷𝑖

𝑡𝑠

😄Expressive
☹️Often sample-inefficient

68

https://proceedings.mlr.press/v48/santoro16.pdf

Metric-based Meta-learning
❑ Use Non-parametric learner

Figure: The idea of metric-based
meta-learning (source:
https://cs330.stanford.edu/slide
s/cs330_nonparametric_2020.p
df).

😄Entirely feedforward
😄Easy to optimize
☹️Harder to generalize to varying
k-ways (especially for very large k)

69

https://cs330.stanford.edu/slides/cs330_nonparametric_2020.pdf

Metric-based Meta-learning
❑ Use Siamese neural networks

• Meta-training: binary classification.

• Meta-test: k-way classification.

Figure: Architecture of
Siamese neural networks
and its application to
one-shot learning.

Siamese Neural Networks for One-shot Image Recognition. ICML, 2015, https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
70

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

Metric-based Meta-learning
❑Match the train&test phases by Matching networks

• Fix the mismatch between meta-training and meta-test.

• Map a (support) set 𝑆 = 𝑥𝑖 , 𝑦𝑖 to a classifier:

• The attention mechanism 𝑎 ⋅,⋅ fully specifies the classifier.

Figure: Architecture of Matching network.

Matching Networks for One Shot Learning. NeurIPS, 2016, https://arxiv.org/abs/2001.00745 71

https://arxiv.org/abs/2001.00745

GPT-3: meta-learning as pre-training

❑What’s the meta-dataset?
• Crawled text corpora.

• 𝐷𝑖
𝑡𝑟: sequence of characters, 𝐷𝑖

𝑡𝑠: the following sequence of characters.

❑What’s the meta-learning problem?
• Put different tasks all in the form of text.

• Thus trained on language generation tasks.

❑What’s the extracted prior knowledge?
• A “Transformer” model as the initialization.

Figure: The model is far from perfect (source:
https://github.com/shreyashankar/gpt3-
sandbox/blob/master/docs/priming.md).

72

https://github.com/shreyashankar/gpt3-sandbox/blob/master/docs/priming.md

Generalization v.s. Customization

❑ Key assumption of meta-learning
• Meta-training and meta-test tasks are drawn i.i.d. from the same task

distribution.

• E.g., Omniglot:
• 1623 characters from 50 different alphabets.

• 20 instances for each character.

Figure: Characters of different alphabets (source: https://omniglot.com/).

73

https://omniglot.com/

Generalization v.s. Customization

❑ Key assumption of meta-learning
• Meta-training and meta-test tasks are drawn i.i.d. from the same task

distribution.

• E.g., Omniglot:
• 1623 characters from 50 different alphabets.

• 20 instances for each character.

❑ Experience cumulated on the cloud
• Different user experiments can be quite different.

• Learning a global prior may be insufficient.

Cumulated
Experience

Meta-learning

Global Prior

𝐷𝑖
𝑡𝑟

Customization

Customized
Initializatio
n

Adaptation

Task-specific
Model

Task
Signature

☹️Can NOT be strictly satisfied!

74

Relational Meta-Learning

The proposed relational meta-
learning method can capture the
relations among different tasks,
which enhances the
effectiveness of meta-learners.

Automated Relational Meta-learning, ICLR, 2020, https://arxiv.org/abs/2001.00745

Meta
Learner

Learner-2

Learner-1

Learner-3 Learner-4

Most Meta-learning
methods don’t capture
the relations among
tasks/learners.

75

https://arxiv.org/abs/2001.00745

Summary and Future Directions

❑ Use meta-learning for improving real-world services
• AutoML as a service has cumulated a lot of experience.
• Learning tasks on different domains and/or with different models share some intrinsic patterns of

machine learning.

• What kinds of features are transferable? How to represent a task, a model, and a objective?

❑ How to utilize existing experience---meta-learning
• Learn a meta-parameter, so that we can quickly transfer to new task.

• Optimization-based, model-based, metric-based

❑What if tasks are heterogeneous?
• Trade-off between generalization v.s. customization

76

References of Meta-learning

[Santoro et al. 2016] Meta-Learning with Memory-Augmented Neural Networks. ICML. 2016.
[Finn et al. 2017] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML. 2017.
[Nichol et al. 2018] On First-Order Meta-Learning Algorithm. arXiv. 2018.
[Kock et al. 2015] Siamese Neural Networks for One-shot Image Recognition. ICML. 2015.
[Vinyals et al. 2016] Matching Networks for One Shot Learning. NeurIPS. 2016.

77

Auto Feature Generation

78

Automatic Feature Generation

• In practice, many data scientists search for useful interactive features in a trial-and-error manner,

which has occupied a lot of their workloads.

• Therefore, automatic feature generation (AutoFeature), as one major topic of automated machine

learning (AutoML), has received a lot of attention from both academia and industry.

… … … … … …

… … … … … …

… … … … … …

… … … … … …

Data
AutoFeature

Model
Useful Interactive

Features
Downstream
Applications

79

Automatic Feature Generation

• Industries such as healthcare and finance
need interpretability

• Can be applied to train lightweight models
for real-time requirement

• The number of possible interactive features
is too large to be traversed
(𝑂 2𝑚 for 𝑚 original features)

Feature Interpretability

Search Efficiency

80

Automatic Feature Generation

❑ The related works on automatic feature generation can be roughly divided
into two categories:

• DNN-based methods
• Search-based methods

DNN-based methods design specific neural
architectures to express the interactions
among different features.
• Implicit feature generation
• One-shot training course
• Lack of interpretable rules for feature

interactions

Search-based methods focus on designing
different search strategies that prune as much
of the candidates to be evaluated as possible,
while aiming to keep the most useful interactive
features.
• Explicit feature generation
• Trial-and-error training manner
• Need lots of time and computing resource

81

AutoInt

❑Map the original features into low-dimensional feature space and model
the high-order feature interactions via self-attention.

Overview of the proposed model AutoInt.

① Input Layer:
Each feature field is represented as an one-hot
vector (for categorical feature) or a scalar value (for
numerical feature).

② Embedding Layer:
To transform the sparse and high-dimension features
into a low-dimensional feature space via a learnable
embedding matrix.

1

2

3

AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. CIKM, 2019.
82

AutoInt

❑Map the original features into low-dimensional feature space and model
the high-order feature interactions via self-attention.

Overview of the proposed model AutoInt.

③ Interacting Layer:
The multi-head key-value attention mechanism is adopted
to capture the interactions between different features.

1

2

3

The architecture of interacting layer.

AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. CIKM, 2019.
83

AutoInt

AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. CIKM, 2019.

❑ Experimental results on four real-world datasets show the advantages of AutoInt

An instance of attention weights for
feature interactions on MovieLens-1M.Efficiency comparison on MovieLens-1M.

• Performance comparison in offline AUC evaluation for click-through rate (CTR) prediction
• Efficiency comparison
• Explainable recommendations

84

Field-a are Embedding La er

M lti-head Self-attention La er

 0 0 0 0 0 0 0 0

Field 1 Field 2 Field 3 Field 4 Feat re Graph

Graph Ne ral Net ork La er -

Graph Ne ral Net ork La er -

Graph Ne ral Net ork La er -

A
tt

e
n

ti
o

n
a

l
S

c
o

ri
n

g
 L

a
e

r

 Logistic Loss

Figure 1: Overview of our proposed method. The input raw

multi - eld feature vector is rst converted to eld embed-

ding vectors via an embedding layer and represented as a

feature graph, which is then feed into Fi-GNN to model fea-

ture interactions. An attention layer is appl ied on the out-

put of Fi-GNN to predict the cl ick through rate ŷ. Detai ls of

embedding layer and Fi-GNN are i l lustrated in Figure 2 and

Figure 3 respectively.

and more attention because of the great representative power of

graphs. Early works usually convert graph-structured data into

sequence-structured data to deal with. Inspired by word2vec [18],

the work [19] proposed an unsupervised DeepWalk algorithm to

learn node embedding in graph based on random walks. After

that, [27] proposed a network embedding algorithm LINE, which

preserve the rst- and second-order structural information. [5] pro-

posed node2vec which introduces a biased random walk. However,

these methods can be computationally expensive and non-optimal

for large graphs.

Graph neural networks (GNN) are designed to tackle these prob-

lems, which are deep learning based methods that operate on the

graph domain. The concept of GNN is rst proposed by [24]. Gen-

erally, nodes in GNNs interact with neighbors by aggregating infor-

mation from neighborhoodsand updating their hidden states. There

havebeen many variants of GNN with various kinds of aggregators

and updaters proposed these days. Here we only present some rep-

resentative and classical methods. Gated Graph Neural Networks

(GGNN) [12] uses GRU [3] as updater. Graph Convolutional Net-

works (GCN) [10] considers the spectral structure of graphs and

utilizes the convolutional aggregator. GraphSAGE [7] considers the

spatial information. It introduces three kinds of aggregators: mean

aggregator, LSTM aggregator and Pooling aggregator. Graph at-

tention network (GAT) [30] incorporates the attention mechanism

into the propagation step. There are some surveys [33, 36] which

provide more elaborative introduction of various kinds of GNN

models.

Due to convincing performance and high interpretability, GNN

has been a widely applied graph analysis method. Recently, there

are many application of GNN like neural machine translation [1],

semantic segmentation [20], image classi cation [17], situation

recognition [11], recommendation [32], script event prediction [14],

fashion analysis [4, 13]. GNN is suitable for modeling node inter-

actions on graph-structured features intrinsically. In this work,

we proposed a model Fi-GNN based on GGNN to model feature

interactions on the graph-structured features for CTRprediction.

3 OUR PROPOSED METHOD

We rst formulate the problem and then introduce the overview

of our proposed method, followed by the elaborate detail of each

component.

3.1 Problem Formulation

Suppose the training dataset consists of m- elds categorical fea-

tures (m is the number of feature elds) and the associated labels

y 2 {0, 1} which indicate user click behaviors. The task of CTR

prediction is to predict ŷ for the input m- elds features, which

estimates the probability of a user clicking. The key of the task is to

model the sophisticated interactions among di erent feature elds.

3.2 Overview

Figure 1 is the overview of our proposed method (m=4). The input

sparse m- eld feature vector is rst mapped into sparse one-hot

embedding vectors and then embedded to dense eld embedding

vectors via the embedding layer and the multi-head self-attention

layer. The eld embedding vectorsare then represented asa feature

graph, where each node corresponds to a feature eld and di erent

feature elds can interact through edges. The task of modeling

interaction can be thus converted to modeling node interactions

on the feature graph. Therefore, the feature graph is feed into our

proposed Fi-GNN to model node interactions. An attention scoring

layer is applied on the output of Fi-GNN to estimate the click-

through rate ŷ. In the following, we will introduce the details of

our proposed method.

3.3 Embedding Layer

The multi- eld categorical feature x is usually sparse and of huge

dimension. Following previous works [6, 21, 22, 31, 35], we repre-

sent each eld as a one-hot encoding vector and then embed it to a

dense vector, noted as eld embedding vector. Let us consider the

example in Section 1, a movie {Language: English, Genre: fiction,

Director: Christopher Nolan, Starring: Leonardo DiCaprio } is rst

transformed into a high-dimensional sparse features via one-hot

encoding:

[1, 0, ..., 0]
| { z }

Language

, [0, 1, ..., 0]
| { z }

Genre

, [0,1, ..., 0]
| { z }

Director

, [0, 1, ..., 0]
| { z }

Starring

A eld-aware embedding layer is then applied upon the one-hot

vectors to embed them to low dimensional, dense real-value eld

embedding vectors as shown in Figure ??. Likewise, the eld em-

bedding vectors of m- eld feature can be obtained:

E = [e1, e2, e3, ..., em] ,

whereei 2 Rd denotestheembedding vector of eld i andd denotes

the dimension of eld embedding vectors.

Fi-GNN

❑ Fi-GNN proposes to represent multi-field features in a
graph structure, and captures the feature interactions
through node representation learning in the graph.

• Feature interaction via a graph view: nodes represent
features and edges denote their interactions

Overview of the proposed Fi-GNN.

Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction. CIKM, 2019.

• Model feature interactions via Graph Neural Networks
(GNN)

• Attentional scoring for predictions

85

Fi-GNN

❑ Feature interaction in Fi-GNN: The nodes interact with neighbors and update their states
in a recurrent fashion.

Feature interaction in Fi-GNN.

Node Aggregation:
The node aggregates the transformed information
from neighbors and update its state according to
the aggregated information and history via GRU
and residual connection.

Feature Graph:
The edge weights reflect the importance of
interactions between the connected nodes
(features), which are learned via an attention
mechanism.

Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction. CIKM, 2019.

3.4 Multi-head Self -attention Layer

Transformer [29] is prevalent in NLP and has achieved great suc-

cess in many tasks. At the core of Transformer, the multi-head

self-attention mechanism is able to model complicated dependen-

cies between word pairs in multiple semantic subspaces. In the

literature of CTR prediction, we take advantage of the multi-head

self-attention mechanism to capture the complex dependencies

between feature eld pairs, i.e, pairwise feature interactions, in

di erent semantic subspaces.

Following [26], given the feature embeddings E, we obtain the

feature representation of features that cover the pairwise interac-

tions of an attention head i via scaled dot-product:

Hi = softmaxi (
QKT

p
dK

)V,

Q = W
(Q)
i E, K = W

(K)
i E, V = W

(V)
i E.

The matrices W
(Q)
i 2 Rdi ⇥d , W

(K)
i 2 Rdi ⇥d , W

(V)
i 2 Rdi ⇥d are

three weight parameters for attention head i , di is the dimension

size of head i , and Hi 2 Rm⇥di .

Then we combine the learnt feature representations of each

head to preserve the pairwise feature interactions in each semantic

subspace:

H1 = ReLU(H1 ⊕H2 ⊕· · ·⊕Hh),

where⊕denotes the concatenation operation and h denotes the

number of attention heads. The learnt feature representations H1 2

Rm⇥d0
are used for the initial node states of the graph neural net-

work, whered0 =
Õh

i =1di .

3.5 Feature Graph

Distinguished from the previous works which simply concatenate

the eld embedding vectors together and feed them into designed

models to learn feature interactions, we represent them in a graph

structure. In particular, We represent each input multi- eld feature

asa featuregraph G = (N , E),whereeach nodeni 2 N corresponds

to a feature eld i and di erent elds can interact through the

edges, so that |N | = m. Since each two elds ought to interact, it is

a weighted fully connected graph while the edge weights re ect

importances of di erent feature interactions. Accordingly, the task

of modeling feature interactions can beconverted to modeling node

interactions on the feature graph.

3.6 Feature Interaction Graph Neural Network

Fi-GNN isdesigned to model nodeinteractionson thefeaturegraph,

which is based on GGNN [12]. It is able to model the interactions

in a exible and explicit fashion.

Prel iminaries. In Fi-GNN, each nodeni isassociated with ahidden

state vector ht
i and the state of graph is composed of these node

states

Ht =
⇥
ht

1, ht
2, ht

3, ..., ht
m

⇤
,

where t denote the interaction step. The learnt feature representa-

tions by the multi-head self-attention layer areused for their initial

nodestatesH1. Asshown in Figure2, thenodes interact and update

their states in a recurrent fashion. At each interaction step, the

nodes aggregate the transformed state information with neighbors,

Figure 2: Framework of Fi-GNN. The nodes interact with

neighbors and update their states in a recurrent fashion. At

each interaction step, each node wil l rst aggregate trans-

formed state information from neighbors and then update

i tsstateaccording to theaggregated information and history

via GRU and residual connection.

and then update their node states according to the aggregated in-

formation and history via GRU and residual connection. Next, we

will introduce the details of Fi-GNN elaborately.

State Aggregation. At interaction step t , each nodewill aggregate

the state information from neighbors. Formally, the aggregated

information of nodeni is sum of its neighbors’ transformed state

information,

at
i =

’

n j ! ni 2E

A[nj ,ni]Wpht −1
j , (1)

where Wp is the transformation function. A 2 Rm⇥m is the adja-

cency matrix containing theedgeweights. For example, A[nj ,ni] is

the weight of edge from nodenj to ni , which can re ect the impor-

tance of their interaction. Apparently, the transformation function

and adjacency matrix decide on the node interactions. Since the in-

teraction on each edge ought to di er, we aim to achieve edge-wise

interaction, which requires a unique weight and transformation

function for each edge.

(1) A entional EdgeWeights. Theadjacency matrix in thecon-

ventional GNN models is usually in the binary form, i.e., only con-

tains 0 and 1. It can only re ect the connected relation of nodes

but fails to re ect the importances of their relations. In order to

infer the importances of interactions between di erent nodes, we

propose to learn the edge weights via an attention mechanism. In

particular, the weight of edge from nodeni to nodenj is calculated

with their initial nodestates, i.e., thecorresponding eld embedding

vectors. Formally,

w(ni ,nj) =
exp(LeakyRelu(Ww

⇥
ei || ej

⇤
))

Õ
k exp(LeakyRelu(Ww [ei || ek]))

, (2)

where Ww 2 R2d0
is a weight matrix, || is the concatenation op-

eration. The softmax function is utilized to make weights easily

comparable across di erent nodes. Therefore, the adjacency matrix

is,

A[ni ,nj] =

(
w(ni ,nj), if i , j ,

0, else .
(3)

86

Fi-GNN

Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction. CIKM, 2019.

❑ Taking advantage of the strong representative power of graphs, Fi-GNN captures high-order
feature interaction in an efficient way.

❑ Fi-GNN also provides good model explanations for CTR prediction.

Performance comparison.
Heat map of attentional edge weights.

Figure 5: Heat map of attentional edge weights at the global-

level on Avazu, which re ects the importance of relations

between di erent feature elds.

of all the samples in Avazu dataset, which can re ect the relations

between di erent elds in aglobal level. Since they aresomeanony-

mous feature elds, we only show the remaining 13 feature elds

with real meanings.

Ascan beseen, somefeature eldstend to haveastrong relations

with others, such as site_category and site_id. This makes sense

since the two feature eld both corresponds to the website where

the impressions areput on. They contain themain contextual infor-

mation of impressions. Hour is another feature which have close

relationswith others. It is reasonable sinceAvazu focuseson mobile

scene, where user sur ng online at any time of a day. The sur ng

time has strong in uence on other advertising features. On the

other hand, device_ip and device_id seem to have weak relations

with other feature elds. This may due to that they nearly equal to

user identity, which is relatively xed and hard to be in uenced by

other features.

4.5.2 A entional Node weights. The attentional node weights

re ect the importances of feature elds’ in uence on the overall

prediction score. Figure 6 presents the heat map of global-level and

case-level attentional node weights. The leftmost is an globally av-

eraged oneof all thesamples in Avazu dataset. The left four are ran-

domly selected, whose predicted scores are [0.97, 0.12, 0.91,0.99],

and labels are [1,0, 1, 1] respectively. At the global level, we can see

that the feature eld app_category have the strongest in uence on

the clicking behaviors. It is reasonable since Avazu focuses on mo-

bile scene, where the app is the most important factor. At the case

level, we observe that the nal clicking behavior mainly depends

on one critical feature eld in most cases.

5 CONCLUSIONS

In this paper, we point out the limitations of the previous CTR

models which consider multi- eld featuresas an unstructured com-

bination of feature elds. To overcometheselimitations, wepropose

to represent the multi- eld features in a graph structure for the

global average cases

Figure 6: Heat map of attentional node weights at both

global- and case-level on Avazu, which re ects the impor-

tance of di erent feature elds on the nal prediction.

rst time, whereeach nodecorresponds to a feature eld and di er-

ent elds can interact through edges. Therefore, modeling feature

interactions can be converted to modeling node interaction on the

graph. To thisend, wedesign anovel model Fi-GNN which isable to

model sophisticated interactions among feature elds in a exible

and explicit fashion. Overall, we propose a new paradigm of CTR

prediction: represent multi- eld features in a graph structure and

convert the task of modeling feature interactions to modeling node

interactions on graphs, which may motivate the future work in this

line.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of

China (61772528, 61871378) and National Key Research and Devel-

opment Program (2016YFB1001000, 2018YFB1402600).

REFERENCES
[1] Daniel Beck, Gholamreza Ha ari, and Trevor Cohn. 2018. Graph-to-sequence

learning using gated graph neural networks. arXiv preprint arXiv:1806.09835
(2018).

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedingsof the1st
workshop on deep learning for recommender systems. ACM, 7–10.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[4] Zeyu Cui, Zekun Li, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Dressing
as a Whole: Out t Compatibility Learning Based on Node-wise Graph Neural
Networks. arXiv preprint arXiv:1902.08009 (2019).

[5] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the22nd ACM SIGKDD international conferenceon
Knowledgediscovery and data mining. ACM, 855–864.

[6] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTRprediction. In
Proceedings of the 26th International Joint Conference on Arti cial Intelligence.
AAAI Press, 1725–1731.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[8] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictiveanalytics. In Proceedingsof the40th International ACM SIGIRconference

87

Automatic Feature Generation

❑ The related works on automatic feature generation can be roughly divided
into two categories:

• DNN-based methods
• Search-based methods

DNN-based methods design specific neural
architectures to express the interactions
among different features.
• Implicit feature generation
• One-shot training course
• Lack of interpretable rules for feature

interactions

Search-based methods focus on designing
different search strategies that prune as much
of the candidates to be evaluated as possible,
while aiming to keep the most useful interactive
features.
• Explicit feature generation
• Trial-and-error training manner
• Need lots of time and computing resource

88

AutoCross

❑ AutoCross searches useful feature interactions in the high-order interactive feature space by
incrementally constructing local optimal feature set

• Multi-granularity discretization
• Greedy & beam search
• Field-wise logistic regression
• Successive mini-batch gradient descent

An illustration of multi-granularity discretization.

Multi-granularity discretization:
• For automatic discretization, each numerical

feature is discretized into several categorical
features with different granularities.

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.

approximation of E(S), with accuracy traded for higher e ciency.

However, since the purpose of feature set evaluation is to identify

themost promising candidate, rather than to accurately estimate the

performance of candidates, a degraded accuracy is acceptable if only

it can recognize the best candidate with high probability. Experi-

mental results reported in Section 5 demonstrate the e ectiveness

of eld-wise LR.

After a candidate is selected to replace the current solution S⇤

(Step 6, Algorithm 1), we train an LR model with the new S⇤,

evaluate its performance, and updatebsum for data blocks that will

be used in the next iteration. Details will be discussed immediately.

4.3.2 Successive Mini-batch Gradient Descent. In AutoCross, we

use a successive mini-batch gradient descent method to further

accelerate eld-wise LRtraining. It is motivated by the successive

halving algorithm [18] which wasoriginally proposed for multi-arm

bandit problems. Successive halving features an e cient allocation

of computing resourcesand high simplicity. In our case,weconsider

each candidate feature set as an arm, and a pull of the arm is to

train the corresponding eld-wise LR model with a data block. The

instant reward of pulling an arm is the resulting validation AUC of

the partially trained model. The training data is equally split into

N ≥
Õ dlog2 n e−1

k=0
2k data blocks, where n is the number of candi-

dates. Then we invoke Algorithm 2 to identify the best candidate

feature set. Successive mini-batch gradient descent allocates more

resources to morepromising candidates. Theonly hyper-parameter

N , namely the number of data blocks, is adaptively chosen accord-

ing to the size of data set and the working environment. Users do

not need to tune the mini-batch size and sample ratios that are

critical for vanilla subsampling.

Algori thm 2 SuccessiveMini-batch Gradient Descent (SMBGD).

Require: set of candidate feature sets S = { Si }n
i =1, training data equally

divided into N ≥
Õdlog2 n e−1

k =0
2k data blocks.

Ensure: best candidate S0.

1: for k = 0, 1, · · · , dlog2 ne− 1 do

2: use additional 2k data blocks to update the eld-wise LRmodels of

all S 2 S, with warm-starting;

3: evaluate the models of all S’swith validation AUC;

4: keep the top half of candidates in S: S t op_hal f (S) (rounding

down);

5: break if S contains only one element;

6: end for

7: return S0 (the singleton element of S).

4.4 Preprocessing

In AutoCross, we use discretization in the data preprocessing step

to enable feature crossing between numerical and categorical fea-

tures. Discretization has been proven useful to improve predicting

capability of numerical features [5, 24, 27]. The most simple and

widely-used discretization method is equal-width discretization,

i.e., to split the value range of a feature into several equal-width

intervals. However, in traditional machine learning applications,

the number of intervals, named as granularity in our work, has a

great impact on the learning performance and should be carefully

determined by human experts.

original

numerical feature

lower bound upper bound

value

0 1 2 3 4 5 6 7 8 9
1st

discretized feature

0 1 2 3 4
2nd

discretized feature

0 1 2 3
3nd

discretized feature

0 1 2
4nd

discretized feature

d
e
c

re
a

s
in

g

g
ra

n
u

la
rity

Figure 5: An i l lustration of multi -granular i ty discretization.

Shade indicates the value taken by each discretized feature.

In order to automate discretization and spare its dependence

on human experts, we propose a multi-granularity discretization

method. The basic idea is simple: instead of using a ne-tuned

granularity,wediscretizeeach numerical featureinto several, rather

than only one, categorical features, each with adi erent granularity.

Figure 5 gives an illustration of discretizing a numerical feature

with four levels of granularity. Since more levels of granularity are

considered, it is more likely to get a promising result.

In order to avoid thedramatic increase in featurenumber caused

by discretization, once these features are generated, we use eld-

wise LR (without considering bsum) to evaluate them and keep

only the best half. A remaining problem is how to determine the

levelsof granularity. For an experienced user, shecan set agroup of

potentially good values. If no values are speci ed, AutoCross will

use {10p }P
p=1 as default values, whereP is an integer determined

by a rule-based mechanism that considers the available memory,

data size and feature numbers.

In addition, AutoCross will invoke a tuning procedure in the

preprocessing step to nd optimal hyper-parameters for LRmodels.

They will be used in all LRmodels involved subsequently.

4.5 Termination

Three kinds of termination conditions are used in AutoCross: 1)

runtimecondition: theuser can set amaximal runtime of AutoCross.

When the time elapses, AutoCross terminates outputs the current

solution S⇤. Additionally, the user can always interrupt the proce-

dure and get the result of the time; 2) performance condition: after a

new feature set is generated (Step 6, Algorithm 1), an LR model is

trained with all its features. If, compared with the former set, the

validation performance degrades, the procedure is terminated; 3)

maximal featurenumber : the user can give a maximal cross feature

number so that AutoCross stops when the number is reached.

5 EXPERIMENTS

In this section, we demonstrate the e ectiveness and e ciency of

AutoCross. First, by comparing AutoCross with several reference

methods on both benchmark and real-world business datasets, we

show that with featurecrossing it can signi cantly improvetheper-

formance of both linear and deep models, and that high-order cross

features are useful. Then we report the time costs of feature cross-

ing with AutoCross. Finally, we show the advantage of AutoCross

in real-time inference.

89

AutoCross

❑ AutoCross searches useful feature interactions in the high-order interactive feature space by
incrementally constructing local optimal feature set

• Multi-granularity discretization
• Greedy & beam search
• Field-wise logistic regression
• Successive mini-batch gradient descent

An illustration of the search space and beam search
strategy.

Greedy & beam search:
• Tree-structured space with the original

features as the root.
• The children are generated by added one

pair-wise crossing to the parent.
• Only the most promising child will be

expanded during the search

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.

in model training, or the learned model in inference. It employs

hashing trick [39] to improve the accelerate feature producing.

Compared with deep-learning-based methods, the featureproducer

takes signi cantly less computation resources, and is hence espe-

cially suitable for real-time inference.

Inside the black box (‘ ow’ part in Figure 2), the data will rst

be preprocessed, where hyper-parameters are determined, missing

values lled and numerical features discretized. Afterwards, useful

feature sets are iteratively constructed in a loop consisting of two

steps: 1) featureset generation, where candidate feature sets with

new cross features are generated; and 2) feature set evaluation,

where candidate feature sets are evaluated and the best is selected

asa new solution. This iterativeprocedure is terminated once some

conditions are met.

From the implementation perspective (‘infrastructures’ part in

Figure 2), the foundation of AutoCross is a distributed computing

environment based on the well-known parameter server (PS) archi-

tecture [25]. Data is cached in memory by blocks, where each block

containsasmall subset of thetraining data. Workersvisit thecached

data blocks, generate corresponding features, and evaluate them.

A feature manager takes control over the feature set generation

and evaluation. A process manager controls the whole procedure

of feature crossing, including hyper-parameter adaptation, data

preprocessing, work ow control, and program termination.

The algorithms, that bridge the work ow and infrastructures,

are themain focusof thispaper (‘algorithms’ part of Figure2). Each

algorithm corresponds to a part in the work ow: we employ beam

search for feature set generation to explore an extensive search

space (Section 4.2), eld-wise logistic regression and successive

mini-batch gradient descent for feature set evaluation (Section 4.3),

and multi-granularity discretization for data preprocessing (Sec-

tion 4.4). Thesealgorithmsarechosen,designed,and optimized with

the considerations of simplicity and costs of distributed computing,

as will be detailed in the next section.

4 METHOD

In this section, we detail the algorithms used in AutoCross. We

focus on the binary classi cation problem. It is not only the subject

of most existing works [5, 7, 21, 26, 34], but also the most widely

considered problem in real-world businesses [3, 4, 10, 23, 38, 41].

4.1 Problem De nition

For the ease of discussion, rst we assume that all the original

features are categorical. The data is represented in the multi- eld

categorical form [26, 37, 42], where each eld is a binary vector

generated from a categorical feature by encoding (one-hot encod-

ing or hashing trick). Given training data DT R, we split it into a

sub-training set D t r and avalidation set Dv l d . Then, werepresent

D t r with a feature set S, and with learning algorithm L learn a

model L (D t r , S). To evaluate this model, we represent the valida-

tion set Dv l d with the same feature set S and calculate a metric

E (L (D t r , S), Dv l d , S), which should be maximized.

Now, we formally de ne the featurecrossing problem as:

max
S✓A(F)

E (L (D t r ,S), Dv l d ,S) , (4)

A, B, C, D

+ AB + AC + CD…

+ AC + CD… + ABC + ABD

+ AC + BD + BCD + ABCD… …

+ AC + ABC + BCD + ABCD… …

Figure3: An i l lustration of thesearch spaceand beam search

strategy employed in AutoCross. In beam search, only the

best node(bold stroke) at each level isexpanded. Weuse two

colors to indicate the two features that are used to construct

the new cross feature.

where F is the original feature set of DT R, and A(F) is the set of

all original features and possible cross features generated from F .

4.2 Feature Set Generation

In this subsection, we introduce the feature set generation method

in AutoCross, which also determines the main search strategy.

We consider the feature crossing problem (Problem (4)). Assume

the size of the original feature set isd, which is also the highest

order of cross features. The size of A(F) is:

card (A(F)) =

d’

k=1

C(d,k) = 2d − 1, (5)

and the number of all possible feature sets is 2(2d −1), a double

exponential function of d. Obviously, it is impractical to search for

an globally optimal feature set in such an extensive space. In order

to nd a moderate solution with limited time and computational

resources, we employ a greedy approach to iteratively construct a

locally optimal featureset.

In AutoCross, we consider a tree-structured space T depicted in

Figure 3, where each node corresponds to a featureset and the root

is the original feature set F . 2 For simplicity, in this example, we

denote the crossing of two features Aand Bas AB, and higher-order

cross features in similar ways. For a node (a feature set), its each

child is constructed by adding to itself one pair-wise crossing of its

own elements. The pair-wise interactions between cross features

(or a cross feature and an original feature) will lead to high-order

feature crossing. The new space T considers all possible features

in A(F), but excludes part of its subsets. With T , to search for a

feature set is equivalent to identifying a path from the root of T

to a speci c node. This can be done by iteratively adding cross

features into a maintained feature set. However, the size of T is

O
⇣
(d2/ 2)k

⌘
wherek is the maximum number of generated cross

features. It grows exponentially with k. Hence, it will be extremely

expensive to exhaustively visit all possible solutions, or in other

2 In Figure 3 only one node at each level is expanded. This is because we use beam

search strategy. It should be noted that the search space T is a fully expanded tree.

90

AutoCross

❑ AutoCross searches useful feature interactions in the high-order interactive feature space by
incrementally constructing local optimal feature set

• Multi-granularity discretization
• Greedy & beam search
• Field-wise logistic regression
• Successive mini-batch gradient descent

Field-wise logistic regression :
• For each node, the weights of the newly

added interactive features are updated
during training, while other weights are
inherited from the parent and fixed.

Successive mini-batch gradient descent :
• The data are split into several blocks,

and gradually added into the training
process along with narrowing the
candidate interactive features.

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.
91

AutoCross

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.

❑ The advantages of AutoCross:

• Explicit high-order feature generation
• Fast inference
• Interpretability

The number of second/high-order interactive features. Inference latency comparison.

Table 4: Test AUC improvement v.s. LR (base) and Deep.

AC+LR v.s. LR (base)

Bank Adult Credit Employee Criteo Average

0.585% 1.211% 3.316% 3.316% 2.279% 2.141%

Data1 Data2 Data3 Data4 Data5 Average

2.115% 2.154% 1.509% 2.599% 6.692% 3.014%

AC+W&D v.s. LR (base)

Bank Adult Credit Employee Criteo Average

0.213% 0.992% 3.992% 4.367% 2.712% 2.455%

Data1 Data2 Data3 Data4 Data5 Average

1.948% 2.346% 0.948% 2.338% 9.546% 3.368%

AC+W&D v.s. Deep

Bank Adult Credit Employee Criteo Average

0.021% 1.424% 3.035% 3.293% 1.039% 1.763%

Data1 Data2 Data3 Data4 Data5 Average

0.6133% 1.0516% 1.2976% 0.8539% 0.5361% 0.880%

by CMI+LR, that only generates second-order cross features, and

AC+LR that considers high-order featurecrossing. Wecan see that

AC+LR stably and constantly outperforms CMI+LR. This result

demonstrates the usefulness of high-order cross features.

Figure 6: The number of second/high-or der cross features

generated for each dataset.

Table 5: Test AUC improvement: second v.s. high order fea-

tures on benchmark datasets.

v.s. LR(base) Bank Adult Credit Employee Criteo Average

CMI+LR 0.330% -0.175% 0.531% 2.842% -0.140% 0.678%

AC+LR 0.585% 1.211% 3.316% 3.316% 2.279% 2.141%

5.2.3 Time costs of feature crossing. Table 6 reports the feature

crossing time of AutoCross on each dataset. Figure 7 shows the

validation AUC (AC+LR) versus runtime on real-world business

datasets. Such curves are visible to the user and she can terminate

AutoCross at any time to get the current result. It is notable that

due to the high simplicity of AutoCross, no hyper-parameter needs

to be ne-tuned, and the user does not need to spend any extra

time to get it work. In contrast, if deep-learning-based methods

are used, plenty of time will be spent on the network architecture

design and hyper-parameter tuning.

5.2.4 Inference Latency. In many real-world businesses, the appli-

cation scenario of a feature generation tool comprises three stages:

1) o -line feature generation; 2) o -line/online model training; 3)

online inference. In this scenario, the o -line generation stage is

invoked the least frequently, for instance, featurescan begenerated

Table 6: Cross feature generation time (unit: hour).

Benchmark Datasets

Bank Adult Credit Employee Criteo

0.0267 0.0357 0.3144 0.0507 3.0817

Real-World Business Datasets

Data1 Data2 Data3 Data4 Data5

0.9327 0.7973 1.5206 2.7572 5.1861

Figure 7: Val idation AUC curves in real-business datasets.

weekly or even monthly. In contrast, within every millisecond, hun-

dredsor thousandsof inferencesmay sequentially takeplace, which

makes high e ciency a must. Online inference consists of two ma-

jor steps: 1) feature producing to transform the input data, and

2) inference to make prediction. Deep-learning method combines

these steps. In Table 7, we report the inference time of AC+LR,

AC+W&D, Deep and xDeepFM.

Table 7: Inference latency comparison (unit: mi l l isecond).

Benchmark Datasets

Method Bank Adult Credit Employee Criteo

AC+LR 0.00048 0.00048 0.00062 0.00073 0.00156

AC+W&D 0.01697 0.01493 0.00974 0.02807 0.02698

Deep 0.01413 0.01142 0.00726 0.02166 0.01941

xDeepFM 0.08828 0.05522 0.04466 0.06467 0.18985

Real-World Business Datasets

Method Data1 Data2 Data3 Data4 Data5

AC+LR 0.00367 0.00111 0.00185 0.00393 0.00279

AC+W&D 0.03537 0.01706 0.04042 0.02434 0.02582

Deep 0.02616 0.01348 0.03150 0.01414 0.01406

xDeepFM 0.32435 0.11415 0.40746 0.12467 0.13235

It can be easily observed that AC+LR is orders of magnitude

faster than other methods in inference. This demonstrates that,

AutoCross can not only improve the model performance, but also

ensure fast inference with its featureproducer.

6 RELATED WORKS

In this section, we brie y review works that are loosely related to

AutoCross and demonstrate why they do not suit our purpose.

92

AutoFIS

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD, 2020.

❑ AutoFIS automatically identifies important feature interactions for Factorization Models (FM).

• Search Stage: Learn the relative importance of each feature interaction
via architecture parameters within one full training process.

• Re-train Stage: Remove the unimportance interactions and re-train the
resulting neural networks.

Overview of AutoFIS.
93

AutoFIS

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD, 2020.

❑ Experiments on large-scale datasets demonstrate that AutoFIS can improve various FM
based models in CTR prediction tasks.

Performance comparison.

Correlations between the architecture parameters 𝛼 and AUC.

94

FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

❑ To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

1. Search Strategy

• This proposition states that informative
interactive features unlikely come from the
uninformative lower-order ones.

• The theory motivates the bottom-up search
strategy in FIVES: Searching for a group of
informative 𝑘-order features from the
interactions between original features and the
group of (𝑘 − 1)-order features.Theoretical support for the search strategy.

95

FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

❑ To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

2. Feature Graph

• To instantiate the proposed search strategy, the original features are conceptually
regarded as a feature graph and their interactions are modeled by a designed GNN.

n1

n3

n2

n4

n1

n3

n2

n4

n1

n3

n2

n4

… …

• Each node 𝑛𝑖 corresponds to a feature 𝑓𝑖. Each edge 𝑒𝑖,𝑗 indicates an interaction between

𝑛𝑖 and 𝑛𝑗.

The constructed feature graph to represent high-order feature interactions.
96

FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

❑ To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

2. Feature Graph

• The feature graph consists of 𝐾 subgraphs to represent high-order interactive feature. Each
subgraph indicates a layer-wise interaction between features, represented by an adjacency

matrix 𝐴(𝑘) ∈ {0,1}𝑚×𝑚. The graph convolutional operator for aggregation are defined as:

𝑛𝑖
(𝑘)

= 𝑝𝑖
(𝑘)

⨀𝑛𝑖
𝑘−1

, where 𝑝𝑖
𝑘
= MEAN

𝑗|𝐴𝑖,𝑗
𝑘
=1

𝑊𝑗𝑛𝑗
0

• The node representation at 𝑘-th layer corresponds to the generated features:

𝑛𝑖
(𝑘)

= MEAN
𝑗|𝐴𝑖,𝑗

𝑘
=1

𝑊𝑗𝑛𝑗
0

⨀𝑛𝑖
𝑘−1

≈ MEAN
𝑐1,…,𝑐𝑘 |𝐴𝑖,𝑐𝑗

𝑗
=1,𝑗=1,…,𝑘

{𝑓𝑐1⨂…⨂𝑓𝑐𝑘⨂𝑓𝑖}

97

(1)

(2)

FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

❑ To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

3. Differentiable Edge Search

• The task of generating useful interactive features is equivalent to learning an optimal adjacency
tensor 𝐴, so-called edge search.

min
𝑨

ℒ 𝒟val 𝐴, Θ 𝐴)

s. t. Θ 𝐴 = arg min
Θ

ℒ (𝒟train|𝐴, Θ)

• To make the optimization more efficient, 𝐴 is regraded as Bernoulli random variables

parameterized by 𝐻 ∈ 0,1 𝐾×𝑚×𝑚, and a soft 𝐴(𝑘) is allowed to be used for propagation at the 𝑘-
th layer.

98

(3)

FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

❑ To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

4. Interactive Feature Derivation

An example of interactive feature derivation.

• The learned adjacency tensor can explicitly indicate
which interactive features are useful.

• One can inductively derive useful high-order
interactive features by specify layer-wise
thresholds for binarizing the learned 𝐴.

• FIVES serves as a feature generator for lightweight
models to meet the requirement of inference
speed.

99

FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

❑ Extensive experiments on five public datasets and two business datasets confirm that FIVES can
generate useful interactive features.

• FIVES as a predictive model for downstream tasks, such as CTR prediction
• FIVES as the feature generator for lightweight models to meet the requirement of inference

speed

Correlation between the entries of 𝐴 and the AUC of the
corresponding indicated feature.

Efficiency comparisons.

100

Takeaways

DNN-based methods
• Implicit feature generation
• One-shot training course
• Lack of interpretable rules for feature

interactions

Search-based methods
• Explicit feature generation
• Trial-and-error training manner
• Need lots of time and computing resource

AutoFeature
Model

Useful Interactive
Features

✓ Feature Interpretability
✓ Search Efficiency

101

Future Directions

❑How to introduce human experience as prior knowledge for AutoFeature?

❑Causal features or spurious correlations?

❑How to balance the trade-off between the usefulness of generated
features and the completeness of them?

102

References of AutoFeature

[1] AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. In CIKM 2019.

[2] Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction. In CIKM 2019.

[3] AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. In KDD 2019.

[4] AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate

Prediction. In KDD 2020.

[5] FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. In KDD 2021.

103

VolcanoML: End-to-End AutoML via
Scalable Search Space Decomposition

104

Two Complications of AutoML going E2E

105

𝛼∗ = argmax
𝛼

𝑓 𝐷′, 𝜃𝛼
∗

s.t, 𝜃𝛼
∗ = argmax

𝜃
𝑃 𝐷 𝜃 𝑃(𝜃|𝛼)

AutoML

Two Complications
1. 𝛼 is not a homogenous space, it is rather

heterogenous

𝛼 ∈ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 × 𝐻𝑃 × 𝑀𝑜𝑑𝑒𝑙

2. From single-tenant to multi-tenant scenarios

(auto-sklearn)

Personal perspectives, from our past experiences

• VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
Decomposition. VLDB 2021.

• AutoML from Service Provider's Perspective: Multi-device, Multi-tenant Model
Selection with GP-EI. AISTATS 2019.

• Ease.ml: Towards Multi-tenant Resource Sharing for Machine Learning
Workloads. VLDB 2018.

Disclaimer

106

This segment of the tutorial is more opinioned and closer to our own
experience than previous segments

It is less about how much we know about these two problems, but
more about discussing some observations and preliminary explorations
to show you what we don’t know and a “cry for help”.

Heterogenous Search Space

• 𝑭𝒆𝒂𝒕𝒖𝒓𝒆 × 𝑯𝑷 × 𝑴𝒐𝒅𝒆𝒍

• A strong baseline: Treat the heterogenous space as a single
joint space.

• Model it with a single Bayesian optimization problem, a
single genetic algorithm, or a single hyperband problem

• Good? Very powerful approach, yet simple.

• Could be improved?

• “The curse of dimensionality”: often it is not easy to
scale up when the dimensionality of the space is high.

• Heterogeneity in algorithm: Different subspaces
might benefit from different algorithms.

• Can we do better?

107

Heterogenous Search Space

• Different ways to conduct search. Let’s take for example the
space 𝜶 ∈ 𝑿 × 𝒀

• Strategy 1. Joint
• Treating the space 𝑿 × 𝒀 as a single search space

• (If you are doing BO) Create a surrogate model M to approximate 𝑓(𝛼)

• Use M to select ഥ𝜶

• Evaluate 𝑓(ഥ𝜶) and update the surrogate model M

• One can implement such a strategy using methods beyond BO.

108

Heterogenous Search Space

• Different ways to conduct search. Let’s take for example the space
𝜶 ∈ 𝑿 × 𝒀

• Strategy 2. Conditioning
• Idea: decompose 𝑿 × 𝒀 into multiple subspaces, e.g., one for each value of 𝑿

• min𝑥,𝑦𝑓 𝑥, 𝑦 ⇒ min
𝑥∈𝑋

min
𝑦

𝑔𝑥(𝑦)

• Then treating each 𝑥 ∈ 𝑋 as a subproblem min
𝑦

𝑔𝑥(𝑦)

• Can be modeled as a Multi-armed bandit problem – each arm corresponds to a
possible value of 𝑥 ∈ 𝑋, playing an arm means optimizing min

𝑦
𝑔𝑥(𝑦) one step

• For example, think about X as Algorithm and Y as Feature – For each
Algorithm, search for the best feature, and pick the best Algorithm

109

Heterogenous Search Space

• Different ways to conduct search. Let’s take for example the space
𝜶 ∈ 𝑿 × 𝒀

• Strategy 3. Alternating
• Idea: decompose 𝑿 × 𝒀 into two subspaces, 𝑿 and 𝒀

• Solve two problems alternatively:
• min

𝑥
𝑔ഥ𝒚 𝑥 , where ത𝑦 is the current best value for subspace 𝑌

• min
𝑦

𝑔 ҧ𝑥(𝑦), where ҧ𝑥 is the current best value for subspace 𝑋

• Each subproblem can be solved either jointly or via some conditioning strategy

• At each iteration, pick the subproblem with the largest expected improvement

• For example, think about X as Feature and Y as HP – Alternating the
process of search for feature and search for HP

110

Heterogenous Search Space

• Different ways to conduct search

• Strategy 1. Joint
• Pros: Simple, works well when dimensionality is low

• Cons: Might suffer when the dimensionality is high

• Strategy 2. Conditioning
• Pros: Effective when some dimension is categorical variable with small cardinality

• Cons: Might not be applicable to other scenarios.

• Strategy 3. Alternating
• Pros: Very effective in reducing dimensions

• Cons: Assuming conditional independence of two subspaces

111

Heterogenous Search Space

• A single search space can be decomposed in different ways.

112

Different plans have
different performance

Potentially, can learn
to decompose given a

target workload

Heterogenous Search Space

• Moving Forward

• Build up a suite of different building blocks – what is the
unified framework to talk about different search algorithms?

• How to automatically construct search space decomposition?

• How to automatically conduct building block selection?
AutoML for AutoML?

113

AutoML: From Single-tenant to Multi-tenant

114

0.9 0.2 0.2 0.6 0.5 0.6 0.2

0.6 0.7 0.2 0.4 0.6 0.1 0.7

0.9 0.2 0.2 0.6 0.5 0.6 0.2

0.9 0.2 0.2 0.6 0.5 0.6 0.2

0.6 0.7 0.2 0.4 0.6 0.1 0.7

? ? 0.5 ? ? ? ?

D1

D2

D3

D4

D5

D6

M1 M2 M3 M4 M5 M6 M7

Existing Models

Ex
is

ti
n

g
D

at
as

et
s

N
ew

 D
at

as
et

Pool of Resources

Single-tenant Scenario: One target dataset

What if multiple users running their own AutoML
workload over a shared infrastructure?

Interesting problem especially when AutoML as a
service becomes more and more popular.

AutoML: From Single-tenant to Multi-tenant

115

0.9 0.2 0.2 0.6 0.5 0.6 0.2

0.6 0.7 0.2 0.4 0.6 0.1 0.7

0.9 0.2 0.2 0.6 0.5 0.6 0.2

0.9 0.2 0.2 0.6 0.5 0.6 0.2

0.6 0.7 0.2 0.4 0.6 0.1 0.7

? ? 0.5 ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

D1

D2

D3

D4

D5

D6

M1 M2 M3 M4 M5 M6 M7

Existing Models

Ex
is

ti
n

g
D

at
as

et
s

N
ew

 D
at

as
et

s

Pool of Resources

How to balance resource allocations to different users?

…

Dn

AutoML: From Single-tenant to Multi-tenant

116

Decisions Quality

M1 0.5

M2 0.7

M3 0.76

M4 0.79

M5 0.85

M6 0.87 0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Q
u

al
it

y

Trials

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Q
u

al
it

y

Trials

Regret after T trials: RT
(Regret: We could have serve the user a better model if
we magically knows the best model to try)

• Regret: A Single User’s Unhappiness

AutoML: From Single-tenant to Multi-tenant

117

0

0.5

1

1 2 3 4 5 6

Q
u

al
it

y

Trials

0

0.5

1

1 2 3 4 5 6

Q
u

al
it

y

Trials

Which
user
should
we serve
next?

AutoML: From Single-tenant to Multi-tenant

118

User 1: [0.99] [0.99]

User 2: [0.10] [0.35]

Extreme Case: User 1 is not worth serving any more

How about more general case?

AutoML: From Single-tenant to Multi-tenant

119

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? ? ?

0.6 0.7 0.2 0.4 0.6 0.1 0.7 ? ? ?

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? 0.2 ?

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? ? ?

0.6 0.7 0.2 0.4 0.6 0.1 0.7 ? ? ?

? ? 0.5 ? ? ? ? ? ?

? ? ? ? ? ? ? 0.9 ? ?

? ? ? ? 0.7 ? ? ? ? ?

Machine Learning Models

D
a
ta

s
e
ts

 (
U

s
e

rs
)

D1

D2

D3

D4

D5

D6

…

Dn

M1 M2 M3 M4 M5 M6 M7 M8 … Mk

Existing Models

Ex
is
tin

g
Da

ta
se

ts
Ne

w
Da

ta
se

ts

New Models

Computation Resource

?

01 Each user runs their own GP-EI model selection

02
Serve the user with highest expected
improvement.

Informal Theorem. If the performance of all
models is a linear combination of a finite,
shared set of hidden Gaussian variables, the
global regret converges to 0 with rate O(1 /
runtime).

AutoML: From Single-tenant to Multi-tenant

120

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? ? ?

0.6 0.7 0.2 0.4 0.6 0.1 0.7 ? ? ?

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? 0.2 ?

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? ? ?

0.6 0.7 0.2 0.4 0.6 0.1 0.7 ? ? ?

? ? 0.5 ? ? ? ? ? ?

? ? ? ? ? ? ? 0.9 ? ?

? ? ? ? 0.7 ? ? ? ? ?

Machine Learning Models

D
a
ta

s
e
ts

 (
U

s
e

rs
)

D1

D2

D3

D4

D5

D6

…

Dn

M1 M2 M3 M4 M5 M6 M7 M8 … Mk

Existing Models

Ex
is
tin

g
Da

ta
se

ts
Ne

w
Da

ta
se

ts

New Models

Computation Resource

?

01 Each user runs their own GP-UCB algorithm

02
Serve the user with a factor that is very similar to
expected improvement (directly comparing each
user’s UCB does not work, for obvious reason)

AutoML: From Single-tenant to Multi-tenant

121

Modeling error dominates Modeling error dominates

Multi-tenant

Multi-tenant

AutoML: From Single-tenant to Multi-tenant

122

Need some special care on the diversity: don’t
put all GPUs on a single user.

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? ? ?

0.6 0.7 0.2 0.4 0.6 0.1 0.7 ? ? ?

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? 0.2 ?

0.9 0.2 0.2 0.6 0.5 0.6 0.2 ? ? ?

0.6 0.7 0.2 0.4 0.6 0.1 0.7 ? ? ?

? ? 0.5 ? ? ? ? ? ? ?

? ? ? ? ? ? ? 0.9 ? ?

? ? ? ? 0.7 ? ? ? ? ?

Machine Learning Models

D
at

as
e

ts
/U

se
rs

D1

D2

D3

D4

D5

D6

…

Dn

M1 M2 M3 M4 M5 M6 M7 M8 … Mk

Existing Models

Ex
is

ti
n

g
D

at
as

et
s

N
ew

 D
at

as
et

s

New Models

Pool of Resources

Theorem. Near linear speed up with respect
to the number of devices when # devices << #
users.

AutoML: From Single-tenant to Multi-tenant

• Moving Forward

• In my opinion, it is exciting future direction to try to understand
resource allocation and scheduling for AutoML workloads

• What’s the unified way to talk about and think about different
AutoML workloads, e.g., those we have been talking about over the
last two hours

• Fairness? Efficiency? How should we aggregate unhappiness from
multiple users?

123

Two Complications of AutoML going E2E

124

𝛼∗ = argmax
𝛼

𝑓 𝐷′, 𝜃𝛼
∗

s.t, 𝜃𝛼
∗ = argmax

𝜃
𝑃 𝐷 𝜃 𝑃(𝜃|𝛼)

AutoML

Two Complications
1. 𝛼 is not a homogenous space, it is rather

heterogenous

𝛼 ∈ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 × 𝐻𝑃 × 𝑀𝑜𝑑𝑒𝑙

2. From single-tenant to multi-tenant scenarios

(auto-sklearn)

A lot of challenges and exciting
opportunities when bring AutoML to
and end-to-end production scenario!

AutoML: A Small Personal Remark

125

MLBench

VLDB (2018)
http://www.vldb.org
/pvldb/vol11/p1220-
liu.pdf

ML today is now a Data Problem

• For many tasks, given the raw features from Kaggle, most

AutoML platforms rank in the bottom 50%.

• It is the data that we need to improve, and knowledge that

we need to integrate, to build better ML applications.

• To improve data, we need to first understand them.

Moving from a Model-driven development to a Data-driven

development.

http://www.vldb.org/pvldb/vol11/p1220-liu.pdf

ML-Guided Database

126

Where DB Meets ML

• Human involved in research/engineering/analyzing/administrating:
• Building and maintaining indexes

• Query optimization

• Physical design tuning

• Optimizing view materialization

• Learning to automatically designing/optimizing/tuning?

127

Where DB Meets ML: Learning to Index

• Human involved in research/engineering/analyzing/administrating:
• Building and maintaining indexes

• Query optimization

• Physical design tuning

• Optimizing view materialization

• Learning to automatically designing/optimizing/tuning?

128

B-Tree Index from Learning Perspective

Input: Key
Output: Position
B-Tree Index: position = B-tree(Key)

Input: Key
Output: Position
Learned Index: position = function(Key)

[Image source] Kraska et al., The case for learned index structures. SIGMOD, 2018

Key Key

129

Why Learning Index from Data?

• Consider this (ideal) case: build an index to store and query over a
table of n rows with continuous integer keys, i.e., Keys = [11, 12, 13,
14, 15, ...] and Pos = [0, 1, 2, 3, 4, …]

• B-Tree: seeking Pos in time O(log n)

• a learned function Pos = M(Key) = Key + offset : O(1)

• Main motivation: the hidden yet useful distribution information
about the data to be indexed has not been fully explored and utilized
in the classic index techniques

• learned index: an automatic way to explore and utilize such information

130

Recursive-Model Index (RMI)

Data to be indexed

Sub-models

Root model

[Image source] Kraska et al., The case for learned index structures. SIGMOD, 2018 131

FITing-Tree

Error-Bounded Linear Segment: Given threshold 𝑒𝑟𝑟𝑜𝑟,
a segment from (𝑥1, 𝑦1) to (𝑥3, 𝑦3) is not valid if (𝑥2, 𝑦2)
is further than 𝑒𝑟𝑟𝑜𝑟 from the interpolated line.

ShrinkingCone (building a segment): Point 1 is the origin of the
cone. Point 2 is then added, resulting in the dashed cone. Point
3 is added next, yielding in the dotted cone. Point 4 is outside
the dotted cone and therefore starts a new segment.

[Image source] Galakatos et al., FITing-Tree: A Data-aware Index Structure. SIGMOD, 2019 132

RMI v.s. FITing-Tree

Sub-models

RMI

Sub-model
Organization

B-TreeRoot Model
e.g., y=ax+b

FITing-Tree

133

More Learned Index Methods

• PGM [1] improves FITing-Tree by finding the optimal number of learned
segments given an error bound.

• ALEX [2] proposes an adaptive RMI with workload-specific optimization,
achieving high performance on dynamic workloads.

• RadixSpline [3] gains competitive performance with a radix structure
while using a single-pass training.

• Multi-dimensional indexes: NEIST [4], Flood [5], Tsunami [6] and LISA [7].
134

More Learned Index Methods

• [1] The PGM-Index: A Fully-Dynamic Compressed Learned Index with Provable
Worst-Case Bounds. PVLDB, 2020.

• [2] ALEX: An Updatable Adaptive Learned Index. SIGMOD, 2020.

• [3] RadixSpline: A Single-Pass Learned Index. In aiDM Workshop on SIGMOD, 2020.

• [4] NEIST: a Neural-Enhanced Index for Spatio-Temporal Queries. TKDE, 2019.

• [5] Learning Multi-dimensional Indexes. SIGMOD, 2020.

• [6] Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed
Workloads. PVLDB, 2020.

• [7] LISA: A Learned Index Structure for Spatial Data. SIGMOD, 2020.

135

Questions about Learned Indexes

How to systematically analyze and design
machine learning based indexing methods?

More scalable index learning methods?

Which class of models suffice?

136

Task Definition

• Given a database D with n records (rows), let’s assume that a range
index structure will be built on a specific column x. For each record
𝑖 ∈ [𝑛], the value of this column, , is adopted as the key, and is
the position where the record is stored.

• We want to learn a mechanism with the key as input and
outputs a predicated position yˆ ← M (x) for accessing data.

137

Learning Index: A Machine Learning Task

measures the cost of
calculating

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 138

training lossregularization

trade-off

objective function

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf

Learning Index: A Machine Learning Task

139

Benefits of Learned Index

• Smaller Size

• Faster Index Seek

• Better Handling Index Update
• Generalization ability of machine learning

• Incremental learning

• Question Mark
• Is model training/inference scalable enough?

140

• How large the sample needs to be?
• 𝑛 is the data size

• 𝑀∗ is fully optimized

Learned Index with Sampling

Fig: Illustration of sampling

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 141

Learned Index with Sampling

• Up to 78x
building speedup

• Non-degraded
performance in
terms of query
time and
prediction error)

Fig: Illustration of sampling

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 142

Is Linear Model Sufficient?

• Linearization of a learned model

A learned model ഥ𝒚 = 𝑴(𝒙)

143

Is Linear Model Sufficient?

• Linearization of a learned model

A learned model ഥ𝒚 = 𝑴(𝒙)

Landmark points … , 𝒙𝒍, 𝒚𝒍 , 𝒙𝒓, 𝒚𝒓 , …

144

Is Linear Model Sufficient?

• Linearization of a learned model

Linearized model ෝ𝒚 = 𝑴𝐋 𝒙
connecting 𝒙𝒍, ഥ𝒚𝒍 = 𝑴(𝒙𝒍) to 𝒙𝒓, ഥ𝒚𝒓 = 𝑴(𝒙𝒓)

A learned model ഥ𝒚 = 𝑴(𝒙)

Landmark points … , 𝒙𝒍, 𝒚𝒍 , 𝒙𝒓, 𝒚𝒓 , …

145

Is Linear Model Sufficient?

• Linearization of a learned model

A learned model ഥ𝒚 = 𝑴(𝒙)

Landmark points … , 𝒙𝒍, 𝒚𝒍 , 𝒙𝒓, 𝒚𝒓 , …

Linearized model ෝ𝒚 = 𝑴𝐋 𝒙
connecting 𝒙𝒍, ഥ𝒚𝒍 = 𝑴(𝒙𝒍) to 𝒙𝒓, ഥ𝒚𝒓 = 𝑴(𝒙𝒓)

Theorem 2. Suppose ∀𝑥, ഥ𝒚 − 𝑦 ≤ 𝜖, after linearization, we
have ∀𝑥, ෝ𝒚 − 𝑦 ≤ 3𝜖 + 2(𝒚𝒓 − 𝒚𝒍).

Yes! As long as landmark
points are dense enough

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 146

Sampling-Restriction-Linearization

Restriction LinearizationLearned Index on Sampled Data

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf

Sampled data points as landmark points:
… , 𝒙𝒍, 𝒚𝒍 , 𝒙𝒓, 𝒚𝒓 , …

147

Open Questions

• How to handle extremely outlier keys?

• How to maintain index on updating data? [2]

• How to handle multi-dim data? [5, 6, 7]

• How to build it into real DB systems?
• without too much modification to the current system

148

AutoML Tools

149

Availability

150

AutoML

Hyperparameter
Optimization

Auto Feature
Generation

Compressed
Model Search

Meta-Learning

AdaBERT: Task-Adaptive BERT
Compression with D-NAS, IJCAI 2020
https://arxiv.org/abs/2001.04246

FIVES: Feature Interaction Via Edge Search for
Large-Scale Tabular Data, KDD 2021.
https://arxiv.org/abs/2007.14573

Automated Relational Meta-learning,
ICLR 2020.
https://arxiv.org/abs/2001.00745

Learning to Mutate with Hypergradient
Guided Population, NeurIPS 2020.

https://arxiv.org/abs/2001.04246
https://arxiv.org/abs/2007.14573
https://arxiv.org/abs/2001.00745

Availability

AutoML

Hyperparameter
Optimization

Feature
Generation

Compressed
Model Search

Meta-Learning

Publicly available at
Alibaba Platform of A.I.,
AutoML product

Publicly available at
Alibaba Platform of A.I.,
EasyTransfer product

151

A Summary of AutoML Tools

Name Authors Functionalities Algorithms Language

Auto Tune Models (ATM) MIT AutoFeature, Model Selection,
HPO

BO and Bandit Python

AutoKeras Texas A&M
University

NAS BO Python

NNI Microsoft AutoFeature, HPO, NAS, Model
Selection

Comprehensive Python

emukit Amazon HPO Meta-surrogate
model

Python

Ray Tune Berkeley HPO Comprehensive Python

TPOT University of
Pennsylvania

AutoFeature, Model Selection,
HPO

Genetic
programming

Python

More AutoML packages include AutoFolio, Auto-sklearn, Auto-PyTorch, Auto-WEKA, etc.

152

https://github.com/HDI-Project/ATM
https://github.com/keras-team/autokeras
https://github.com/microsoft/nni
https://github.com/amzn/emukit
https://github.com/ray-project/ray/tree/master/python/ray/tune
https://github.com/EpistasisLab/tpot

Tutorial Schedule

Yaliang Li, Background and Overview of AutoML
Hyperparameter Optimization

Zhen Wang, Neural Architecture Search
Meta-Learning

Yuexiang Xie, Automatic Feature Generation

Ce Zhang, VolcanoML: End-to-End AutoML via
Scalable Search Space Decomposition

Bolin Ding, Machine Learning Guided Database

153

Thank you!

Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, and Ce Zhang

Email: yaliang.li@alibaba-inc.com

Please feel free to contact us if you have any questions,
or you are interested in full-time or research intern positions.

154

