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Machine Learning Pipeline

Data/Feature [> Model [> Hyperparameter
Preprocessing Selection Tuning

4 So MANY choices
 Which feature transformation?
 Which model architecture?

* Which hyperparameters?
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Machine Learning Pipeline
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4 AutoML
* Auto Feature Generation
* Neural Architecture Search
* Hyperparameters Optimization
* Meta Learning
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Automated Machine Learning

Hyperparameter
Optimization

Neural Architecture Search

ML-Guided Database

Auto Feature Generation / AutoML \
Meta-Learning

AutoML: How to automate the process of applying machine
learning components to various real-world tasks?



Automated Machine Learning

Inductive bias (prior a): how we represent data, which kinds of models to be
considered, how to tune hyper-parameter, how to transfer knowledge across

tasks, etc...
Traditional ML AutoML : bilevel optimization
0* = argmaxg P(D|0) - P(0]a) 6" = argmaxqe P(D|6) - P(8|a")

where a* = argmax, f(D',0")
D' = D for HPO,
D' is validation data for NAS, AutoFeature,

where « is given by experts

D' is data of other tasks for Meta-learning.



Tutorial Schedule

Yaliang Li, Background and Overview of AutoML
Hyperparameter Optimization

Zhen Wang, Neural Architecture Search
Meta-Learning

Yuexiang Xie, Automatic Feature Generation

Ce Zhang, VolcanoML: End-to-End AutoML via
Scalable Search Space Decomposition

Bolin Ding, Machine Learning Guided Database




Hyperparameter
Optimization (HPO)



Hyperparameter Optimization
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Hyperparameter Configuration v.s. Schedule
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Hyperparameter configuration search
methods find a fixed hyperparameter
setting to maximize the model performance.

Hyperparameter schedule search methods
seek a dynamic hyperparameter schedule
In the model training process.



Hyperparameter Optimization

Hyperparameter

d Hyperparameter Configuration

Optimization @@ I [

Best

Hyperparameter

] « Random search, Grid Search
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« Successive-halving, Hyperband

« Bayesian optimization

a Hyperparameter Schedule

 Population-based training

« Hypergradient
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Search Methods

unimportant dimension

O o o

important dimension
(a) Grid search.

unimportant dimension

important dimension
(b) Random search.

Image source: Bergstra & Bengio. JMILR, 2012.
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Successive-Halving

Uniformly allocate a budget to a set of
hyperparameter configurations

Evaluate the performance of all configurations
Throw out the worst half

Repeat until one configuration remains

Non-stochastic best arm identification and hyperparameter optimization. 2016.
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Hyperband

e Successive-Halving needs to determine the number of configurations (i.e., n)

* Outer loop

° Gnd Sea rch for d|ffe rent n Algorithm 1: HYPERBAND algorithm for hyperparameter optimization
input : R, 7 (default n = 3)
° In ner |Oop initialization : sy« = Uogn(R)] B = (sSmax + 1) R
1 for s € {smax, Smax — 1,....0} do
* Successive-Halving for given n configs |2 | n=[851.  r=08r
. . . // begin SUCCESSIVEHALVING with (n,7) inner loop
* s.t. at least one configis trained for R |3 | 7 —get hyperparameter_configuration(n)
4 | forie{0,...,. s} do
5 n; = |nn7]
6 ri =it
7 L = {run_then return val loss(t,r;):t € T}
n: I . [ 8 T =top k(T L, |n;/n|)
l 9 end
10 end

7 11 return Configuration with the smallest intermediate loss seen so far.
i

Hyperband: A novel bandit-based approach to hyperparameter optimization. JMLR, 2018. 13



Bayesian Optimization

-

Given some tried {hyperparameter, performance} pairs,
which hyperparameter should be the next one to try?

&
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Bayesian Optimization

s N
Given some tried {hyperparameter, performance} pairs,

which hyperparameter shgald be the next one to try?
by

\

Independence assumption Follow a certain distribution

Bayesian Optimization



Bayesian Optimization

Fit a probabilistic function f(x) to model {x=hyperparameter, f(x)=performance}

« Function f(x) isn’t required to be convex, differentiable

* Rich theoretical results: convergence, sync v.s. async, various model choices

« Exploration-exploitation trade-off

« Costly

16



Hyperparameter Optimization

Hyperparameter

d Hyperparameter Configuration
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« Successive-halving, Hyperband

« Bayesian optimization

a Hyperparameter Schedule

 Population-based training

« Hypergradient

17



Hyperparameter Schedule

Perfgnce Q = = —
Hyperparameters O O | O O E: _______ 2\
Model D ............. D ............. [] _____________ )D E: * w* (/\*)
T,
2 ¢
> xgilmt — * W¢’-‘()\¢, )
— —| = | —=
O O | O-ewore=Q.. O
g0 0 0

Population-based training Hypergradient

Self-tuning networks: Bilevel optimization of hyperparameters

A generalized framework for population based
using structured best-response functions. ICLR, 2019.

training. KDD, 2019.
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ical Challenge (1)
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ABC: Sampling

Hyperparameter
Configuration: C

|:> — |:> Model
= Training

Sampling

ratio: r @ _> {I‘, C, P}

Testing — Performance: P

Efficient Identification of Approximate Best Configuration of Training in Large Datasets. AAA/, 2019.
20



A New Method: sGE

Hyperparameter

Optimization Best
Hyperparameter
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Best
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lllustration of Hyperparameter optimization

 Existing methods

-

Each category of hyperparameter optimization

methods has its advantages and disadvantages.

Can we adaptively combine them and utilize
their advantages for different tasks?

N

J

* Search-strategy based: Successive-halving, Hyperband, etc.

e Evolutionary algorithm: Population Based Training, etc.

* Bayesian optimization

Hyperparameter Recommendation for Machine Learning Method. Patent, 2019. 21



A New Method: sGE

<r",C ,P" >

Choose , Increase .| Train and test

{r. C, P} C' r' model: P’

Ternlinated
« Random strategy: randomly choose a
: configuration with probability €
Ot:lt]p;ubt e(;tWF;th « Greedy strategy: choose the best configuration

« Evolution strategy: choose the best

configuration and perturb it with mutation and
crossover

22



HPO: Sampling method-eGE

The task-adaptively combination of different hyperparameter
optimization methods leads to faster solutions!

{data, Config, | Choose a . Increase _[Train and test model:
Performance} ! config . data . Performance

S ..........................................................................................E ° A soft VerS|on Of Hyperband
Term}‘ate‘j * Evolutionary operation

« £ strategy: randomly choose a configuration . - '
with probability & < * Asimplified version of
. Greedy strategy: choose the best configuration Bayesian optimization
 Evolution strategy: choose the best . | | h
configuration and perturb it with mutation and (i.e., local smoothness

crossover assumption)

Output config with
the best Performance

Hyperparameter Recommendation for Machine Learning Method. Patent, 2019. 23



Practical Challenge (2)

Perfgnce Q = = —
Hyperparameters O O | O O \_B: _______ 2\
Model D ............. D ............. [:] _____________ )D E * w* (/\*)
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Mutation-driven global search Hypergradient-guided local search

PBT, KDD2019 STN, ICLR2019
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Hyperparameter Schedule

Hartmann6 Camelback
_p.5 | —# random search 204 —#— random search
' PBT : PBT
—&— hypergradient decent —&— hypergradient decent
109 _. optimal 159 —-- optimal

1.0~
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004 '\l
]
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~1.01 ____.I___:T:_:J'_:_::Z:"—T:G:__JL_.“Tm_'i
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Hyper Loss
Hyper Loss
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25 50 75 100 125 150 175 200 225 250

A smooth optimization problem A non-smooth optimization problem

Trade-off between Evolutionary algorithm (PBT) and Hyper-gradient based method:

* Hyper-gradient based method performs better than PBT on the smooth optimization problems.

* Hyper-gradient based method performs worse than PBT on the cases of many local minima (non-
smooth).

How to learn a good trade-off between the global search and local search?



HyperMutaion (HPM)

Randomly Hyper l Hyper |__, Learnable __ | Hyper I Learnable|__, | Hyper | _ ..
Initialization Training ; Training | Mutation| Training : Mutation | Training

f(knk), elr2s)

Learning to Mutate with Hypergradient Guided Population. NeurlIPS, 2020.
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Hypertraining: a joint optimization over 8 and h

Randomly Hyper _h Hyper |__, Learnable __ | Hyper Learnable Hyper
Initialization Training Tralnlng Mutatlon Tralnlng Mutatlon Training

________________________________________

min Lyai(0%,h)s.t. 0° = arg;mn Etm(é’, h),

0, = 9t—1(ht—1) —ne V0,
hy = hy_1 — M Vh,
0L yal (H(h), h) 00 + OLyal (G(h), h)

~3
Vhtl

Vh =

| W Activate student

Learning to Mutate with Hypergradient Guided Population. NeurlPS, 2020.
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Exploit by a truncation selection
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Learning to Mutate with Hypergradient Guided Population. NeurlPS, 2020.
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Explore by the learnable mutation

Randomly Hyper
Initialization Training
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Learning to Mutate with Hypergradient Guided Population. NeurlPS, 2020.
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Learning mutations with a teacher network

=  Student-teaching schema

S

W

—
T pl)
— 2
t h’t) t
5 3
1 t
0] ht

= Teacher model with attention networks

g e a = 1 + tanh(c)
h? —> 4 —> ht « a®h;
dot product softmax weighted sum

o = gqi,(hf) = 1 + tanh(c), c = Wsoftmax (V' hF),

30



Continue hypertraining after exploit & explore

Randomly Hyper
Initialization Training
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Experiments on test functions
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Figure: (a)-(b) The mean performance computed by different methods along with the standard
deviation over 10 trials, in terms of different given budget of iterations. (c) The average mutation
values learned by HPM over 10 trials. In each trial, HPM runs 30 iterations in total with a
population size of 5, resulting in 6 training steps and 5 mutations.
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Figure: (a)-(b) The mean performance computed by different methods along with the standard
deviation over 10 trials, in terms of different given budget of iterations. (c) The average mutation
values learned by HPM over 10 trials. In each trial, HPM runs 30 iterations in total with a
population size of 5, resulting in 6 training steps and 5 mutations.
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Experiments on benchmark datasets

Table 1: Performance comparison for the image classification task on the CIFAR10 dataset by
validation/test loss and the language modeling task on the PTB corpus dataset by perplexity (PPL).

CIFARI10 PTB
Method
Val Loss TestlLoss Val PP Test PPL

Grid Search 0.7940 0.8090 97.32 94.58
Fixed Random Search 0.9210 0.7520 84.81 81.86

Bayesian Optimization  0.6360 0.6510 72.13 69.29

Hyperband [20] 0.7156 0.7491 71.25 68.39

PBT [15] 0.6253 0.6437 72.07 69.33
Schedule STN [23] 0.5892 0.5878 71.49 68.29

HPM w/o T 0.5724 0.5802 73.18 70.48

HPM 0.5636 0.5649 70.49 67.88




Ta keaways
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Hyperparameter
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« Random search, Grid Search
« Successive-halving, Hyperband

« Bayesian optimization

Q Hyperparameter Schedule

 Population-based training
« Hypergradient
« HyperMutation (HPM)
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Future Directions

> Faster, Green
= HPO via Meta-Learning

» HPO for a specific domain

= a group of algorithm, e.g. Graph-related ®

> Interactive, Human-in-the-loop 2%
ACO#
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Neural Architecture ?&%
Search (NAS)



Neural Architecture Search

1 What is neural architecture search (NAS)? 1 Why NAS?

* To find the optimal topology and/or size * Architecture matters a lot on the
configuration for the neural network. performance!
* E.g., select afilter from {CNN3, 3, CNNg5 5, * The choices cannot be exhausted.
DilatedCNNt , 1.

e Useful prior knowledge, e.g., the invariance

* E.g., determine the depth and width of | network. )
8., GETerming the Aepth and width of a netiral nEtwor possessed by the task, has been exploited.

100

VIT-G/14
FixEfficientMet-B7 BiT-L (Reshet)
PNASNet:5
i ResMeXt-101 44x4
&0 Inception M3

Inception 2.
SPPMet

70
AlexNetZFMNet (ensembl 876 convnets)

TOP 1 ACCURACY

SIFT +EVs
50

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Other models State-of-the-art models

Figure: Image classification on ImageNet (source: https://paperswithcode.com/sota/image-
classification-on-imagenet).



https://paperswithcode.com/sota/image-classification-on-imagenet

Elements of NAS

(1 Search space

e All the possible configurations.
* E.g., filter size, activation functions, depth, etc.

1 Search strategy
* How to utilize experience?

* How to propose new configuration to try?
* E.g., RL, ES, and differentiable search.

1 Performance estimation strategy

* How to evaluate a configuration?
e E.g., standard training and surrogate objective.



And the Theme of NAS

1 Search space
e All the possible configurations.

* E.g., filter size, activation functions, depth, etc.

1 Search strategy
* How to utilize experience?

* How to propose new configuration to try?
* E.g., RL, ES, and differentiable search.

1 Performance estimation strategy
* How to evaluate a configuration?

e E.g., standard training and surrogate objective.

Exploitation v.s. Exploration

Incorporating prior knowledge reduces search space but
makes it constrained to some extent, e.g., Inception-v2/3
- stacked cells [Zoph et al. 2018].

Instead of asymptotic regret, practitioners balance the
exploitation and exploration to achieve best solution
under a given finite horizon.

Standard training&validation is expensive but accurate.

The proposed surrogate objectives are efficient but less
correlated.



Pioneer Works of

1 Search space

e Consider both CNN and RNN cells.

* The configuration of each layer can be
determined respectively.

1 Search strategy

e RL with the policy parameterized by a RNN.

1 Performance estimation strategy
e Standard train&validation

NAS

Sample architecture A
with probability p

[ v

Trains a child network
with architecture
A to get accuracy R

The controller (RNN)

1 J

Compute gradient of p and
scale it by R to update
the controller

Figure: An overview o the trial-and-error process of NAS.

N-1 skip connections

Number

Anchor Filter Filter Stride Stride

“ |of Filters[. Point [.] Height |1 | Width [, | Height |\ | Width [ Point

Anchor

Number Filter
\ |of Filters[, | Height [\

Layer N-1

Layer N Layer N+1

Figure: How the controller (i.e., a RNN) samples a CNN with skip connection.

Neural Architecture Search with Reinforcement Learning. ICLR, 2017, https://arxiv.org/pdf/1611.01578.pdf



https://arxiv.org/pdf/1611.01578.pdf

Pioneer Works of NAS

J Search space gy

* Consider both CNN and RNN cells. [ l

* The configuration of each layer can be e contoter (R Tains a chid network

determined respectively. A to get accuracy R

1 Search strategy [ J

* RL with the policy parameterized by a RNN. Compute grasient of p 2N

the controller

D Pe rfOrma nce estimation st rategy Figure: An overview o the trial-and-error process of NAS.

e Standard train&validation

 Unfold the gain of NAS and also its pain

®

* Searched CNN and RNN cells achieve competitive
performances against manually designed architectures
on CIFAR-10 and PTB respectively.

* Searched architecture can be transferred to other tasks.
e Trained 12,800 models in total on 800 GPUs.

Neural Architecture Search with Reinforcement Learning. ICLR, 2017, https://arxiv.org/pdf/1611.01578.pdf
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Weight Sharing for One-shot NAS

J Weight sharing J One-shot NAS

* Represent NAS’s search space using a single DAG. * Each architecture (i.e., subgraph) is evaluated

 An architecture can be realized by taking a subgraph. by inheriting the shared parameters.
. E.g., deducing a RNN cell as follow: e Shared parameters are trained with sampled
architecture.

o ° ReLU] |ReLU * Parameters and the controller are updated
” (x| ‘ alternatively.
e i
w/ \tanh
© @ J Advantage and concern
* ENAS [Pham and Guan et al., 2018] uses 10h
tanhl., @ ReLU}.. @ ReLU}-. @ tanh of one GTX1080Ti, which is 1000x faster than
f ""-.I i f ':"-. i 1 ':"-. i 1 [Zoph et al. , 2017].
L - - - - = = |
A A A * Does the performance of a stand-alone
ltanh| >RelU| SRelU| training correlate with that of one-shot NAS
Sodet % nNedes " % nNedes " % Nedea [Bender et al., 2018, Zhang et al., 2020]?

Figure: How a RNN cell (i.e., highlighted subgraph)
inherits the shared parameters.

Efficient Neural Architecture Search via Parameter Sharing. ICML, 2018, http://proceedings.mlr.press/v80/pham18a/pham18a.pdf
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Differentiable NAS

[ Continuous relaxation
* Each edge denotes a mixture of ops in O = {CNN3y3,DilatedCNN3y 3 ,Zero,Identity, ... }.

* For each edge (i, j), they parameterize the weights of ops by architecture parameter a Gl
* Suppose the tensor at node; is x, then the tensor propagated to node; will be:

(4,9)

50 () = exp(eo ) o(z) Enk
c;) ZO’EO eXp(aS’j)) ) f 1
 Differentiable learning 1 [j i

* Formulated as a bilevel optimization TiF
problem: ? i :

min Ly (w* (), a)

s.t. w*(a) =argming, Lirgin(w, @) D (IE [ ]

(a) (b) (c) (d)
* Regarded as a Stackelberg game
«  Architecture parameters as leader Figure: An overview of DARTS. (a) Operations are initially unknown. (b) Continuous relaxation.

+ Model parameters as follower (c) architecture parameters are optimized jointly. (d) Inducing the final architecture.

44
DARTS: Differentiable Architecture Search. ICLR, 2019, https://arxiv.org/pdf/1806.09055.pdf
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Differentiable NAS

[ Differentiable learning (contd’)  Improve DARTS by annealing and pruning
moin Lya(w* (), a) . exp {a%ﬂ}
7). —
s.t. w*(a) =argming, Lirgin(w, ) o(a™T) = (9
ZO’EO exp L’}F
* No way to estimate the VL, ,;(Ww*(a), a)
exactly. 455 DFPNET ]
* DARTS approximates the gradient by looking o 33
ahead one-step for w like meta-learning. 201 Qe -
e Itis further simplified‘by treating the ol e » NAS |
parameters equally [Li et al., 2021]. g > 25
2 SNAS v
& :
1 Deriving discrete architecture 2 YOSO.DE%’STESE;d o e %
< R NasNet-A
* Retain the t.op-k strongest prede.ce.ssors for G 25 - el M e 0
each node j where strength of (i, j) is defined -
exp{agl’])} 2.0 ASAPzsmall
as. argmax am: AsAP-medium | "
0€0 ZO’EO exp{ao; } _ASAP-IIarge I T | | L
* Replace each edge by the most likely op: S . S
O(i’j) = argmax a(()l’]) ASAP: Architecture Search, Anneal and Prune. AISTATS, 2020,

0€0 http://proceedings.mlr.press/v108/noy20a/noy20a.pdf
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Dealing with Scalability Issue

1 Horrible memory occupation of one-shot NAS

* The supergraph cannot fit into GPU memory for large datasets.
* Usually search architecture on CIFAR-10 and transfer to ImageNet.

7 S

Architecture

Architecture
{0 4] Transfer

Task Learner

Learner

Updates

Figure: ProxylessNAS directly optimizes neural architecture on target task and hardware.

D Binarized architecture y_hard = tf.cast(’;fc.j:g;:}(y. tf.reduce_max(y, 0, keep_dims=True)),
* Transform real-valued path weights to binary gates. v_soft = tf.stop_gradient(y_hard —y) +vy
o Only onhe path is active in memory at runtime. Figure: Note the straight-through estimator (STE) trick.
46

ProxylessNAS: Direct Neural Architecture Search of Target Task And Hardware. ICLR, 2019, https://arxiv.org/pdf/1812.00332.pdf
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Rethinking the Search Space of NAS

. g40 ER| 4 BA| 4oli 7. WS
1 Explore less constrained search spaces | 259
. — 20 20( - 200f £ ¢ » BB
[Xie et al. 19] . R Rr s e 1 F R R R
2 0 +;l%_i+T+%++fT 4 0 $-§§7?*1’,‘?11: T*‘f*‘ 0 TTLTiTTT : )
* Consider stochastic network generator, e.g., ER, BA, s 9 idrabas 1357918131719 15 5 79 1
output degree of removed node
and _\NS' _ 540 . ER 1 49 BA polf o WS
e All yield >73% mean accuracy on ImageNet with a g £ ;0
. —2 .
low variance! 2, o R ] iu L
* Presented graph damage ablation. R B R O T s R R S S S B S S S Y
input degree of removed edge's target node
Figure: randomly remove one node/edge.
(1 Design search space [Radosavovic et al. 20] 5o
* Evaluate a search space by its error distribution. A .
* Input a search space and output a refined one. g

40 a5 50 55 60
error

Figure: two steps of refinement with the error distribution constantly improved.
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Rethinking the Search Space of NAS

[ From the view of graph structure [You et al. 20a]
* From DAG to relational graph.

* Sweet spots are consistent across different datasets and
architectures.

45 e WS graphs ’\ 457 WS-flex graphs
e ERgraphs :

~4.0 —4.0
=) ° BA graphs f d4 °
£35{ * Harayoraphs A £3.5]
Z % Ring graphs ’-; c
3301 Complete graph = A 830
£ s £
@ 2.51 & 2.5
S o
@201 ©2.01
L) [
=3 >
< 1.5q < 1.59

1.0 1.0

02 04 0.6 08 10 02 04 0.6 08 10

Clustering Coefficient (C) Clustering Coefficient (C)

Figure: proposed WS-flex provides a larger search space.

Graph Structure of Neural Networks. ICML, 2020, http://proceedings.mlr.press/v119/you20b/you20b.pdf 48
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Rethinking the Search Space of NAS

[ From the view of graph structure [You et al.

20a]

* From DAG to relational graph.

* Sweet spots are consistent across different datasets and
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Figure: Key results.
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Complete graph Top-1 Error:
25.73 + 0.07

Best graph Top-1 Error:
24.57 + 0.10

e Correlation across neural architectures

Pearson correlation: 0.658

26.5

" 334 337 30

5-layer MLP

333

Pearson correlation: 0.931
26.51

ResNet-34

o A 2= A P
ResNet-34-sep

Graph Structure of Neural Networks. ICML, 2020, http://proceedings.mlr.press/v119/you20b/you20b.pdf

Pearson correlation: 0.715

28.81
]
a L
$28.4
oy
@280
2
6 27.6
14}
o
27.2
324 327 330 333
5-layer MLP

Pearson correlation: 0.797

23.31

ResNet-50

et

22.44

o ollaal 280 [l=28 L 2t
ResNet-34-sep
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Size Search Space

J Model scaling

* Keep the architecture but adjust the size:

* Depth L
e Width C
* And resolution H, W

* Maximize the performance w.r.t. the size.

[ EfficientNet [Tan et al. 19]

max Accuracy (N (d, w,r))

d,w,r

s.t. N(d,w:r") = O ﬁfﬁz (X<T'F1i,7"wiaw'éi))

i=1...s
Memory(N) < target_memory
FLOPS(N) < target_flops

841

Imagenet Top-1 Accuracy (%)

741

0

00
%]

®

EfficientNet-B7
AmoebaNet-C
AmoebaNet-A _ - ====" -

—

27 NASNetA ..-**"" SENet

Lo '
**" ResNeXt-101

L
7 ..+ Inception-ResNet-v2
f‘: -+t
¢~ Xception
I . _
I . eResNet-152 Topl Acc. #Params
. . ResNet 152 (Heetal, 2016) | 77.8%  60M
Bb ; DenseNet-201 EfficientNet-B1 791%  7.8M
1 ResNeXt- 101 (Xic et al, 2017)| 80.9%  84M
15 EfficientNet-B3 81.6%  12M
| - ResNet-50 SENet (Hu ct al, 2018) 827%  146M
1y NASNet-A (Zoph etal, 2018) | 82.7%  89M
I - EfficientNet-B4 829%  19M
Inception-v2 GPipe (Huang ctal, 2018) | | 84.3%  556M
NASNet-A EfficientNet-B7 84.3% 66M
. "Not plotted
ResNet-34 . i . . ‘ .
20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)

Figure: Model size v.s. ImageNet accuracy.

* Compound scaling method: d = a?, w =%, r=y®wherea x?xy? =2, a=>1, =1, y > 1.
» Stepl: Fix ¢ = 1 and do a small grid search for a, 3, y. Step2: Fix a, 8,y and scale up ¢.
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From CNN/RNN to GNN

[ Uniqueness in search space
* More dimensions of choices: ” = AGG! ({ (E)W ”h ,Vj € N(’&)})

* Micro: mainly aggregation .and Fombine functions. | hEHl) _ (COMBINE(I) [m,&i), hg;)D |
* Macro: how node embeddings in each layer produce the final one.

« Nodes are not independent, so how about in a node-wise manner?  Figure: General message passing.

1 Challenges of weight-sharing one-shot NAS
» Different options lead to quite different output statistics [Zhou et al. 19].

 Transfer across datasets and tasks [You et al. 20b]

° COI |ect 32 (d ive rse) taSkS. 1.O_Pearson correlation: 0.94 3 Pearson correlation: 0.80 5 » Pearson c;orrelatlc::.'n‘;lgi(?il
w n w .U L
. . . . E E L
* Use anchor models to calculate task similarities. - s £

3 8 goey

E 3 5

& s T 064

= N co.

2> =) o

= w ]

) @ 05}

: :

& = 9021
5 £
s =
= - «Task B

T T 0. T 0.0 T T T T
-05 00 0.5 1.0 -0.5 0.0 0’5 10 -0.5 0.0 0.5 1.0
Task similarity (12 models) Task similarity (12 models) Task similarity with ogbg-molhiv
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Figure: Comparing the correlations.



Beyond Accuracy: Efficiency and Robustness

 Making latency differentiable [Cai et al. 19]

| E[Latency] = a x F(conv_3x3)+
Learnable Block B x F(conv_5x5)+
l 8 NGl o x F(identity)+ Figure: Introducing latency
‘A pl N . .
Learnable Block CONV : pooL " o 90000 ... regularization loss.
i é 5x5 Identity Sig é
| e ¢ x F(pool_3x3)
Learnable Block w-‘ E[latency| = ZE[IatenCYi]
L+ 1 i
| Loss = Lossop + A\i||w||2 + M\oE[latency]
1 Searching robust architecture [Guo et al. 20]
« after finetune -« before finetune 90 Average: 50.3% « last-300 architectures * top-300 architectures 45
—_ 8 80 : . . . . 40
S 270 : ey Al S0 35
§‘ ﬁﬁﬂ i . :.‘::c... -.‘.. :.".';’. ..\' L3 g 10
5 S50 . R a0, e 2 .
8 2 ! ° .-‘: . o 1% .' ....2 et . * >
‘t u— 40 ! * Se . v .o':'-'?' o . ;".". £20
g & 30 e et UL - N
g & ) sf{."': . ;-’ ;;‘; ::f.. ot = 15
5 £20 TR A TN S 5 . 10
: e * m SR At SO ||| A 11| KR AR RTAR
0 N |......I.|I.|I|“"I 1 g et o o R .'.' ..". 0 I III I I IIIIl
0 200 400 600 800 1000 420 440 460 480 500 520 S e, v e 16 u 16 "2 b
Architecture ID Adversarial Accuracy (%) .0 * . ¢ =5 Edge ID
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Figure: Performance of 1k sampled architecture. Figure: Analysis of top 300 robust v.s. non-robust architectures.



Beyond Accuracy: Compressed Model Search

* Pre-trained language model such as BERT achieves great performance on

various tasks, but it is difficult to be deployed to real-time applications.
e Can we task-adaptively compresses original BERT for different tasks?

/
Large B ERT\

Models

Task 1

{

Fine-tuned }

BERT,

Task i

{

BERT,

Fine-tuned J

N

/

( Search Hints

I
| Hemensues » Task Knowledge

N o - - - -

(Task—adaptive \

Small Models

Task 1

AdaBERT: Task-Adaptive BERT Compression with D-NAS. [JCAI, 2020, https://arxiv.org/abs/2001.04246

Method Averaged Inference
Performance Speed
BERT 82.5 1x
BERT-PKD 80.6 1.9x
DistillBERT 76.8 3.0x
TinyBERT 80.6 9.4x
AdaBERT 80.1 12.7x ~ 29.3x

The proposed AdaBERT achieves significant speedup
in inference time while maintaining comparable
performance compared to uncompressed model.
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Beyond Accuracy: Compressed Model Search

std_conv_7
max_poolld_3

{ max_poolld 3
max_poolld 3

st conv 3 Tasks | ss12 | MRPC QQP | MNLI ONLI RTE

(Sentiment Classification) SST-2, n=3 Models
< conv. 7 SST-2 919 | 781 586 | 637 741 53.8
m MRPC 815 | 847 689 | 757 822 603
std_conv_5 = ] QQP 819 | 84.1 705 | 762 825 60.5
@' - MNLI 82.1 815 668 | 8.4 86.1 632
Semantic Eouivalonce Classifiontion) MREC. e 4 QNLI 816 | 823 677 | 791 872 629
e RTE 829 | 81.1 665 | 79.6 860 64.1

=

std_conv_7 =
c_{k-2} _conv_3
I dil_conv_7
1 skip_connect ip_connect

(Textual Entailment Recognition) QNLI, n=15

Table: Performance of searched structures across different tasks

= c_{k}

These results demonstrate that the proposed
AdaBERT compresses original BERT adaptively
for different downstream tasks.

Figure: Searched structures of compressed models for different tasks

AdaBERT: Task-Adaptive BERT Compression with D-NAS, [JCAI, 2020, https://arxiv.org/abs/2001.04246 -
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NAS Benchmarks

(1 NAS-Bench-101 [Ying et al. 19]

* Provides a lookup table for the 423k architectures.

* Including their train/valid/test accuracies, number of parameters, and training time.

( NATS-Bench [Dong et al. 21]

e Search space considers both size and topology factors.

-
Sf:nf:h ° o * cel Candidate number of channels:
* 8, 16,24, 32, 40 48,56, 64
\_ Space

architecture)

residual block
image >{conv P{|cell|x
= ) G

residual block .x N global
(stride=2) avg. pool

qu\ :/\' cell) [ — zeroize
Topology Py PP T e il:;l) z(())llllsect
Search > < - <
cell ( cell ) 3X3 conv
space @" """" Q_/TO ——> 3X3 avg pool
\_ \ y, L _ | predefined operation set )

Figure: The search space of NATS-Bench.


https://github.com/google-research/nasbench
https://xuanyidong.com/assets/projects/NATS-Bench

NAS Benchmarks

(1 NAS-Bench-101 [Ying et al. 19]

* Provides a lookup table for the 423k architectures.

* Including their train/valid/test accuracies, number of parameters, and training time.

( NATS-Bench [Dong et al. 21]

e Search space considers both size and topology factors.

NAS-Bench-101

St in NATS-
Bench

Ss in NATS-
Bench

#Unique #Datasets Diagnostic Search

Architectures Information Space

423K 1 X topology
fine-grained

6.5K 3 information topology

32.8K 3 Y size

information

Figure: Comparison the benchmarks.
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Takeaways

1 Search space

* Layer by layer
* Pre-defined restricted design space
* Pre-defined size

1 Search strategy

* Trial-and-error, e.g., RL and ES

1 Performance estimation strategy

* Stand training&validation
* Single objective

Repeated normal&reduction cell
Search for design space
Also search for optimal size

One-shot NAS
Differentiable (+sampling ops)

With weight-sharing
Multiple objectives
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Future Directions

[ Reduce the variance of one-shot NAS
* The interference between child models is a main factor [Zhang et al. 2020].

* E.g., sharing unless some condition(s) are satisfied.

0.8
0.7 {ﬁ
1
2 0-6 i Figure: Validation
§ 0.5 ‘\,.‘\. performance of each
< child model during the

last 120 steps.

0.1 |
39080 39100 39120 39140 39160 39180 39200 39080 39100 39120 39140 39160 39180 39200
Mini-batches Mini-batches

[ Select the truly useful architecture

* The magnitude of architecture parameters does not necessarily indicate how much the operation
contributes to the supernet’s performance [Wang and Cheng et al. 2021].
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Meta-learning

[ What is meta-learning?

* Training on a meta-dataset consisting of many datasets, where each is a different task.
e Extract prior knowledge from it that accelerates the learning of new tasks.

T

training
classes

meta-training

T2

meta-testing 7.«

B

training data Di,,in testset Xtest

Figure: Example of how meta-learning works (source: https://cs330.stanford.edu/slides/cs330 metalearning bbox 2020.pdf).



https://cs330.stanford.edu/slides/cs330_metalearning_bbox_2020.pdf

When Meta-learning Meets AutoML

1 AutoML as a service
* What if users do not have a large dataset for training a deep model?

* What if users want to quickly learn a new task?

TS

Hyperparameter

Optimization Figure: The distribution of the scales of

datasets. (source: https://cs330.stanford.edu/).

% big data
Q.
(4]
w (g — 1IN
5 /
.y
AutoML =
Automatic
Feature

63

Generation


https://cs330.stanford.edu/

When Meta-learning Meets AutoML

1 AutoML as a service

e Assume different tasks share some common principles.
e Can we exploit the cumulated experience?

\
- (P —

Hyperparameter
Optimization

> Meta-Learning

AutoML

Automatic
Feature
Generation
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Meta-learning Basics

[ Exploit the meta-dataset
 Conventional ML: arg max logp((mD)
)

* Meta-learning: arg mgx log p(@|D, Dineta-train)
(] Replace the meta-dataset by meta-parameters

e Sufficient to represent the meta-dataset.

learn meta-parameters ©: p(6|D‘“et*’"tmi“) this is the meta-learning problem

whatever we need to know about Dy eiairain 10 s0lve new tasks

/‘C'LSSUIHQ (b AL Dmeta,—train‘g
logp(@blpa Dmota—train) — log/ p(@lp 6 T)(€| meta- tram de
G

(: arg max log ;0(9|’Dmem_t®
~ log p(¢|D, 6%) + log p(6* | Dreta-train)

arg mgx 10{-’;23’((?5|Da Dmeta-train) ﬁ@m?x log P(Qﬂpa@ < this is the adaptation problem

e
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Optimization-based Meta-learning

— meta-learning

J Adaptation problem

9 ---- learning/adaptation
* Acquire ¢; via optimization ¢; = \vis
argmaxg logp(D{7|$) + logp(¢|6). ;
e 0O serves as a prior. s VL, -gb*
1 T3
1 Which form of prior to take? ey
o ere e . . _ . I *./", \\. *
Initialization and fine-tuning! 1 sz
/_pre-tramed parameters Figure: lllustrating the idea of optimization-based meta-

learning (source: https://arxiv.org/pdf/1703.03400.pdf).

Fine-tuning ¢ <— 0 — aVgL(0, D"

) training data

_ _ for new task
(typically for many gradient steps)

. : L tr ts
Meta-learning mgm Z [:(9 OéV@E(Q,D,L )7Dz )

task ¢
IMAML = Ja — all2g; — 19y + O(07) \where g, = iL(Qi D), g; = iL(Hi Dt
_ — 9, 00; ’ ! 00 ’ ’
JFOMAML = g2 =Ty — aHag; + O(a?) _ o '
_ — 9 H; = — g; (Hessian w.r.t. 6,)
JReptile — 41 + g2 = g4 + g9 — OiH?Ql + (){Q' ) 00,
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Optimization-based Meta-learning

[ Probabilistic interpretation task-specific parameters
* Maximize a posterior (MAP) with @ as the prior. L’ — h
d MAML [Finn et al. 17] approximates hierarchical > O | X,

Bayesian inference!
v 9 +-Or0

* Gradient descent with early stop = MAP inference under Gaussian prior N
with mean at initial parameters. -
e Other forms, e.g., \ 7;/
A
- t 2
b < min L(¢,D") + §||9 — ¢ meta-parameters

Figure: Probabilistic interpretation of optimization-based
meta-learning (source: https://cs330.stanford.edu/).

() Model-agnostic
Maximally expressive with sufficiently deep neural networks

@Typically requires second-order computation/memory intensive


https://cs330.stanford.edu/

Model-based Meta-learning

1 Adaptation problem

» From solving optimization problem to black-box adaptation ¢; = fy(D{") = argmaxy logp(¢|D;",6)
* Train a neural networks to represent p(qﬁiIDitr, 9)

E.g., RNN, Neural Turing Machine, memory-augmented NN [Santoro et al. 16], etc.

Expressive

t'lass Prediciion () Often sample-inefficient

f ? A

S, ... @-» > e | ﬁ

| Backpropagated
f f Shuffle: f f T f

External Memory External Memory

>

—+

(

Signal ?
(X5s¥r1)(Xii1,91) Labels (x1,0) (%2,41) X X a1t Xitnt
| | Classes | Y 2 | | |
Episode Samples Bind and Encode Retrieve Bound Information
| J\ ]
Y Y
D"

l

D
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Figure: Memory-augmented neural networks (source: https://proceedings.mlr.press/v48/santorol6.pdf).
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Metric-based Meta-learning

(1 Use Non-parametric learner

training data D:r test datapomt CE Figure: The.idea of metric-based
- , meta-learning (source:

https://cs330.stanford.edu/slide
s/cs330 nonparametric 2020.p

df).
Compare test image with training images
In what space do you compare? With what distance metric?
2 ) Entirely feedforward
Learn to compare using meta-training data! () Easy to optimize

@Harder to generalize to varying
k-ways (especially for very large k)
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Metric-based Meta-learning

1 Use Siamese neural networks

Input Hidden Distance Output Son e owd
la}'m' ]ayvr ]a}-@]- Ia},'(s]' same (speaker #1) (speaker #2) same
. “cow" “cat" .
d'fferent (speaker #1) (speaker #2) dlfferent
same can Lan same

(speaker #1) (speaker #2)

“can” “cab"

different (speaker #1) (speaker #2) different Figure: ArChiteCture Of
Siamese neural networks
and its application to

v g 4 “cot" “cob" “cog" - 1
ar ‘ “ ﬁ (speaker #4) (speaker #4) (speaker #4) One ShOt Iearnlng'
‘7 /‘ \ - 7/‘
? ] L P
‘ “cob"
(speaker #3)

One-shot tasks (test)

Verification tasks (training)

* Meta-training: binary classification.
* Meta-test: k-way classification.

70
Siamese Neural Networks for One-shot Image Recognition. ICML, 2015, https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
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Metric-based Meta-learning

d Match the train&test phases by Matching networks
* Fix the mismatch between meta-training and meta-test.

* Map a (support) set S = {(x;, y;)} to a classifier:
k

P(j#,8) =) a(&,z:)y

i=1

* The attention mechanism a(-,-) fully specifies the classifier.

Figure: Architecture of Matching network.

Matching Networks for One Shot Learning. NeurlPS, 2016, https://arxiv.org/abs/2001.00745
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GPT-3: meta-learning as pre-training

] What’s the meta-dataset?

* Crawled text corpora.
. Ditr: sequence of characters, DitS: the following sequence of characters.

d What’s the meta-learning problem?

° PUt dlfferent taSkS a” |n the fOFm Of text 16 Aggregate Performance Across Benchmarks
* Thus trained on language generation tasks. —

80 —e— Zero Shot

20

1 What’s the extracted prior knowledge?

* A “Transformer” model as the initialization.

(@)}
o

Accuracy

Figure: The model is far from perfect (source:

https://github.com/shreyashankar/gpt3- 0
sandbox/blob/master/docs/priming.md). iR 048 08B 1'3,§ara,f,'§t2rs - SJ?B““Z,?;E) 178
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Generalization v.s. Customization

1 Key assumption of meta-learning
* Meta-training and meta-test tasks are drawn i.i.d. from the same task
distribution.
* E.g.,, Omniglot:
* 1623 characters from 50 different alphabets.
* 20 instances for each character.

Hebrew Bengali Greek Futurama
@wlo[a[T o] [HZPEEEE (el LIBIR[L] [2]2[S3[H]*
PR [a D] e AR R
TIPS EEsEy [o[8]Y[T[0] [htE e
9/7o[3(5] EERREN [alxMlole g
100 CIkIEIE P1EICIY

Figure: Characters of different alphabets (source: https://omniglot.com/).



https://omniglot.com/

Generalization v.s. Customization

d Key assumption of meta-learning
* Meta-training and meta-test tasks are drawn i.i.d. from the same task

distribution. @Can NOT be strictly satisfied!
e E.g., Omniglot:

* 1623 characters from 50 different alphabets.
* 20 instances for each character.

[ Experience cumulated on the cloud
» Different user experiments can be quite different. Task Dtr
* Learning a global prior may be insufficient. Signature l

Meta-learning Customization Adaptation
Cumulated |
Experience Global Prior Customized
Initializatio

n

Task-specific

Model
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Relational Meta-Learning

Learner-2

-

\_

Most Meta-learning
methods don’t capture
the relations among
tasks/learners.

~N

J

Algorithms

Data: Bird

Data: Texture

Data: Aircraft

Data: Fungi

MAML
MetaSGD
MT-Net
MUMOMAML
HSML

53.94 £+ 1.45%
55.58 + 1.43%
58.72 + 1.43%
56.82 + 1.49%
60.98 £+ 1.50%

31.66 + 1.31%
32.38 +£1.32%
32.80 + 1.35%
33.81 + 1.36%
35.01 + 1.36%

51.37 + 1.38%
52.99 £+ 1.36%
47.72 £ 1.46%
53.14 + 1.39%
57.38 £ 1.40%

42.12 + 1.36%
41.74 + 1.34%
43.11 + 1.42%
42.22 + 1.40%
44.02 + 1.39%

ProtoNet
TADAM

54.11 + 1.38%
56.58 + 1.34%

32.52 + 1.28%
33.34+1.27%

50.63 + 1.35%
53.24 £ 1.33%

41.05 + 1.37%
43.06 + 1.33%

ARML

| 62.33 4+ 1.47%

35.65 + 1.40%

58.56 + 1.41%

44.82 + 1.38%

The proposed relational meta-
learning method can capture the
relations among different tasks,
which enhances the
effectiveness of meta-learners.

\_

Automated Relational Meta-learning, ICLR, 2020, https://arxiv.org/abs/2001.00745
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Summary and Future Directions

(1 How to utilize existing experience---meta-learning

* Learn a meta-parameter, so that we can quickly transfer to new task.
e Optimization-based, model-based, metric-based

1 What if tasks are heterogeneous?

* Trade-off between generalization v.s. customization

(1 Use meta-learning for improving real-world services

* AutoML as a service has cumulated a lot of experience.

* Learning tasks on different domains and/or with different models share some intrinsic patterns of
machine learning.

* What kinds of features are transferable? How to represent a task, a model, and a objective?
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Automatic Feature Generation

In practice, many data scientists search for useful interactive features in a trial-and-error manner,

which has occupied a lot of their workloads.
* Therefore, automatic feature generation (AutoFeature), as one major topic of automated machine

learning (AutoML), has received a lot of attention from both academia and industry.

Rl 5

AutoFeature Useful Interactive Downstream
Data Model Features Applications

.................. - (D) -

00
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Automatic Feature Generation

{ Featurelnterpretability] ‘

{ Search Efficiency J ‘

Industries such as healthcare and finance
need interpretability

Can be applied to train lightweight models
for real-time requirement

The number of possible interactive features
is too large to be traversed
(0(2™) for m original features )
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Automatic Feature Generation

O The related works on automatic feature generation can be roughly divided

into two categories:

e DNN-based methods
e Search-based methods

architectures to express the interactions
among different features.

* Implicit feature generation

* One-shot training course

* Lack of interpretable rules for feature

\ interactions

G\lN-based methods design specific neural\

/

different search strategies that prune as mu
of the candidates to be evaluated as possible,

features.
e Explicit feature generation
* Trial-and-error training manner

@arch-based methods focus on designing \
ch

while aiming to keep the most useful interactive

KNeed lots of time and computing resource/
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Autolnt

O Map the original features into low-dimensional feature space and model
the high-order feature interactions via self-attention.

|® Input Layer:
I Each feature field is represented as an one-hot

i

|

: vector (for categorical feature) or a scalar value (for ! S“I/;uAl\ti-head !
. elf-Attention

I_numerlcalfeature). R B b

@ Embedding Layer: :
I To transform the sparse and high-dimension features | e e @ - (e - @]
| Input Layer: sparse feature X
I

l'into a low-dimensional feature space via a learnable l Feature field 1

| . .
&M b_ed_dn_ﬁg_m_atﬂx._ ______________ | Overview of the proposed model Autolnt.

Autolnt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. C/IKM, 2019.



Autolnt

O Map the original features into low-dimensional feature space and model
the high-order feature interactions via self-attention.

: @ Interacting Layer: !
| The multi-head key-value attention mechanism is adopted :
|

|
|
| to capture the interactions between different features. ! Multi-head !
__________________________ | Self-Attention i
(h) o e e o o e e o e o o —
. Watue .. . | Embedding | | | .:
- W exp(y'M (em, ey)) : Laver g & © © 2000 -~ 0000 :
W ® mle 22, exp(y M (em, 1) L _:—:.-::T..-:Hr:.—::T..—:.-_-_—_:'—‘j::ﬂ':::::::'._:ﬂ.-:;_::1
Key 5™ (h) (h) (h) i®@ @ @ -~ (1 ®:i - @i |
em = R . | bR AN AN AR AN AR ] Yuvasussmed 000 Sessumssss r
lF—‘ - l'b (Cm,ek) <WQ11ery m WKey > :. Feature field 1 Input Layer:sparse feature X Feature field M :
08 Z a(h) (h) &) Overview of the proposed model Autoint.
. Value
m
Query 0.02
em a,(h)

The architecture of interacting layer.

Autolnt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. C/IKM, 2019.



Autolnt

O Experimental results on four real-world datasets show the advantages of Autolnt

* Performance

comparison in offline AUC evaluation for click-through rate (CTR) prediction

* Efficiency comparison
* Explainable recommendations

20
18
16
14
12
10

Seconds

O N A & ©

Efficiency comparison on MovielLens-1M.

Run time per epoch

0.30

0.25

0.20

WBIPM

0.15

0.10

0.05

s K
: N |4 ‘
D —

W Px,t" o¢ N o \,\O"‘J\ ‘“"Apo‘o\“‘

An instance of attention weights for
feature interactions on MovielLens-1M.
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FI-GNN

Q Fi-GNN proposes to represent multi-field featuresina () ) (looEe )
graph structure, and captures the feature interactions | &
. o . (@]
through node representation learning in the graph. B <7T< Graph Neural Network Layer - )
?
* Feature interaction via a graph view: nodes represent ‘_g 472< Graph Neural Network Layer - )
features and edges denote their interactions E )
_ _ . g <—< Graph Neural Network Layer - >
* Model feature interactions via Graph Neural Networks \_/

(GNN)

* Attentional scoring for predictions

GO0 GO0 @o@ GO0

< Multi-head Self-attention Layer > e
< Field-aware Embedding Layer

10...0,/01...0 01...0 01...0
Field 1 Field 2 Field 3 Field 4 Feature Graph

Overview of the proposed Fi-GNN.

Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction. CIKM, 2019.



FI-GNN

O Feature interaction in Fi-GNN: The nodes interact with neighbors and update their states

in a recurrent fashion.

(Feature Graph:

\mechanism.

The edge weights reflect the importance of
interactions between the connected nodes
(features), which are learned via an attention

~N

J

(Node Aggregation:

Qnd residual connection.

The node aggregates the transformed information
from neighbors and update its state according to
the aggregated information and history via GRU

~N

J

—————— — — — — — — — e —

5
=
=

@
A
i

— e — — —— —— — — — — — — — — — — — — — — — — — — — — — — — — — — — — -

Feature interaction in Fi-GNN.
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FI-GNN

[ Taking advantage of the strong representative power of graphs, Fi-GNN captures high-order
feature interaction in an efficient way.

O Fi-GNN also provides good model explanations for CTR prediction.

Criteo
Model Type  Model AUC RI-AUC Logloss RI-Logloss
First-order LR 0.7820 3.00% 0.4695 5.43%
Second-order FM [23] 0.7836 2.80% 0.4700 5.55%
AFM[34] 0.7938 1.54% 0.4584 2.94%
DeepCrossing [25] 0.8009  0.66% 0.4513 1.35%
NFM [8] 0.7957 1.57% 0.4562 2.45%
High-order CrossNet [31] 0.7907 1.92% 0.4591 3.10%
CIN [15] 0.8009 0.63% 0.4517 1.44%
Fi-GNN (ours) 0.8062 0.00% 0.4453 0.00%

Performance comparison.

Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction. CIKM, 2019.

site id
site_domain
device type

device ip

device conn_type

app_category
site_category
app_domain
banner pos
app_id
device id
hour

device_model

site id

site domain

device type

device ip

| type

device conn ty

app_category

site_cate

gory

app domain

banner pos

app_id

device id
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device model

0.8

0.6

- 04

=0.0

Heat map of attentional edge weights.
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Automatic Feature Generation

O The related works on automatic feature generation can be roughly divided

into two categories:

e DNN-based methods
e Search-based methods

G\W-based methods design specific neu
architectures to express the interactions
among different features.

* Implicit feature generation
* One-shot training course
* Lack of interpretable rules for feature

Kinteractions

n

J

ﬁearch-based methods focus on designing \
different search strategies that prune as much
of the candidates to be evaluated as possible,
while aiming to keep the most useful interactive
features.

e Explicit feature generation

* Trial-and-error training manner

KNeed lots of time and computing resource/
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AutoCross

O AutoCross searches useful feature interactions in the high-order interactive feature space by

incrementally constructing local optimal feature set

e Multi-granularity discretization

* Greedy & beam search
* Field-wise logistic regression
* Successive mini-batch gradient descent

\_

Multi-granularity discretization:

 For automatic discretization, each numerical
feature is discretized into several categorical

features with different granularities.

N

J

value

original l Y
numerical feature ! :

1st i
discretized feature !

0[1]2]13]47516]7]1819

+ '
discretiiggI feature ,l 0 [ 1 l///Z//J 3 [ 4 | §
discretiggg feature | 0 | 1 % WA 3 | E‘
discretiézlgt(j]| feature | 0 % /1// /] 2 |

lower bound upper bound

An illustration of multi-granularity discretization.

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.

Puisealdap
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AutoCross

O AutoCross searches useful feature interactions in the high-order interactive feature space by
incrementally constructing local optimal feature set

* _Multi-granularity discretization o
* Greedy & beam search | | ] |
* Field-wise logistic regression A ac | . [+op
* Successive mini-batch gradient descent | [ : | |
+ AC +CD + ABC + ABD
ﬂireedy & beam search: \ [ % | |
* Tree-structured space with the original PAC ] e 2ABE) o [PBED | |t ABCD
features as the root. [ 1
* The children are generated by added one o I T I Whiocicdl W 77472

pair-wise crossing to the parent.
* Only the most promising child will be

strategy.
\ expanded during the search /

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.

An illustration of the search space and beam search




AutoCross

O AutoCross searches useful feature interactions in the high-order interactive feature space by
incrementally constructing local optimal feature set

e Multi-granularity discretization
* Greedy & beam search
* Field-wise logistic regression
[° Successive mini-batch gradient descent]

Field-wise logistic regression : \ (Successive mini-batch gradient descent:\
* For each node, the weights of the newly * The data are split into several blocks,
added interactive features are updated and gradually added into the training
during training, while other weights are process along with narrowing the
\ inherited from the parent and fixed. j \ candidate interactive features. j

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.



AutoCross

O The advantages of AutoCross:

* Explicit high-order feature generation
* Fastinference
* Interpretability

2nd-order
25 A high-order

# conjunctions

el
L2 SO G SOV S

N N N \- (o) N 9 o) X
ORI R« e e

F @ &
The number of second/high-order interactive features.

Benchmark Datasets

Method Bank Adult  Credit Employee Criteo
AC+LR | 000048 0.00048 0.00062 0.00073 0.00156
AC+W&D | 001697 0.01493 0.00974 002807 0.02698
Deep 001413 0.01142 000726 002166 0.01941
xDeepFM | 0.08828 0.05522 0.04466 0.06467 0.18985
Real-World Business Datasets

Method Datal Data?2 Data3 Datad Datab
AC+LR | 000367 0.00111 000185 0.00393 0.00279
AC+W&D | 003537 001706 0.04042 002434  0.02582
Deep 002616 0.01348 003150 001414 0.01406
xDeepFM | 0.32435 011415 040746 012467 013235

Inference latency comparison.

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.

92



AutoFIS

O AutoFIS automatically identifies important feature interactions for Factorization Models (FM).

e Search Stage: Learn the relative importance of each feature interaction
via architecture parameters within one full training process.

* Re-train Stage: Remove the unimportance interactions and re-train the
resulting neural networks.

Next Layer

b= ————]

Selection Gate

@(1,2) | l“(1,m) ‘a(m_l,m) Architecture Parameters
-/\- J\- JL Batch Normalization
A A A
>< >< >< Interaction
M
Embedding

Overview of AutoFIS.

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD, 2020.
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AutoFIS

O Experiments on large-scale datasets demonstrate that AutoFIS can improve various FM
based models in CTR prediction tasks.

Model AUC log loss top  Rel. Impr 070/ ‘

FM 0.8880  0.08881  100% 0 .

14 .

FwFM 0.8897  0.08826  100%  0.19% =
AFM 0.8915  0.08772  100%  0.39% o I

FFM 0.8921 0.08816  100% 0.46% @ 1.

= 0.60 i -
DeepFM 0.8948  0.08735 100%  0.77% o |
AutoFM(2nd) 0.8944*  0.08665*  37% 0.72% :
AutoDeepFM(2nd) | 0.8979* 0.08560*  15% 1.11% i

Performance comparison.

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

the absolute value of a

Correlations between the architecture parameters a and AUC.

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD, 2020.



FIVES

1 To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

1. Search Strategy

ProrosiTION 1. Let X1, X2 and Y be Bernoulli random variables
with a joint conditional probability mass function, py. x,|y = P(X1 =
x1; X2 = x2 | Y = y) such that x1,x2,y € {0, 1}. Suppose further that
mutual information between X; and Y satisfies I (X;;Y) < L where

i € {1,2} and L is a non-negative constant. If X1 and X, are weakly
COU(Xl,Xg |Y: y)
0X11Y=y9X,|Y=y

T (X1Xo;Y) < 2L +log(2p® +1). (1)

correlated given y € {0, 1}, that is,

< p, we have

Theoretical support for the search strategy.

This proposition states that informative
interactive features unlikely come from the
uninformative lower-order ones.

The theory motivates the bottom-up search
strategy in FIVES: Searching for a group of
informative k-order features from the
interactions between original features and the
group of (k — 1)-order features.

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.



FIVES

O To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

2. Feature Graph

* To instantiate the proposed search strategy, the original features are conceptually
regarded as a feature graph and their interactions are modeled by a designed GNN.

* Each node n; corresponds to a feature f;. Each edge e; ; indicates an interaction between
n; and n;.
—>

LN S -

The constructed feature graph to represent high-order feature interactions.

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.



FIVES

1 To possess both feature interpretability and search efficiency, the proposed method FIVES formulates

the task of interactive feature generation as searching for edges on the defined feature graph.

2. Feature Graph

* The feature graph consists of K subgraphs to represent high-order interactive feature. Each
subgraph indicates a layer-wise interaction between features, represented by an adjacency
matrix A% € {0,1}™*™ The graph convolutional operator for aggregation are defined as:

(k) _ (k) (k—1) (k) _ (0)
n;’ =p; On, ) where p;™” = MEANj|A§§)=1 {anj }
* The node representation at k-th layer corresponds to the generated features:

o _ O] o, (k=1) _ | .
n() = MEAN, o _, {(win”} on ~MEAN(%___,CR)lAggj:Lj:L___,k{fq@...®fck®ﬁ}

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

(1)

(2)



FIVES

1 To possess both feature interpretability and search efficiency, the proposed method FIVES formulates
the task of interactive feature generation as searching for edges on the defined feature graph.

3. Differentiable Edge Search

* The task of generating useful interactive features is equivalent to learning an optimal adjacency
tensor A, so-called edge search.

min £(Dya1|4, 0(4))
s. t. 0(4) = argmin L (Dirain |4, 0) (3)

* To make the optimization more efficient, A is regraded as Bernoulli random variables
parameterized by H € [0,1]X¥*™X™ and a soft A%) is allowed to be used for propagation at the k-
th layer.

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.



FIVES

1 To possess both feature interpretability and search efficiency, the proposed method FIVES formulates

the task of interactive feature generation as searching for edges on the defined feature graph.

4. Interactive Feature Derivation

Feature

* The learned adjacency tensor can explicitly indicate ~ Grapn ~ A®
which interactive features are useful.

]

ns Ny

* One can inductively derive useful high-order
interactive features by specify layer-wise
thresholds for binarizing the learned A.

Generated
Features

i ® %

* FIVES serves as a feature generator for lightweight mem
models to meet the requirement of inference fi ®
speed.

AP

ni n;

AN

ns Ny

L®f, @ fu
L®f ® fa

A®)
ny n,

/

g
nz ¢ Ny

 ® f;

i®f ® f;

An example of interactive feature derivation.

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.



FIVES

[ Extensive experiments on five public datasets and two business datasets confirm that FIVES can

generate useful interactive features.

* FIVES as a predictive model for downstream tasks, such as CTR prediction

* FIVES as the feature generator for lightweight models to meet the requirement of inference

speed

=@= Average
0.70 { === Median

@ »ee 9 Y

216 s % o.M

-

0.65 4 ol
@) o TV PNES S
-
< 0.60 & .
O=ai1 C Lo BB g
” D & 8 [ 1 'Y
2 °%aof Ss.e 0 P
0.50 A p - .'C" ".h" * * 1 L
Ojl 0:2 of3 0?4 0t5
The entries of A

Correlation between the entries of A and the AUC of the

corresponding indicated feature.

0.6
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[0 @ U |
P © 0 ¢
o o o
P © 0 ¢
o o0 o
p o o ¢

DN

Wide&Deep DNN  Fi-GNN AutoInt FIVES
Efficiency comparisons.

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.
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Takeaways

L

00

y - -

(

-

v’ Feature Interpretability
v’ Search Efficiency

AutoFeature Useful Interactive
Model Features
\

DNN-based methods

Implicit feature generation
One-shot training course
Lack of interpretable rules for feature

interactions

J

Search-based methods
* Explicit feature generation
* Trial-and-error training manner

* Need lots of time and computing resource

\_

J
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Future Directions

(JHow to introduce human experience as prior knowledge for AutoFeature?
(dCausal features or spurious correlations?

(JHow to balance the trade-off between the usefulness of generated
features and the completeness of them?

00O
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VolcanoML: End-to-End AutoML via
Scalable Search Space Decomposition



Two Complications of AutoML going E2E

Personal perspectives, from our past experiences

AutoML

* = argmax f(D’,6})
a
s.t, 0, = argmgxP(DlH)P(ma)

Two Complications

1. ais not a homogenous space, it is rather
heterogenous

__________________

| feature
|
| preprocessor

______

P e —

1{ rescaling one hot enc. | imputation ba,la.ncing ‘:
: \ / I
\\(mm nl]xj (standard) (mea.n s . [me(ha_n] [welghtmg] (T\.onej

(auto-sklearn)

a € Feature X HP X Model

VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
Decomposition. VLDB 2021.

AutoML from Service Provider's Perspective: Multi-device, Multi-tenant Model
Selection with GP-El. AISTATS 2019.

Ease.ml: Towards Multi-tenant Resource Sharing for Machine Learning
Workloads. VLDB 2018.

2. From single-tenant to multi-tenant scenarios

AlexMNet  ResNet-18  InceptionV4

& Peruser GP-EI Model Selection -+ _

& Peruser GP-El Model Selection B

& Peruser GPEIModel Selection. D)
T —— : Which user should

8 . Per-user GP-El Model Selection | we serve for the next
............................................................................... round of training?

z ' Per-user GP-El Model Selection '
............................................................................................... : 105



Disclaimer

This segment of the tutorial is more opinioned and closer to our own
experience than previous segments

It is less about how much we know about these two problems, but

more about discussing some observations and preliminary explorations
to show you what we don’t know and a “cry for help”.



Heterogenous Search Space

,,,,,,,,,,,,,,,,,,,

e Feature X HP X Model
» A strong baseline: Treat the heterogenous space as a single
joint space.

* Model it with a single Bayesian optimization problem, a
single genetic algorithm, or a single hyperband problem

* Good? Very powerful approach, yet simple.
* Could be improved?

* “The curse of dimensionality”: often it is not easy to
scale up when the dimensionality of the space is high.

* Heterogeneity in algorithm: Different subspaces
might benefit from different algorithms.

T I

|
frnatons) e depth) |

e Can we do better?




Heterogenous Search Space

* Different ways to conduct search. Let’s take for example the
spaceax € X XY

» Strategy 1. Joint
* Treating the space X X Y as a single search space
* (If you are doing BO) Create a surrogate model M to approximate f (a)
* Use Mtoselect
* Evaluate f (@) and update the surrogate model M

* One can implement such a strategy using methods beyond BO.



Heterogenous Search Space

* Different ways to conduct search. Let’s take for example the space
ace X XY

» Strateqy 2. Conditioning
* |dea: decompose X X Y into multiple subspaces, e.g., one for each value of X

* miny, f(x,y) = rnel)r(l m;n 9x(¥)

* Then treating each x € X as a subproblem min g, (y)
y

* Can be modeled as a Multi-armed bandit problem — each arm corresponds to a
possible value of x € X, playing an arm means optimizing mln Jx(y) one step

* For example, think about X as Algorithm and Y as Feature — For each
Algorithm, search for the best feature, and pick the best Algorithm

LS

<



Heterogenous Search Space

e Different ways to conduct search. Let’s take for example the space
ace X XY

» Strateqgy 3. Alternating
e |dea: decompose X X Y into two subspaces, X and Y

* Solve two problems alternatively:
* min gy(x), where ¥y is the current best value for subspace Y
X

* min gz(y), where X is the current best value for subspace X
y

e Each subproblem can be solved either jointly or via some conditioning strategy
* At each iteration, pick the subproblem with the largest expected improvement

* For example, think about X as Feature and Y as HP — Alternating the
process of search for feature and search for HP



Heterogenous Search Space

* Different ways to conduct search

* Strategy 1. Joint
* Pros: Simple, works well when dimensionality is low
* Cons: Might suffer when the dimensionality is high

» Strateqy 2. Conditioning
* Pros: Effective when some dimension is categorical variable with small cardinality
* Cons: Might not be applicable to other scenarios.

» Strategy 3. Alternating
* Pros: Very effective in reducing dimensions
e Cons: Assuming conditional independence of two subspaces




Heterogenous Search Space

* A single search space can be decomposed in different ways.

o Dataset Plan1 Plan2z PFlan3 Plan4 Plans leferent plans have
pumas8NH 0.8275 08312 08271 08280 0.8303 .
(Feature, Alg, HP) kin8nm 08808 08886 0.8886 0.8654 0.8910 different performance
cpu_cmall 09122 09126 09126 09027 0.9127
puma3zH 0.8849 0.8864 0.8848 0.8835 0.8894
Cond. on Alg T amer | cpu_act 09303  0.9315 09305 09302  0.9309 Potentiall |
(Feature, Alg, HP] (Feature, Alg, HP] bank32nh 0.7896 0.7889 0.7838 0.7891 0.7957 otentially, can learn
A A mcl 08796 05904 08722 08721 08975 to decompose g“’en a
delta_elevators | 0.8763 0.8760 0.8779 0.8766 0.8790 kload
o o i [ it jml 0.6718 0.6721 06581 0.6473  0.6692 target workloa
‘FEH!UI‘E. HF] [FEHtUrQ‘, th ‘FEELUI‘E} | ‘AIE,. HF] [JE'I'I.dIgitS Df.-l 932 D.gﬂﬂﬁ 'DE"'E'E'? ﬂ';gg‘lS qu 3?
D delta_ailerons | 0.9235 09240 09242 09225 0.9259
wind 0.8587 0.8589 0.8566 0.8583 0.8593
satimage 0.8961  0.8954 0.8965 0.8946 0.8981
| Aer | Cond.onklg | optdigits 0.9889 0.9889 09583 09889 0.9889
Feature, Alg, HP Feature, Alg, HP
[restr, e, o) N phoneme 0.8799 0.8832 0.8808 0.8791 0.8866
/\ ’ < spambase 09401 09406 09379 09387  0.9386
Joint }Ml | oAmer || Amer | [ Ater | abalone 0.6688 0.6677 06618 0.6614 0.6680
[Feature) [Alg, HP) [Feature, HF) [Feature, HP) [Feature, HP}
mammography | 0.8740 08783 08577 0.8735 O0.8787
e & ; ; waveform 0.594%8 08961 0.8900 0.8835 0.8952
L foint L S pollen 0.4934 0.5013 05012 05013 0.5013
(HP) | {HF) [Feature) | | (HF) [Feature) | [HF)
Average Rank 3.28 233 3.80 3.98 1.63
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Heterogenous Search Space

 Moving Forward

* Build up a suite of different building blocks — what is the
unified framework to talk about different search algorithms?

* How to automatically construct search space decomposition?

* How to automatically conduct building block selection?
AutoML for AutoML?




Existing Datasets

New Dataset

AutoML: From Single-tenant to Multi-tenant

D1
D2

A

D3
D4
D5

Loe

Existing Models

|

M1
0.9

0.6
0.9
0.9
0.6

M2
0.2

0.7
0.2
0.2
0.7

M3 M4 M5 M6 M7

02 06 05
02 04 06
02 06 05
02 06 05
02 04 06
o5l (2) 2
DRDDBDB

Pool of Resources

0.6
0.1
0.6
0.6

0.1
?

0.2
0.7
0.2
0.2

0.7
?

Single-tenant Scenario: One target dataset

What if multiple users running their own AutoML
workload over a shared infrastructure?

Interesting problem especially when AutoML as a
service becomes more and more popular.



Existing Datasets

New Datasets

A

AutoML: From Single-tenant to Multi-tenant

D1
D2
D3
D4
D5
D6

Existing Models

|

M1 M2

0.9
0.6
0.9
0.9
0.6

0.2
0.7
0.2
0.2
0.7

M3
0.2

0.2
0.2
0.2
0.2
0.5

M4
0.6

0.4
0.6
0.6
0.4

M5
0.5

0.6
0.5
0.5
0.6

Pool of Resources

M6 M7

0.6
0.1
0.6
0.6
0.1

0.2
0.7
0.2
0.2
0.7

How to balance resource allocations to different users?



AutoML: From Single-tenant to Multi-tenant

 Regret: A Single User’s Unhappiness

Decisions Quality

M1 0.5
M2 0.7
M3 0.76
M4 0.79
M5 0.85
M6 0.87

(Regret: We could have serve the user a better model if
we magically knows the best model to try)

1 Regret after T trials: R,

# Trials
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AutoI\/IL' From Single-tenant to Multi-tenant

@ =
® :°° \
0
1 2 3 4 5 6 -
# Trials
1 < Which
2 oe— X% % user
O = 05 should
e - we serve
next?
0
1 2 3 4 5 6

# Trials 117



AutoML: From Single-tenant to Multi-tenant

User 1:[0.99] [0.99]
T
User 2: [0.10] [0.35] o

Extreme Case: User 1 is not worth serving any more

How about more general case?



Datasets (Users)

AutoML: From Single-tenant to Multi-tenant

Bxding Crtasds

A

D1
D2
D3
D4
D5
D6

Machine Learning Models
Edding MxHs
A

NenMicHs
A

M1
0.9

0.6
0.9
0.9
0.6

M2 M3 M4

0.2
0.7
0.2
0.2
0.7

0.2
0.2
0.2
0.2
0.2
0.5
?

?

0.6
0.4
0.6
0.6
0.4
?
?

?

M5
0.5

0.6
0.5
0.5
0.6
?
?

0.7

D

M6
0.6

0.1
0.6
0.6
0.1

)

M7
0.2

0.7
0.2
0.2
0.7

Com putatigﬁ Resource

1
Each user runs their own GP-El model selection

Serve the user with highest expected
improvement.

Informal Theorem. If the performance of all
models is a linear combination of a finite,
shared set of hidden Gaussian variables, the
global regret converges to 0 with rate O(1 /
runtime).




Datasets (Users)

AutoML: From Single-tenant to Multi-tenant

Bxding Crtasds

A

D1
D2
D3
D4
D5
D6

Machine Learning Models

Bidirg MoxHs Na/vl\l/ﬁﬁs
)
M1 M2 M3 M4 M5 M6 M7 "M8 M
09 02 02 06 05 06 0.2 ? ? ?
06 07 02 04 06 01 0.7 ? ? ?
09 02 02 06 05 06 0.2 ? 0.2 ?
09 02 02 06 05 06 0.2 ? ? ?
06 07 02 04 06 01 0.7 ? ? ?
? ? 05 ? ? ? ? ? ? ?
? ? ? ? ? ? ? 09 ? ?
? ? ? ? W07, ? ? ? ? ?

B

Computation Resource

1
Each user runs their own GP-UCB algorithm

Serve the user with a factor that is very similar to
expected improvement (directly comparing each
user’s UCB does not work, for obvious reason)

In this case, the total regret is bounded (up to some constant) by

J 3*T210 (IT@))) < \/,,B*Tlog (T—T;) :

~\ /
s

the regret for RR, see (1)




AutoML: From Single-tenant to Multi-tenant

ﬁ ﬁ

p—t
-
O
IIIIlI

Modeling error dominates Modeling error dominates

—1 2]
© 107" 5 Random © 10 Random
% - _ &0
= 1074 \ Rqund Robin > 10734  Milti-tenant
§ 103 Multi-tenant GO:;
E; f_»% 10-5 - Round Robin
s 1074 S
2 2
— 10—5 — 107" 1

0.0 02 04 06 038 1.0 0.0 0.2 04 06 038 1.0

Normalized time Normalized time
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Datasets/Users

Existing Datasets

New Datasets

A

AutoML: From Single-tenant to Multi-tenant

D1
D2
D3
D4
D5
D6

Machine Learning Models
Existing Models

|

New Models

|

M1 M2
09 0.2
0.6 0.7
09 0.2
09 0.2
0.6 0.7
? ?
? ?
? ?

M3
0.2

0.2
0.2
0.2
0.2
0.5

M4
0.6

0.4
0.6
0.6
0.4

?

M5
0.5

0.6
0.5
0.5
0.6
?
?

0.7

M6 M7
0.6 0.2
0.1 0.7
0.6 0.2
0.6 0.2
0.1 0.7
? ?
? ?
? /4

Pool of Resources

Need some special care on the diversity: don’t
put all GPUs on a single user.

Theorem. Near linear speed up with respect

to the number of devices when # devices << #
users.



AutoML: From Single-tenant to Multi-tenant

 Moving Forward

* In my opinion, it is exciting future direction to try to understand
resource allocation and scheduling for AutoML workloads

 What's the unified way to talk about and think about different
AutoML workloads, e.g., those we have been talking about over the
last two hours

* Fairness? Efficiency? How should we aggregate unhappiness from
multiple users?




Two Complications of AutoML going E2E

AutoML

a* = argmax f(D’,6})
a
s.t, 0, = argmgxP(DlH)P(Qm)

Two Complications

1. ais not a homogenous space, it is rather
heterogenous

classifier

- - - - —

(auto-sklearn)
a € Feature X HP X Model

A lot of challenges and exciting
opportunities when bring AutoML to
and end-to-end production scenario!

2. From single-tenant to multi-tenant scenarios
AlexMNet  ResNet-18  InceptionV4
Per-user GP-El Model Selection < ---._

Per-user GP-El Model Selection | B

i -
-----------

et . Which user should

| Per-user GP-El Model Selection |  we serve for the next
.............................................................................. round of training?

ge o o o o
k3
<
(R
0
hl
o]
<
2
ey
(o
%
3
3
8

 Per-user GP-El Model Selection ; ”



AutoML: A Small Personal Remark

ML today is now a Data Problem

* For many tasks, given the raw features from Kaggle, most
AutoML platforms rank in the bottom 50%.

* Itis the data that we need to improve, and knowledge that
we need to integrate, to build better ML applications.

* To improve data, we need to first understand them.

Moving from a Model-driven development to a Data-driven

development.

Rank (%)

Ranlk (%)

Rank (%)

Fank (%)

»>

D-PIS-r

» Platform A Platform C

Platform B A Platform D

20

Run time (minutes)

D-AEA-T

Run tims (minutes)

D-5C5-r

Y L]
1.0 150
Run time (minutes)

D-PEV-r

& L,

Ca LY L8
Run time (minutes)

MLBench

VLDB (2018)
http://www.vldb.org
/pvidb/vol11/p1220-

liu.pdf
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ML-Guided Database



Where DB Meets ML

 Human involved in research/engineering/analyzing/administrating:
* Building and maintaining indexes
* Query optimization
* Physical design tuning
* Optimizing view materialization

* Learning to automatically designing/optimizing/tuning?



Where DB Meets ML: Learning to Index

 Human involved in research/engineering/analyzing/administrating:
* Building and maintaining indexes

* Learning to automatically designing/optimizing/tuning?



B-Tree Index from Learning Perspective

Key Key

v v

Model
BTree (e.g., NN)
POS\Q pos\q

> Key . > Key

Input: Key Input: Key
Output: Position Output: Position
B-Tree Index: position = B-tree(Key) Learned Index: position = function(Key)

[Image source] Kraska et al., The case for learned index structures. SSIGMOD, 2018



Why Learning Index from Data?

* Consider this (ideal) case: build an index to store and query over a
table of n rows with continuous integer keys, i.e., Keys = [11, 12, 13,
14, 15, ...] and Pos =[O0, 1, 2, 3, 4, ...]

e B-Tree: seeking Pos in time O(log n)
 alearned function Pos = M(Key) = Key + offset : O(1)

* Main motivation: the hidden yet useful distribution information
about the data to be indexed has not been fully explored and utilized
in the classic index techniques

* learned index: an automatic way to explore and utilize such information



Recursive-Model Index (RMI)

Key

‘lf . Root model

J Sub-models

Data to be indexed

[Image source] Kraska et al., The case for learned index structures. SSIGMOD, 2018 131



FITing-Tree

loc -

(2, J2) (%3, y3)
! 7

7
7
7
7

> error”’
7

7
/7
7
7/
7
7

2 4
7
7
7

(xl, yl)

key

Error-Bounded Linear Segment: Given threshold error,
a segment from (x4, y1) to (x3,y3) is not valid if (x5, y,)

is further than error from the interpolated line.

loc +

/ ®4 P

k,ey

ShrinkingCone (building a segment): Point 1 is the origin of the
cone. Point 2 is then added, resulting in the dashed cone. Point
3 is added next, yielding in the dotted cone. Point 4 is outside
the dotted cone and therefore starts a new segment.

[Image source] Galakatos et al., FITing-Tree: A Data-aware Index Structure. SIGMOD, 2019



RMI v.s. FITing-Tree

----------------------------
* *

gSub—modeI _
:Organization ;

.
. . g
., .
. = “azasssssmsEmsmsEEEmEmEEmEEet
"
%

Root Model
e.g., y=ax+b

/ EE__(—ESub—modeIs —)

H N F H H :

: : H : - B .

H H . H F— . . o
PR H : F T ‘s aaassssssssEEsEEEEEEEEEEns

RMI FITing-Tree
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More Learned Index Methods

* PGM [1] improves FITing-Tree by finding the optimal number of learned
segments given an error bound.

* ALEX [2] proposes an adaptive RMI with workload-specific optimization,
achieving high performance on dynamic workloads.

* RadixSpline [3] gains competitive performance with a radix structure
while using a single-pass training.

 Multi-dimensional indexes: NEIST [4], Flood [5], Tsunami [6] and LISA [7].



More Learned Index Methods

[1] The PGM-Index: A Fully-Dynamic Compressed Learned Index with Provable
Worst-Case Bounds. PVLDB, 2020.

2] ALEX: An Updatable Adaptive Learned Index. SIGMOD, 2020.
3] RadixSpline: A Single-Pass Learned Index. In aiDM Workshop on SIGMOD, 2020.
4] NEIST: a Neural-Enhanced Index for Spatio-Temporal Queries. TKDE, 2019.
5] Learning Multi-dimensional Indexes. SIGMOD, 2020.

6] Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed
Workloads. PVLDB, 2020.

[7] LISA: A Learned Index Structure for Spatial Data. SIGMOD, 2020.




Questions about Learned Indexes

How to systematically analyze and design
machine learning based indexing methods?

/

@ LMore scalable index learning methods?

i

{Which class of models suffice? }




Task Definition

* Given a database D with n records (rows), let’s assume that a range
index structure will be built on a specific column Z. For each record
i € [n], the value of this column, x;, is adopted as the key, and y; is
the position where the record is stored.

* We want to learn a mechanism M with the key & as input and
outputs a predicated position 9 < M (x) for accessing data.



Learning Index: A Machine Learning Task

(a) B-Tree Index (b) Learned Index
— Key Key

y v

LtIEM)t f /\ Mogel
measures the cost o
calculating ¢ < M (x) BTree (e.g., NN)

— pos\] pos\q

L(D|M)

==

pos - 0 pos + pagezise pos - min_err pos + max_er

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 138



Learning Index: A Machine Learning Task

M* = argmin MDL(M, D)
MeM

= argmin (L(M) + aL(D|M))
MeM

—~ in (L(M)+aFE L(y, 9
rgmin (L) + 0 B penL(y: )
' 1

regularization ! training loss

| trade-off ]
|

objective function

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 12°



Benefits of Learned Index

e Smaller Size
e Faster Index Seek
e Better Handling Index Update

* Generalization ability of machine learning
* Incremental learning

@ /[More scalable index learning methods?

* Question Mark
* Is model training/inference scalable enough? , ,
Which class of models suffice?




Position

Learned Index with Sampling

50 1

40 1

30 A

20 1

10 1

M* = argmin MDL(M, D)
MeM

= argmin (L(M) + aL(D|M))
MeM

* How large the sample needs to be? -wmnconer.,oomei)

MeM | |

e n iS th e d ata S i 7e regularizatirmd ) training loss
!n Xonw ] . . l trade-o
=#— index on sampled data ° M* IS fu I Iy Optl m | Zed objectivaunction

THEOREM 1. Consider the optimization problem:

M* = arg min MDL(M, D) = arg min (L(M) + aL(D|M)) .

MeM MeM
We can solve it on a random sample Ds with sis
0 500 1000 1500 2000 NI* = arg min MDL(M, D)
Key MeM
Fig: lllustration of sampling s.t., MDL(M*, D) < MDL(M*, D) + O(1) with high probability.

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 4!



Position

Learned Index with Sampling

50 1

—&— index on whole data
~#8- index on sampled data

1000 1500 2000
Key

0 500

Fig: lllustration of sampling

Up to 78x

~N

building speedup

Non-degraded
performance in
terms of query

time and

prediction error)

J

1 <=s5<=0.1 1e9

—+— Overall Query Time
—&— Build Time

N

10 08 06 04 02
Sample Rate

1<=s5<=0.1

{1 —e— Mean of AE

—&— STD of AE

A———‘——"—k"‘/‘-

10 08 06 04 02
Sample Rate

r1.50

—
N
8]

5
o
Build Time (ns)

o
N
a

Query Time (ns)

0.1 <=s <= 0.001 1e8

650 L 2.0
—+— Overall Query Time
600 1 —&— Build Time
1.5~
550 1 g
500 - 1.0=
o
450 1 =)
L0590
400 -
350 r . - ‘0.0
107! 1072 1073
Sample Rate
0.1 <=5 <= 0.001
300
- 300
250 T TTTTTT T T T T T T 7
- 250

2004 —®— Mean of AE
—&— STD of AE

-ZOOE

- 150

- 100

10! 1072 1073

Sample Rate

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 42



Is Linear Model Sufficient?

 Linearization of a learned model
/-? A learned model [ y = M(x)




Is Linear Model Sufficient?

 Linearization of a learned model

ﬂ A learned model F_ y = M(x)

Landmark points + o, (X yD), (X, ¥5), ..

144



Is Linear Model Sufficient?

* Linearization of a learned model
A learned model [ y = M(x)
Landmark points 4 o ey, (X, Y5), -

Linearized model / y = M (x)
connecting (x;, y; = M(x;)) to (x,., ¥, = M(x;))

145



IS Linear MOdel Sufficient? ® ¢ Yes!Aslong aslandmark

' points are dense enough

* Linearization of a learned model
ﬁ" A learned model [ y = M(x)
- Landmark points S o, (X yD), (X, ¥5), ..

Linearized model / y = M (x)
connecting (x;, y; = M(x;)) to (x,, ¥, = M(x;.))

Theorem 2. Suppose Vx, |y — y| < ¢, after linearization, we
have Vx, |y — y| < 3e + 2(y, — y)).

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 146



Sampling-Restriction-Linearization
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Key

71 = Index on Sampled Data /

1000 1500 2000
Key

0 500

Position
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Position

+ Sampled Data +
+
L Sampled data points as landmark points:
+
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0 500 1000 1500 2000
Key
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30 - at 30 A ///
_
[ | " S 20 | /—’——
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Key Key
E—) Linearization

Learned Index on Sampled Data === Restriction

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf
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Open Questions

* How to handle extremely outlier keys?
* How to maintain index on updating data? [2]
 How to handle multi-dim data? [5, 6, 7]

* How to build it into real DB systems?
e without too much modification to the current system



AutoML Tools



Availability

Learning to Mutate with Hypergradient
Guided Population, NeurlPS 2020.

Hyperparameter
Optimization

Auto Feature
Generation

FIVES: Feature Interaction Via Edge Search for

Large-Scale Tabular Data, KDD 2021.
https://arxiv.org/abs/2007.14573

-
S
e
g

™~

/

el

&

AutoML

AdaBERT: Task-Adaptive BERT
Compression with D-NAS, 1JCAl 2020
https://arxiv.org/abs/2001.04246

Compressed
Model Search

/'

N

Meta-Learning

Automated Relational Meta-learning,
ICLR 2020.
https://arxiv.org/abs/2001.00745
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https://arxiv.org/abs/2001.04246
https://arxiv.org/abs/2007.14573
https://arxiv.org/abs/2001.00745

Availability

H Compressed
yperparameter

o Model Search
Optimization

P T

s ~ Publicly available at
Publicly available at Alibaba Platform of A.l.,
Alibaba Platform of A.l., EasyTransfer product
AutoML product \. J

\_ AutoML

I

Feature
Generation

Meta-Learning

[ |
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A Summary of AutoML Tools

Auto Tune Models (ATM) MIT

AutoKeras Texas A&M
University

NNI Microsoft

emukit Amazon

Ray Tune Berkeley

TPOT University of

Pennsylvania

AutoFeature, Model Selection,
HPO

NAS

AutoFeature, HPO, NAS, Model
Selection

HPO

HPO

AutoFeature, Model Selection,
HPO

BO and Bandit

BO

Comprehensive

Meta-surrogate
model

Comprehensive

Genetic
programming

More AutoML packages include AutoFolio, Auto-sklearn, Auto-PyTorch, Auto-WEKA, etc.

Python

Python

Python

Python

Python

Python
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https://github.com/HDI-Project/ATM
https://github.com/keras-team/autokeras
https://github.com/microsoft/nni
https://github.com/amzn/emukit
https://github.com/ray-project/ray/tree/master/python/ray/tune
https://github.com/EpistasisLab/tpot

Tutorial Schedule

Yaliang Li, Background and Overview of AutoML
Hyperparameter Optimization

Zhen Wang, Neural Architecture Search
Meta-Learning

Yuexiang Xie, Automatic Feature Generation

Ce Zhang, VolcanoML: End-to-End AutoML via
Scalable Search Space Decomposition

Bolin Ding, Machine Learning Guided Database
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Thank you! 6’2/ ETH .

Alibaba Group

Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, and Ce Zhang

Email: yaliang.li@alibaba-inc.com

Please feel free to contact us if you have any questions,
or you are interested in full-time or research intern positions.
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