
FederatedScope-GNN: Towards a Unified, Comprehensive and
Efficient Package for Federated Graph Learning
Zhen Wang
Alibaba Group

jones.wz@alibaba-inc.com

Weirui Kuang
Alibaba Group

weirui.kwr@alibaba-inc.com

Yuexiang Xie
Alibaba Group

yuexiang.xyx@alibaba-inc.com

Liuyi Yao
Alibaba Group

yly287738@alibaba-inc.com

Yaliang Li∗
Alibaba Group

yaliang.li@alibaba-inc.com

Bolin Ding
Alibaba Group

bolin.ding@alibaba-inc.com

Jingren Zhou
Alibaba Group

jingren.zhou@alibaba-inc.com

ABSTRACT
The incredible development of federated learning (FL) has ben-
efited various tasks in the domains of computer vision and nat-
ural language processing, and the existing frameworks such as
TFF and FATE has made the deployment easy in real-world ap-
plications. However, federated graph learning (FGL), even though
graph data are prevalent, has not been well supported due to its
unique characteristics and requirements. The lack of FGL-related
framework increases the efforts for accomplishing reproducible
research and deploying in real-world applications. Motivated by
such strong demand, in this paper, we first discuss the challenges
in creating an easy-to-use FGL package and accordingly present
our implemented package FederatedScope-GNN (FS-G), which pro-
vides (1) a unified view for modularizing and expressing FGL al-
gorithms; (2) comprehensive DataZoo and ModelZoo for out-of-
the-box FGL capability; (3) an efficient model auto-tuning com-
ponent; and (4) off-the-shelf privacy attack and defense abilities.
We validate the effectiveness of FS-G by conducting extensive ex-
periments, which simultaneously gains many valuable insights
about FGL for the community. Moreover, we employ FS-G to serve
the FGL application in real-world E-commerce scenarios, where
the attained improvements indicate great potential business ben-
efits. We publicly release FS-G, as submodules of FederatedScope,
at https://github.com/alibaba/FederatedScope to promote FGL’s
research and enable broad applications that would otherwise be
infeasible due to the lack of a dedicated package.

CCS CONCEPTS
• Computing methodologies → Neural networks; Machine
learning algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539112

KEYWORDS
Federated Learning; Graph Neural Networks

ACM Reference Format:
Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding,
Jingren Zhou. 2022. FederatedScope-GNN: Towards a Unified, Comprehen-
sive and Efficient Package for Federated Graph Learning. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3534678.3539112

1 INTRODUCTION
Along with the rising concerns about privacy, federated learning
(FL) [28], a paradigm for collaboratively learning models without ac-
cess to dispersed data, has attracted more and more attention from
both industry and academia. Its successful applications include key-
board prediction [12], object detection [26], speech recognition [29],
the list goes on. This fantastic progress benefits from the FL frame-
works, e.g., TFF [5] and FATE [40], which save practitioners from
the implementation details and facilitate the transfer from research
prototype to deployed service.

However, such helpful supports have mainly focused on tasks in
vision and language domains. Yet, the graph data, ubiquitous in real-
world applications, e.g., recommender systems [36], healthcare [42],
and anti-money laundering [33], have not been well supported. As
a piece of evidence, most existing FL frameworks, including TFF,
FATE, and PySyft [43], have not provided off-the-shelf federated
graph learning (FGL) capacities, not to mention the lack of FGL
benchmarks on a par with LEAF [6] for vision and language tasks.

As a result, FL optimization algorithms, including FedAvg [28],
FedProx [23], and FedOPT [1], are mainly evaluated on vision and
language tasks. When applied to optimize graph neural network
(GNN) models, their characteristics are unclear to the community.
Another consequence of the lack of dedicated framework support
is that many recent FGL works (e.g., FedSage+ [42] and GCFL [37])
have to implement their methods from scratch and conduct experi-
ments on respective testbeds.

We notice that such a lack of widely-adopted benchmarks and
unified implementations of related works have become obstacles to

∗Corresponding author.

ar
X

iv
:2

20
4.

05
56

2v
5

 [
cs

.L
G

]
 1

 A
ug

 2
02

2

https://github.com/alibaba/FederatedScope
https://doi.org/10.1145/3534678.3539112
https://doi.org/10.1145/3534678.3539112

KDD ’22, August 14–18, 2022, Washington, DC, USA Zhen Wang et al.

developing novel FGL methods and the deployment in real-world
applications. It increases engineering effort and, more seriously,
introduces the risk of making unfair comparisons. Therefore, it is
much in demand to create an FGL package that can save the effort of
practitioners and provide a testbed for accomplishing reproducible
research. To this end, we pinpoint what features prior frameworks
lack for FGL and the challenges to satisfy these requirements:

(1) Unified View for Modularized and Flexible Programming. In
each round of an FL course, a general FL algorithm (e.g., FedAvg)
exchanges homogeneous data (here model parameters) for one
pass. In contrast, FGL algorithms [36, 37, 42] often require several
heterogeneous data (e.g., gradients, node embeddings, encrypted
adjacency lists, etc.) exchanges across participants. Meanwhile,
besides ordinary local updates/global aggregation, participants of
FGL have rich kinds of subroutines to handle those heterogeneous
data. FL algorithms are often expressed inmost existing frameworks
by declaring a static computational graph, which pushes developers
to care about coordinating the participants for these data exchanges.
Thus, an FGL package should provide a unified view for developers
to express such heterogeneous data exchanges and the various
subroutines effortlessly, allowing flexible modularization of the rich
behaviors so that FGL algorithms can be implemented conveniently.

(2) Unified and Comprehensive Benchmarks. Due to the privacy
issue, real-world FGL datasets are rare. Most prior FGL works are
evaluated by splitting a standalone graph dataset. Without a unified
splitting mechanism, they essentially use their respective datasets.
Meanwhile, their GNN implementations have not been aligned and
integrated into the same FL framework. All these increase the risk of
inconsistent comparisons of related works, urging an FGL package
to set up configurable, unified, and comprehensive benchmarks.

(3) Efficient and Automated Model Tuning.Most federated opti-
mization algorithms have not been extensively studied with GNN
models. Hence, practitioners often lack proper prior for tuning their
GNN models under the FL setting, making it inevitable to conduct
hyper-parameter optimization (HPO). Moreover, directly integrat-
ing a general HPO toolkit into an FL framework cannot satisfy
the efficiency requirements due to the massive cost of executing
an entire FL course [18]. Even a single model is tuned perfectly,
the prevalent non-i.i.d.ness in federated graph data might still lead
to unsatisfactory performances. In this situation, monitoring the
FL procedure to get aware of the non-i.i.d.ness and personalizing
(hyper-)parameters are helpful for further tuning the GNN models.

(4) Privacy Attacks and Defence. Performing privacy attacks on
the FL algorithm is a direct and effective way to examine whether
the FL procedure has the risk of privacy leakage. However, none
of the existing FL frameworks contains this. Moreover, compared
with the general FL framework, except for sharing the gradients
of the global model, FGL may also share additional graph-related
information among clients, such as node embeddings [36] and
neighbor generator [42]. Without verifying the security of sharing
such information, the application of FGL remains questionable.

Motivated by these, in this paper, we develop an FGL package
FS-G to satisfy these challenging requirements:

(1) We choose to build FS-G upon an event-driven FL framework
FederatedScope [38], which abstracts the exchanged data into
messages and characterizes the behavior of each participant by
defining the message handlers. Users who need to develop FGL

algorithms can simply define the (heterogeneous) messages and
handlers, eliminating the engineering for coordinating participants.
Meanwhile, different handlers can be implemented with respective
graph learning backends (e.g., torch_geometric and tf_geometric).

(2) For the ease of benchmarking related FGLmethods, FS-G pro-
vides a GraphDataZoo that integrates a rich collection of splitting
mechanisms applicable to most existing graph datasets and a GN-
NModelZoo that integrates many state-of-the-art FGL algorithms.
Thus, users can reproduce the results of related works effortlessly.
It is worth mentioning that we identify a unique covariate shift of
graph data that comes from the graph structures, and we design a
federal random graph model for the corresponding further study.

(3) FS-G also provides a component for tuning the FGL methods.
On the one hand, it provides fundamental functionalities to achieve
low-fidelity HPO, empowering users of FS-G to generalize existing
HPO algorithms to the FL settings. On the other hand, when a single
model is inadequate to handle the non-i.i.d. graph data, our model-
tuning component provides richmetrics tomonitor the dissimilarity
among clients and a parameter grouping mechanism for describing
various personalization algorithms in a unified way.

(4) Considering the additional heterogeneous data exchanged
in FGL, demonstrating the level of privacy leakage under various
attacks and providing effective defense strategies are indispensable.
FS-G includes a dedicated component to provide various off-the-
shelf privacy attack and defence abilities, which are encapsulated
as plug-in functions for the FGL procedure.

We utilize FS-G to conduct extensive experimental studies to
validate the implementation correctness, verify its efficacy, and
better understanding the characteristics of FGL. Furthermore, we
employ FS-G to serve three real-world E-commerce scenarios, and
the collaboratively learned GNN outperforms their locally learned
counterparts, which confirms the business value of FS-G. We have
open-sourced FS-G for the community, which we believe can ease
the innovation of FGL algorithms, promote their applications, and
benefit more real-world business.

2 RELATEDWORK
2.1 Federated Learning
Generally, the goal of FL is to solve: min𝜃 𝑓 (𝜃) =

∑𝑁
𝑖=1 𝑝𝑖𝐹𝑖 (𝜃) =

E[𝐹𝑖 (𝜃)], where𝑁 is the number of clients (a.k.a. devices or parties),
𝐹𝑖 (·) is the local objective of the 𝑖-th client, 𝑝𝑖 > 0, and

∑𝑁
𝑖 𝑝𝑖 = 1.

As a special case of distributed learning, the essential research topic
for FL is its optimization approaches. Concerning the communica-
tion cost, FedAvg [28] allows clients to make more than one local
update at each round. The following works include FedProx [23], Fe-
dOPT [1], FedNOVA [35], SCAFFOLD [16], etc. These methods have
been extensively studied on vision and language tasks, but when
applied to optimize GNNs, their characteristics are less understood
to the community. We refer readers to the survey papers [15, 22].
2.2 Federated Graph Learning
When handling graph-related tasks under the FL setting, several
unique algorithmic challenges emerge, e.g., complete the cross-
client edges [42], handle the heterogeneous graph-level tasks [37],
augment each client’s subgraph [36], and align the entities across
clients [30]. Many recent FGL works have attempted to resolve
such challenges, which usually require exchanging heterogeneous

FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

Active

Passive

Attack & Defense

× Attack

Defense
Distributed

FGL Runner

Simulated

Transform

Splitter

GraphDataZoo
DataLoader

Dataset

Link-levelNode-level
GNNTrainer

Graph-level

FGL Algorithm (FedSAGE+, FedGNN, GCFL, etc.)

GNN

Decoder

NN Module
Readout

Encoder

GNNModelZoo

Graph Learning
Backend

DGL, PyG, etc.

TF, PyTorch, etc.

Sampler
Server

Aggregator
Trainer

Client
FederatedScope

Message Communication

Model-
Tuning

Component

HPO
Fidelity

×
Explore
×

Exploit

Personal-
ization
Param.

Grouping

Monitor
Metrics

Visualize

Figure 1: Overview of FS-G.

data across the participants, and the behaviors of the participants
become richer than ordinary FL methods. These characteristics of
FGL algorithms lead to the unique requirements (see Sec. 3).

2.3 FL Software
With the need for FL increasing, many FL frameworks [2, 5, 14,
27, 31, 32, 40, 43] have sprung up. Most of them are designed as
a conventional distributed machine learning framework, where a
computational graph is declared and split for participants. Then
each specific part is executed by the corresponding participant.
Users often have to implement their FL algorithms with declara-
tive programming (i.e., describing the computational graph), which
raises the bar for developers. This usability issue is exacerbated
in satisfying the unique requirements of FGL methods. Conse-
quently, most existing FL frameworks have no dedicated support
for FGL, and practitioners cannot effortlessly build FGL methods
upon them. An exception is FedML [14], one of the first FL frame-
works built on an event-driven architecture, provides a FGL package
FedGraphNN [13]. However, they still focus on the FGL algorithms
that have simple and canonical behaviors. Many impactful FGL
works have not been integrated, including those discussed above.
Besides, they have ignored the requirements of efficiently tuning
GNN models and conducting privacy attacks&defence for FGL al-
gorithms, which are crucial in both practice and research.

3 INFRASTRUCTURE
We present the overview of FS-G in Fig. 1. At the core of FS-G is
an event-driven FL framework FederatedScope [38] with funda-
mental utilities (i.e., framing the FL procedure) and it is compatible
with various graph learning backends. Thus, we build our GNNMod-
elZoo and GraphDataZoo upon FederatedScope with maximum
flexibility for expressing the learning procedure and minimum care
for the federal staff (e.g., coordinating participants). With such
ease of development, we have integrated many state-of-the-art FGL
algorithms into GNNModelZoo. We design the Runner class as a
convenient interface to access FGL executions, which unifies the
simulation and the distributed modes. Meanwhile, an auto model-
tuning component for performance optimization and a component
for privacy attack and defense purposes are provided in FS-G.

Table 1: A summary of three representative FGL algorithms,
where we only list the behaviors other than ordinary local
updates and aggregation.

Method FedSage+ [42] FedGNN [36] GCFL+ [37]
Task Node classification Link prediction Graph classification

Exchange

Model param. Model param. Model param.
Node emb. Node emb. Model grad.

NeighGen param. Adj. list
NeighGen grad.

Server Broadcast emb. Node clustering Grad. clustering
behavior Broadcast grad. Broadcast emb. Param. deriving
Client Send emb. and NeighGen Generate pseudo edges None

behavior Apply cross-client grad.

3.1 Requirements of Federated Graph Learning
We first review the existing FGL algorithms and summarize their
uniqueness against general FL. As shown in Table 1, the three very
recent FGL works, targeting different tasks, need to exchange het-
erogeneous data across the participants. In contrast, in each round
of a general FL procedure (e.g., using FedAvg), only homogeneous
data are exchanged for one pass from server to clients and one pass
back. As a result of this difference, the participant of an FGL course
often executes rich kinds of subroutines to handle the received data
and prepare what to send. In contrast, the participant of a general
FL course has canonical behaviors, i.e., local updates or aggregation.

Thus, there is a demand for a unified view to express these multi-
ple passes of heterogeneous data exchanges and the accompanying
subroutines. In this way, developers can be agnostic about the com-
munication, better modularize the FGL procedure, and choose the
graph learning backend flexibly.

3.2 Development based on FederatedScope
To satisfy the unique requirements of FGL discussed above, we
develop FS-G based on a event-driven FL framework named Feder-
atedScope, which abstracts the data exchange in an FL procedure
as message passing. With the help of FederatedScope, implement-
ing FGL methods can be summarized in two folds: (1) defining
what kinds of messages should be exchanged; (2) describing the
behaviors of the server/client to handle these messages. From such
a point of view, a standard FL procedure is shown in Fig. 2, where
server and client pass homogeneous messages (i.e., the model pa-
rameters). When receiving the messages, they conduct aggregation
and local updates, respectively. As for FGL algorithms, we take
FedSage+ as an example. As shown in Fig. 3, we extract the het-
erogeneous exchanged messages according to FedSage+, including
model parameters, gradients, and node embeddings. Then we frame
and transform the operations defined in training steps to callback
functions as subroutines to handle different types of received mes-
sages. For example, when receiving the request, the client employs
the corresponding callback function to send node embeddings and
“NeighGen” (i.e., a neighbor generation model) back to the server.

Initiate: send model para.
Handle model para. → Callback B
• Aggregate & Update

Handle model para.→ Callback A
• Local update
• Send model para.	

Server Client

Figure 2: Implement a standard FL algorithm based on Fed-
eratedScope.

KDD ’22, August 14–18, 2022, Washington, DC, USA Zhen Wang et al.

Training process of FedSAGE+
Request embeddings of nodes ;
Calculate gradients of NeighGen;
Update NeighGen;
Calculate gradients of classifier;
Update classifier ;

Callback A Callback B

Callback C Callback D & E

Message types:
request, NeighGen & emb., classifier,
gradients of NeighGen, gradients of classifier

Callback functions:
1 2

53 4& →

→ →

→

1
2
3
4
5

Initiate: send request
Handle NeighGen & emb. → Callback B
• Calculate gradients of NeighGen
• Send gradients
Handle gradients→ Callback D
• Aggregate gradients
• Update classifier
• Send classifier

Handle request→ Callback A
• Send NeighGen & emb.
Handle gradients→ Callback C
• Update NeighGen
• Calculate gradients of classifier
• Send gradients
Handle classifier→ Callback E
• Update classifier

Server Client

Figure 3: Implement FedSage+ based on the event-driven framework FederatedScope.

The goal of FS-G includes both convenient usage for the exist-
ing FGL methods and flexible extension for new FGL approaches.
Benefited from FederatedScope, the heterogeneous exchanged
data and various subroutines can be conveniently expressed as
messages and handlers, which supports us to implement many
state-of-the-art FGL methods, including FedSage+, FedGNN, and
GCFL+, by providing different kinds of message (e.g., model pa-
rameters, node embeddings, auxiliary model, adjacent list, etc) and
participants’ behavior (e.g., broadcast, cluster, etc). The modulariza-
tion of a whole FGL procedure into messages and handlers makes it
flexible for developers to express various operations defined in cus-
tomized FGL methods separately without considering coordinating
the participants in a static computational graph.

4 GRAPHDATAZOO
A comprehensive GraphDataZoo is indispensable to provide a uni-
fied testbed for FGL. To satisfy the various experiment purposes, we
allow users to constitute an FL dataset by configuring the choices
of Dataset, Splitter, Transform, and Dataloader. Conventionally, the
Transform classes are responsible for mapping each graph into
another, e.g., augmenting node degree as a node attribute. The Dat-
aloader classes are designed for traversing a collection of graphs or
sampling subgraphs from a graph. We will elaborate on the Splitter
and the Dataset classes in this section.

Tasks defined on graph data are usually categorized as follow:
(1) Node-level task: Each instance is a node which is associated with
its label. To make prediction for a node, its 𝑘-hop neighborhood is
often considered as the input to a GNN. (2) Link-level task: The goal
is to predict whether any given node pair is connected or the label of
each given link (e.g., the rating a user assigns to an item). (3) Graph-
level task: Each instance is an individual graph which is associated
with its label. For the link/node-level tasks, transductive setting is
prevalent, where both the labeled and unlabeled links/nodes appear
in the same graph. As for the graph-level task, a standalone dataset
often consists of a collection of graphs.

4.1 Splitting Standalone Datasets
Existing graph datasets are a valuable source to satisfy the need
for more FL datasets [15]. Under the federated learning setting, the
dataset is decentralized. To simulate federated graph datasets by
existing standalone ones, ourGraphDataZoo integrates a rich collec-
tion of splitters. These splitters are responsible for dispersing a given
standalone graph dataset into multiple clients, with configurable
statistical heterogeneity among them. For the node/link-level tasks,

each client should hold a subgraph, while for the graph-level tasks,
each client should hold a subset of all the graphs.

We aim to enable related works to compare on unified, con-
figurable, and comprehensive federated graph datasets, and thus
provide many off-the-shelf splitters. Some splitters split a given
dataset by specific meta data or the node attribute value, expecting
to simulate realistic FL scenarios. Some other splitters are designed
to provide various non-i.i.d.ness, including covariate shift, concept
drift, and prior probability shift [15]. Details about the provided
splitters and the FL datasets constructed by applying them can be
found in the Appendix A.1 and Appendix A.3, respectively.

4.2 New Federated Learning Datasets
In addition to the the strategy of splitting existing standalone
datasets, we also construct three federated graph datasets from
other real-world data sources or federal random graph model:

(1) FedDBLP : We create this dataset from the latest DBLP dump,
where each node corresponds to a published paper, and each edge
corresponds to a citation. We use the bag-of-words of each paper’s
abstract as its node attributes and regard the theme of paper as its
label. To simulate the scenario that a venue or an organizer forbids
others to cite its papers, FS-G allows users to split this dataset by
each node’s venue or the organizer of that venue.

(2) Cross-scenario recommendation (CSR): We create this dataset
from the user-item interactions collected from an E-commerce plat-
form. FS-G allows users to split the graph by each item’s category
or by which scenario an interaction happens.

(3) FedcSBM: Graph data consist of attributive and structural
patterns, but prior federated graph datasets have not decoupled the
covariate shifts of these two aspects. Hence, we propose a federal
random graph model FedcSBM based on cSBM [10]. FedcSBM can
produce the dataset where the node attributes of different clients
obey the same distribution. Meantime, the homophilic degrees can
be different among the clients, so that covariate shift comes from
the structural aspect.

5 GNNMODELZOO AND MODEL-TUNING
COMPONENT

As an FGL package, FS-G provides a GNNModelZoo. As discussed in
Sec. 4, models designated for tasks of different levels will encounter
heterogeneous input and/or output, thus requiring different archi-
tectures. Hence, in the NNmodule of FS-G, we modularize a general
neural network model into four categories of building bricks: (1)
Encoder: embeds the raw node attributes or edge attributes, e.g.,
atom encoder and bond encoder. (2) GNN : learns discriminative

FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

representations for the nodes from their original representations
(raw or encoded) and the graph structures. (3) Decoder: recovers
these hidden representations back into original node attributes or
adjacency relationships. (4) Readout: aggregates node representa-
tions into a graph representation, e.g., the mean pooling. With a
rich collection of choices in each category, users can build various
kinds of neural network models out-of-the-box. Particularly, in
addition to the vanilla GNNs [9, 11, 19, 34, 39], our GNNModelZoo
also includes the GNNs that decouples feature transformation and
propagation, e.g., GPR-GNN [8]. Such a kind of GNNs has been
ignored by FedGraphNN [13]. However, we identify their unique
advantages in FGL—handling covariate shift among the client-wise
graphs that comes from graph structures.

For the convenience of developers, FS-G integrates the GN-
NTrainer class, which encapsulates the local training procedure.
It can be easily configured to adjust for different levels of tasks
and full-batch/graph-sampling settings. Thus, developer can focus
on the FGL algorithms without caring for the procedure of local
updates. Then we implement many state-of-the-art FGL algorithms
and integrate them into our GNNModelZoo.

With GraphDataZoo and GNNModelZoo, users are empowered
with FGL capacities. However, the performances of FGL algorithms
are often sensitive to their hyper-parameters. It is indispensable to
make hyper-parameter optimization (HPO) to create reproducible
research. To this ends, FS-G incorporates amodel-tuning component,
which provides the functionalities for (1) making efficient HPO
under the FL setting; (2) monitoring the FL procedure and making
personalization to better handle non-i.i.d. data.

5.1 Federated Hyper-parameter Optimization
In general, HPO is a trial-and-error procedure, where, in each trial,
a specific hyper-parameter configuration is proposed and evaluated.
HPO methods mainly differ from each other in exploiting the feed-
back of each trial and exploring the search space based on previous
trials. Whatever method, one of the most affecting issues is the
cost of making an exact evaluation, which corresponds to an entire
training course and then evaluation. This issue becomes severer
under the FGL setting since an entire training course often consists
of hundreds of communication rounds, and FGL methods, in each
round, often exchange additional information across participants,
where even a single training course is extremely costly.

A general and prosperous strategy to reduce the evaluation cost
is making multi-fidelity HPO [25]. FS-G allows users to reduce the
fidelity by (1) making a limited number of FL rounds instead of
an entire FL course for each trial; (2) sampling a small fraction of
clients, e.g., 𝐾 (𝐾 ≪ 𝑁), in each round. We use Successive Halving
Algorithm (SHA) [20] as an example to show how multi-fidelity
HPO methods work in the FL setting. As Fig. 4 shows, a set of
candidate configurations are maintained, each of which will be
evaluated in each stage of SHA. When performing low-fidelity
HPO, each specific configuration can be evaluated by restoring an
FL course from its corresponding checkpoint (if it exists), making
only a few FL rounds to update the model, and evaluating the model
to acquire its performance. Then these configurations are sorted
w.r.t. their performances and only the top half of them are reserved
for the next stage of SHA. This procedure continues until only one
configuration remains, regarded as the optimal one.

HPO Agent

Candidate configs

Successive
halving

FL
Train&Evaluate

checkpoints

Save Load

config

performance

Model-tuning
Component

FGL Runner

Optimal config

Figure 4: An example of HPO for FGL: FS-G allows each
training course to be restored from a given checkpoint, pro-
ceed for any specified number of rounds, and be saved for
continual training.

We identify the requirement of functionalities to save and re-
store an FGL training course from this algorithmic example. These
functionalities are also indispensable to achieving a reliable failover
mechanism. Thus, we first show which factors determine the state
of an FL course: (1) Server-side: Basically, the current round number
and the global model parameters must be saved. When the aggre-
gator is stateful, e.g., considering momentum, its maintained state,
e.g., the moving average of a certain quantity, needs to be kept.
(2) Client-side: When the local updates are made with mini-batch
training, the client-specific data-loader is usually stateful, whose
index and order might need to be held. When personalization is uti-
lized, the client-specific model parameters need to be saved. With
sufficient factors saved as a checkpoint, FS-G can restore an FGL
training course from it and proceed.

Meanwhile, we follow the design of FederatedScope and make
the entry interface of FS-G as a callable FGL runner, which re-
ceives a configuration and returns a collection of metrics for the
conducted FGL training course (entire or not). Consequently, each
HPO algorithm incorporated in our model-tuning component can
be abstracted as an agent, repeatedly calling the FGL runner to
collect the feedback. Benefiting from this interface design and the
capacity to save and restore an FGL training course, any one-shot
HPO method can be effortlessly generalized to the FGL setting
upon FS-G. It is worth mentioning that what to return by the FGL
runner is configurable, where efficiency-related metrics, e.g., the
average latency of each round, can be included. Therefore, opti-
mizing hyper-parameters from the system perspective [41] is also
supported by FS-G.

5.2 Monitoring and Personalization
Practitioners often monitor the learning procedure by visualizing
the curves of training loss and validation performance to under-
stand whether the learning has converged and the GNN model has
overfitted. When it comes to FGL, we consider both the client-wise
metrics, e.g., the local training loss, and some metrics to be calcu-
lated at the server-side. Specifically, we have implemented several
metrics, including B-local dissimilarity [23] and the covariance ma-
trix of gradients, calculated from the aggregated messages to reflect
the statistical heterogeneity among clients. The larger these metrics
are, the more different client-wise graphs are. As shown in Fig. 5a,
the B-local dissimilarity on non-i.i.d. data is larger than that on
i.i.d. data at almost all stages of the training course, which becomes
particularly noticeable at the end.

KDD ’22, August 14–18, 2022, Washington, DC, USA Zhen Wang et al.

0 100 200 300 400
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

B-
lo

ca
l d

iss
im

ila
rit

y

non-i.i.d
i.i.d.

(a) Monitoring the FGL course
on i.i.d. and non-i.i.d. datasets
constructed by FedcSBM.

GNN

Encoder

Readout

Decoder

GNN

Encoder

Readout

Decoder

GNN

Readout

Molecular Social
Network

(b) An example of personaliz-
ing GNN: Each client has its
dedicated encoder and decoder.

Figure 5: Examples of monitoring and personalization.

Then we build the monitoring functionality upon related toolkits
(e.g., WandB and TensorBoard) to log and visualize the metrics.
To use the out-off-shelf metrics, users only need to specify them
in the configuration. Meantime, FS-G has provided the API for
users to register any quantity calculated/estimated during the local
update/aggregation, which would be monitored in the execution.

Once some monitored metrics indicate the existence of non-
i.i.d.ness, users can further tune their GNN by personalizing the
model parameters and even the hyper-parameters. We present an
example of personalization in Fig. 5b. Each client has its specific
encoder and decoder as the tasks among the clients come from
different domains with different node attributes and node classes.
In practice, a more fine-grained personalization might be preferred,
where only some layers or even some variables are client-specific.

To satisfy such purposes, FS-G first allows users to instantiate
the model of each participant individually. Then we build a flexi-
ble parameter grouping mechanism upon the naming systems of
underlying machine learning engines. Specifically, this mechanism
allows users to easily declare each part (with flexible granularity)
of the model as client-specific or shared. Only the shared parts will
be exchanged.

6 OFF-THE-SHELF ATTACK AND DEFENCE
ABILITIES

The privacy attack&defence component of FederatedScope has
integrated various off-the-shelf passive privacy attack methods,
including class representative inference attack, membership infer-
ence attack, property inference attack, and training inputs and
labels inference attack. These methods have been encapsulated as
optional hooks for our GNNTrainer. Once the user has selected a
specific hook, the GNN model and some needed information about
the target data would automatically be fed into the hook during
the training procedure. Besides the previous passive attack setting
where the adversaries are honest-but-curious, FS-G also supports
the malicious adversary setting. The attackers can deviate from
the FL protocol by modifying the messages. To defend the pas-
sive privacy attacks, FS-G can leverage FederatedScope’s plug-in
defense strategies, including differential privacy, MPC, and data
compression. Meanwhile, FederatedScope provides the informa-
tion checking mechanism to effectively detect anomaly messages
and defend the malicious attacks.

7 EXPERIMENTS
We utilize FS-G to conduct extensive experiments, with the aim to
validate the implementation correctness of FS-G, set up benchmarks
for FGL that have long been demanded, and gain more insights
about FGL. Furthermore, we deploy FS-G in real-world E-commerce
scenarios to evaluate its business value.

7.1 An Extensive Study about Federated Graph
Learning

In this study, we consider three different settings: (1) Local: Each
client trains a GNN model with its data. (2) FGL: FedAvg [28],
FedOpt [1], and FedProx [23] are applied to collaboratively train a
GNN model on the dispersed data, respectively. (3) Global: One
GNN model is trained on the completed dataset. By comparing
these settings with various GNN architectures and on diverse tasks,
we intend to set up comprehensive and solid benchmarks for FGL.

7.1.1 Node-level Tasks.
Protocol. For the purposes of training and validation, the client-
wise data are subgraphs deduced from the original graph. Yet, global
evaluation is considered for testing, where models are evaluated on
the test nodes of original graph. Thus, in both local and FGL settings,
we train and validate each client’s model on its incomplete subgraph
and test the model on the complete global graph. In the global
setting, we train and evaluate each model on the complete global
graph. For each setting, we consider popular GNN architectures:
GCN, GraphSage, GAT, and GPR-GNN. To conduct the experiments
uniformly and fairly, we split the nodes into train/valid/test sets,
where the ratio is 60% : 20% : 20% for citation networks and
50% : 20% : 30% for FedDBLP. We randomly generate five splits for
each dataset. Each model is trained and evaluated with these five
splits, and we report the averaged metric and the standard deviation.
To compare the performance of each model, we choose accuracy as
the metric for all node-level tasks. In addition, we perform hyper-
parameter optimization (HPO) for all methods with the learning
rate ∈ {0.01, 0.05, 0.25} in all settings, and the local update steps
∈ {1, 4, 16} in FGL.
Results and Analysis. We present the results on three citation
networks in Table 2 and Table 3, with random_splitter and commu-
nity_splitter, respectively. Overall, FGL can improve performance
regarding those individually trained on local data, as the experi-
ence in vision and language domains suggests. In most cases on
the randomly split datasets, the GNN trained on the global (origi-
nal) data performs better than that of FGL. With the splitting, the
union of all client-wise graphs still has fewer edges than the orig-
inal graph, which may explain this performance gap. In contrast,
the FGL setting often performs better than those trained on the
global graph when our community_splitter constructs the federated
graph datasets. At first glance, this phenomenon is counterintuitive,
as the splitter also removes some of the original edges. However,
these citation graphs exhibit homophily, saying that nodes are more
likely to connect to nodes with the same label than those from other
classes. When split by the community detection-based algorithm,
we identify the changes that removed edges often connect nodes
with different labels, which improves the homophilic degree of the
graphs. As a result, the resulting federated graph dataset becomes

FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 2: Results on representative node classification datasets with random_splitter: Mean accuracy ± standard deviation.

Cora CiteSeer PubMed
Local FedAvg FedOpt FedProx Global Local FedAvg FedOpt FedProx Global Local FedAvg FedOpt FedProx Global

GCN 80.95±1.49 86.63±1.35 86.11±1.29 86.60±1.59 86.89±1.82 74.29±1.35 76.48±1.52 77.43±0.90 77.29±1.20 77.42±1.15 85.25±0.73 85.29±0.95 84.39±1.53 85.21±1.17 85.38±0.33
GraphSAGE 75.12±1.54 85.42±1.80 84.73±1.58 84.83±1.66 86.86±2.15 73.30±1.30 76.86±1.38 75.99±1.96 78.05±0.81 77.48±1.27 84.58±0.41 86.45±0.43 85.67±0.45 86.51±0.37 86.23±0.58

GAT 78.86±2.25 85.35±2.29 84.40±2.70 84.50±2.74 85.78±2.43 73.85±1.00 76.37±1.11 76.96±1.75 77.15±1.54 76.91±1.02 83.81±0.69 84.66±0.74 83.78±1.11 83.79±0.87 84.89±0.34
GPR-GNN 84.90±1.13 89.00±0.66 87.62±1.20 88.44±0.75 88.54±1.58 74.81±1.43 79.67±1.41 77.99±1.25 79.35±1.11 79.67±1.42 86.85±0.39 85.88±1.24 84.57±0.68 86.92±1.25 85.15±0.76

Table 3: Results on representative node classification datasets with community_splitter: Mean accuracy ± standard deviation.

Cora CiteSeer PubMed
Local FedAvg FedOpt FedProx Global Local FedAvg FedOpt FedProx Global Local FedAvg FedOpt FedProx Global

GCN 65.08±2.39 87.32±1.49 87.29±1.65 87±16±1.51 86.89±1.82 67.53±1.87 77.56±1.45 77.80±0.99 77.62±1.42 77.42±1.15 77.01±3.37 85.24±0.69 84.11±0.87 85.14, 0.88 85.38±0.33
GraphSAGE 61.29±3.05 87.19±1.28 87.13±1.47 87.09±1.46 86.86±2.15 66.17±1.50 77.80±1.03 78.54±1.05 77.70±1.09 77.48±1.27 78.35±2.15 86.87±0.53 85.72±0.58 86.65±0.60 86.23±0.58

GAT 61.53±2.81 86.08±2.52 85.65±2.36 85.68±2.68 85.78±2.43 66.17±1.31 77.21±0.97 77.34±1.33 77.26±1.02 76.91±1.02 75.97±3.32 84.38±0.82 83.34±0.87 84.34±0.63 84.89±0.34
GPR-GNN 69.32±2.07 88.93±1.64 88.37±2.12 88.80±1.29 88.54±1.58 71.30±1.65 80.27±1.28 78.32±1.45 79.73±1.52 79.67±1.42 78.52±3.61 85.06±0.82 84.30±1.57 86.77±1.16 85.15±0.76

Table 4: Results on representative link prediction datasets with label_space_splitter: Hits@𝑛.

WN18 FB15k-237
Local FedAvg FedOpt FedProx Global Local FedAvg FedOpt FedProx Global

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
GCN 20.70 55.34 73.85 30.00 79.72 96.67 22.13 78.96 94.07 27.32 83.01 96.38 29.67 86.73 97.05 6.07 20.29 30.35 9.86 34.27 48.02 4.12 18.07 31.79 4.66 28.74 41.67 7.80 32.46 44.64

GraphSAGE 21.06 54.12 79.88 23.14 78.85 93.70 22.82 79.86 93.12 23.14 78.52 93.67 24.24 79.86 93.84 3.95 14.64 24.47 7.13 23.38 36.60 2.20 19.21 27.64 5.85 24.05 36.33 6.19 23.57 35.98
GAT 20.89 49.42 72.48 23.14 77.62 93.49 23.14 74.64 93.52 23.53 78.40 93.00 24.24 80.18 93.76 3.44 15.02 25.14 6.06 25.76 39.04 2.71 18.89 32.76 6.19 25.09 38.00 6.94 24.43 37.87

GPR-GNN 22.86 60.45 80.73 26.67 82.35 96.18 24.46 73.33 87.18 27.62 81.87 95.68 29.19 82.34 96.24 4.45 13.26 21.24 9.62 32.76 45.97 2.01 9.81 16.65 3.72 15.62 27.79 10.62 33.87 47.45

Table 5: Results on representative graph classification datasets: Mean accuracy (%) ± standard deviation.

PROTEINS IMDB Multi-task
Local FedAvg FedOpt FedProx Global Local FedAvg FedOpt FedProx Global Local FedAvg FedOpt FedProx Global

GCN 71.10±4.65 73.54±4.48 71.24±4.17 73.36±4.49 71.77±3.62 50.76±1.14 53.24±6.04 50.49±8.32 48.72±6.73 53.24±6.04 66.37±1.78 65.99±1.18 69.10±1.58 68.59±1.99 -
GIN 69.06±3.47 73.74±5.71 60.14±1.22 73.18±5.66 72.47±5.53 55.82±7.56 64.79±10.55 51.87±6.82 70.65±8.35 72.61±2.44 75.05±1.81 63.40±2.22 63.33±1.18 63.01±0.44 -
GAT 70.75±3.33 71.95±4.45 71.07±3.45 72.13±4.68 72.48±4.32 53.12±5.81 53.24±6.04 47.94±6.53 53.82±5.69 53.24±6.04 67.72±3.48 66.75±2.97 69.58±1.21 69.65±1.14 -

easier to handle by most GNN architecture. Studies on FedSage+
and the comparisons on FedDBLP are deferred to Appendix A.2.

7.1.2 Link-level Tasks.
Protocol. We largely follow the experimental setup in Sec. 7.1.1.
Specifically, we split the links into train/valid/test sets, where the
ratio is 80% : 10% : 10% for recommendation dataset Ciao. We use
the official train/valid/test split for the knowledge graphs WN18
and FB15k-237. In addition, the link predictor for each model is a
two-layer MLP with 64 as the hidden layer dimension, where the
input is the element-wise multiplication of the node embeddings of
the node pair.We report themean accuracy for the recommendation
dataset and Hits at 1, 5, and 10 for the knowledge graphs.
Results and Analysis. We present the results on the knowledge
graphs in Table 4 and the results on Ciao in Table 9. Overall, the
performances of the FGL setting are better than those of the local
setting, which is consistent with the conclusion drawn from node-
level tasks and further confirms the effectiveness of FGL. Notably,
the splitting strategy results in unbalanced relation distributions
among the clients on knowledge graphs, making the triplets of each
client insufficient to characterize the entities. Thus, the performance
gaps between the local and the FGL settings are broad. Meantime,
the performances of the FGL setting become comparable to those
of the global setting.

7.1.3 Graph-level Tasks.
Protocol. We largely follow the experimental setup in Sec. 7.1.2.
Specifically, a pre-linear layer is added to encode the categorical
attributes preceding GNN. And a two-layer MLP is added to adapt

GNN to multi-task classification as a classifier following GNN. No-
tably, for multi-task FGL in multi-domain datasets, only the param-
eters of GNN are shared.
Results and Analysis. We present the main results in Table 5,
where there is no global setting on Multi-task dataset, as the same
model cannot handle the graphs of different tasks. Overall, the rela-
tionships between different settings have been preserved compared
to those on node-level tasks. One exception is on the Multi-task
dataset, where the non-i.i.d.ness is severe, e.g., the average number
of nodes of the graphs on a client deviates from other clients a
lot. Although we have personalized the models by FS-G, the gra-
dients/updates collected at the server-side might still have many
interferences. Without dedicated techniques to handle these, e.g.,
GCFL+, FedAvg cannot surpass the individually trained models.
But with federated optimization algorithms, such as FedOpt and
FedProx, some GNN architectures surpass the individually trained
models, which proves the effectiveness of these federated opti-
mization algorithms. In addition, we implement personalized FL
algorithms (here FedBN [24] and Ditto [21]) and apply them for GIN
on the multi-task dataset. FedBN and Ditto lead to performances
(i.e., mean accuracy with standard deviation) 72.90±1.33 (%) and
63.35±0.6 (%), respectively. Due to the label unbalance, all kinds of
GNNs result in the same accuracy on the HIV dataset. Hence, we
have to solely report their ROC-AUC in Table 10 of Appendix A.2,
from which we can draw similar conclusions. Meantime, GIN sur-
passes GCN with FedAvg on almost all datasets, which implies the
capability of distinguishing isomorphism graphs is still critical for
federated graph-level tasks. Our studies about GCFL+ are deferred
to Appendix A.2.

KDD ’22, August 14–18, 2022, Washington, DC, USA Zhen Wang et al.

7.2 Study about Hyper-parameter
Optimization

In this experiment, we conduct HPO for federated learned GCN
and GPR-GNN, intending to verify the effectiveness of our model-
tuning component. Moreover, we can set up an HPO benchmark
for the FGL setting and attain some insights, which have long been
missed but strongly demanded.
Protocol.We take SHA (see Sec. 5.1) to optimize the hyper-parameters
for GCN/GPR-GNN learned by FedAvg. we study low-fidelity HPO,
where the number of FL rounds for each evaluation ∈ {1, 2, 4, 8}, and
the client sampling rate for each round of FedAvg ∈ {20%, 40%, 80%, 100%}.
For each choice of fidelity, we repeat the SHA five times with dif-
ferent seeds, and we report the average ranking of its searched
hyper-parameter configuration.

1 2 4 8

Training round

20%

40%

80%

100%

Cl
ie

nt
 sa

m
pl

in
g

ra
te

5.0

7.5

10.0

12.5

15.0

(a) GCN.

1 2 4 8

Training round

20%

40%

80%

100%

Cl
ie

nt
 sa

m
pl

in
g

ra
te

5

10

15

20

(b) GPR-GNN.

Figure 6: SHA with various fidelity to optimize GCN/GPR-
GNN: We report the average ranking of searched hyper-
parameter configuration (the small, the better).

Results and Analysis. There are in total 72 possible configura-
tions, with each of which we conduct the FGL procedure and thus
acquire the ground-truth performances. These results become a
lookup table, making comparing HPOmethods efficient. We present
the experimental results in Fig. 6, where higher fidelity leads to
better configuration for both kinds of GNNs. At first, we want to
remind our readers that the left-upper region in each grid table
corresponds to extremely low-fidelity HPO. Although their per-
formances are worse than those in the other regions, they have
successfully eliminated a considerable fraction of poor configu-
rations. Meanwhile, increasing fidelity through the two aspects,
i.e., client sampling rate and the number of training rounds, reveal
comparable efficiency in improving the quality of searched configu-
rations. This property provides valuable flexibility for practitioners
to keep a fixed fidelity while trading-off between these two aspects
according to their system status (e.g., network latency and how the
dragger behaves). All these observations suggest the application
of low-fidelity HPO to FGL, as well as the effectiveness of FS-G’s
model-tuning component.

7.3 Study about Non-I.I.D.ness and
Personalization

We aim to study the unique covariate shift of graph data—node at-
tributes of different clients obey the identical distributions, but their
graph structures are non-identical. Meantime, we evaluate whether
the personalization provided by FS-G’s model-tuning component
can handle such non-i.i.d.ness.

Protocol. We choose FedcSBM (see Sec. 4.2) as the dataset. Specifi-
cally, we randomly generate a sample from our FedcSBM, containing
eight graphs with different homophilic degrees. Then we choose
GPR-GNN as the GNN model and consider three settings: (1) Ordi-
nary FL: We apply FedAvg to optimize the model where the clients
collaboratively optimize all model parameters; (2) Local: We allow
each client to optimize its model on its graph; (3) Personalization:
We apply FedAvg to optimize the parameters for feature transfor-
mation while the spectral coefficients (i.e., that for propagation) are
client-specific. We repeat such a procedure five times and report
the mean test accuracy and the standard deviation. More details
can be found in Appendix A.2.

Figure 7: Accuracy by levels of homophily and methods.

Results and Analysis. We illustrate the results in Fig. 7, where
each level of homophilic degree corresponds to a client. Overall,
the personalization setting outperforms others. We attribute this
advantage to making appropriate personalization, as the personal-
ization setting consistently performs better across different clients,
i.e., on graphs with different levels of homophilic degrees. On the
other hand, the ordinary FL exhibits comparable performances
with the local setting, implying the collaboration among clients
fails to introduce any advantage. FedAvg might fail to converge
due to the dissimilarity among received parameters, as the B-local
dissimilarities shown in Fig. 5a indicate.

7.4 Deployment in Real-world E-commerce
Scenarios

We deploy FS-G to serve one federation with three E-commerce
scenarios operated by different departments. These scenarios in-
clude search engine and recommender systems before and after the
purchase behavior. As they all aim to predict whether each given
user will click a specific item, and their users and items have mas-
sive intersections, sharing the user-item interaction logs to train
a model is promising and has long been their solution. However,
such data sharing raises the risk of privacy leakage and breaks the
newly established regulations, e.g., Cybersecurity Law of China.

Without data sharing, each party has to train its model on its user-
item bipartite graph, missing the opportunity to borrow strength
from other graphs. Considering the scales of their graphs are pretty
different, e.g., one scenario has only 184,419 interactions while
another has 2,860,074, this might severely hurt the performance
on "small" scenarios. With our FGL service, these parties can col-
laboratively train a GraphSAGE model for predicting the link be-
tween each user-item pair. Evaluation on their held-out logs shows
that the ROC-AUC of individually trained GraphSAGE models is

FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

0.6209±0.0024 while that of FGL is 0.6278±0.0040, which is a sig-
nificant improvement. It is worth noting that a small improve-
ment (at 0.001-level) in offline ROC-AUC evaluation means a sub-
stantial difference in real-world click-through rate prediction for
search/recommendation/advertisements. Therefore, the improve-
ment confirms the business value of FS-G.

8 CONCLUSION
In this paper, we implemented an FGL package, FS-G, to facilitate
both the research and application of FGL. Utilizing FS-G, FGL al-
gorithms can be expressed in a unified manner, validated against
comprehensive and unified benchmarks, and further tuned effi-
ciently. Meanwhile, FS-G provides rich plug-in attack and defence
utilities to assess the level of privacy leakage for the FGL algorithm
of interest. Besides extensive studies on benchmarks, we deploy
FS-G in real-world E-commerce scenarios and gain business bene-
fits. We will release FS-G to create greater business value from the
ubiquitous graph data while preserving privacy.

REFERENCES
[1] Muhammad Asad, Ahmed Moustafa, and Takayuki Ito. 2020. FedOpt: Towards

Communication Efficiency and Privacy Preservation in Federated Learning. Ap-
plied Sciences 10 (2020).

[2] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pe-
dro PB de Gusmão, and Nicholas D Lane. 2020. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390 (2020).

[3] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment (2008), P10008.

[5] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi,
Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In
Proceedings of Machine Learning and Systems. 374–388.

[6] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[7] Chuan Chen, Weibo Hu, Ziyue Xu, and Zibin Zheng. 2021. FedGL: Feder-
ated Graph Learning Framework with Global Self-Supervision. arXiv preprint
arXiv:2105.03170 (2021).

[8] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2020. Adaptive Universal
Generalized PageRank Graph Neural Network. In ICLR.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. NeurIPS
(2016), 3844–3852.

[10] Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. 2018.
Contextual Stochastic Block Models. In NeurIPS.

[11] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

[12] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[13] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao
Sun, Lifang He, Liangwei Yang, Philip S. Yu, Yu Rong, Peilin Zhao, JunzhouHuang,
Murali Annavaram, and Salman Avestimehr. 2021. FedGraphNN: A Federated
Learning System and Benchmark for Graph Neural Networks. arXiv preprint
arXiv:2104.07145 (2021).

[14] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan
Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman
Avestimehr. 2020. FedML: A Research Library and Benchmark for Federated
Machine Learning. arXiv preprint arXiv:2007.13518 (2020).

[15] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2019. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977 (2019).

[16] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning. In ICML. 5132–5143.

[17] George Karypis and Vipin Kumar. 2000. Multilevel k-way hypergraph partition-
ing. VLSI design (2000), 285–300.

[18] Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Nina Balcan, Virginia Smith, and
Ameet Talwalkar. 2021. Federated Hyperparameter Tuning: Challenges, Baselines,
and Connections to Weight-Sharing. In NeurIPS.

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[20] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research (2017), 6765–6816.

[21] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair
and Robust Federated Learning Through Personalization. In ICML. 6357–6368.

[22] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60.

[23] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems (2020), 429–450.

[24] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021.
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization.
In ICLR.

[25] Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, Kai Zeng, and Ce Zhang. 2021.
Automl: From methodology to application. In CIKM. 4853–4856.

[26] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican
Feng, Tianjian Chen, Han Yu, and Qiang Yang. 2020. Fedvision: An online visual
object detection platform powered by federated learning. In AAAI. 13172–13179.

[27] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali Anwar, Shashank
Rajamoni, Yuya Ong, Jayaram Radhakrishnan, Ashish Verma, Mathieu Sinn, et al.
2020. Ibm federated learning: an enterprise framework white paper v0. 1. arXiv
preprint arXiv:2007.10987 (2020).

[28] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In AISTATS. 1273–1282.

[29] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier
van Dalen, Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al.
2021. Federated Evaluation and Tuning for On-Device Personalization: System
Design & Applications. arXiv preprint arXiv:2102.08503 (2021).

[30] Hao Peng, Haoran Li, Yangqiu Song, Vincent Zheng, and Jianxin Li. 2021. Differ-
entially Private Federated Knowledge Graphs Embedding. In CIKM. 1416–1425.

[31] Nuria Rodríguez-Barroso, Goran Stipcich, Daniel Jiménez-López, José Anto-
nio Ruiz-Millán, Eugenio Martínez-Cámara, Gerardo González-Seco, M Victoria
Luzón, Miguel Angel Veganzones, and Francisco Herrera. 2020. Federated Learn-
ing and Differential Privacy: Software tools analysis, the Sherpa. ai FL framework
and methodological guidelines for preserving data privacy. Information Fusion
(2020), 270–292.

[32] Daniele Romanini, Adam James Hall, Pavlos Papadopoulos, Tom Titcombe, Abbas
Ismail, Tudor Cebere, Robert Sandmann, Robin Roehm, andMichael A Hoeh. 2021.
Pyvertical: A vertical federated learning framework for multi-headed splitnn.
arXiv preprint arXiv:2104.00489 (2021).

[33] Toyotaro Suzumura, Yi Zhou, Natahalie Baracaldo, Guangnan Ye, Keith Houck,
Ryo Kawahara, Ali Anwar, Lucia Larise Stavarache, Yuji Watanabe, Pablo Loyola,
et al. 2019. Towards federated graph learning for collaborative financial crimes
detection. arXiv preprint arXiv:1909.12946 (2019).

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[35] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020.
In NeurIPS. 7611–7623.

[36] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.
Fedgnn: Federated graph neural network for privacy-preserving recommendation.
arXiv preprint arXiv:2102.04925 (2021).

[37] Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification
over non-iid graphs. NeurIPS 34 (2021).

[38] Yuexiang Xie, Zhen Wang, Daoyuan Chen, Dawei Gao, Liuyi Yao, Weirui Kuang,
Yaliang Li, Bolin Ding, and Jingren Zhou. 2022. FederatedScope: A Flexible
Federated Learning Platform for Heterogeneity. https://arxiv.org/abs/2204.05011
(2022).

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In ICLR.

[40] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. 2019.
Federated learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 3 (2019), 1–207.

[41] Huanle Zhang, Mi Zhang, Xin Liu, Prasant Mohapatra, and Michael DeLucia.
2021. Automatic Tuning of Federated Learning Hyper-Parameters from System
Perspective. arXiv preprint arXiv:2110.03061 (2021).

KDD ’22, August 14–18, 2022, Washington, DC, USA Zhen Wang et al.

[42] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Subgraph
federated learning with missing neighbor generation. NeurIPS 34 (2021).

[43] Alexander Ziller, Andrew Trask, Antonio Lopardo, Benjamin Szymkow, Bobby
Wagner, Emma Bluemke, Jean-Mickael Nounahon, Jonathan Passerat-Palmbach,
Kritika Prakash, Nick Rose, et al. 2021. PySyft: A Library for Easy Federated
Learning. In Federated Learning Systems. 111–139.

FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

A APPENDIX
A.1 Details of Off-the-shelf Splitters
To this end, we have implemented mainly six classes of splitters:

(1) community_splitter : This is often adopted in node-level tasks
to simulate the locality-based federated graph data [42], where
nodes in the same client are densely connected while cross-client
edges are unavailable. Specifically, community detection algorithms
(e.g., Louvain [4] and METIS [17]) are at first applied to partition a
graph into several clusters. Then these clusters are assigned to the
clients, optionally with the objective of balancing the number of
nodes in each client.

(2) random_splitter : Random split is often adopted in node-level
tasks, e.g., FedGL [7]. Specifically, the node set of the original graph
is randomly split into𝑁 subsets with or without intersections. Then,
the subgraph of each client is deduced from the nodes assigned to
that client. Optionally, a specified fraction of edges is randomly
selected to be removed.

(3) meta_splitter : In many cases, there are meta data or at least
interpretable edge/node attributes that allow users to simulate a
real FL setting via splitting the graph based on the meta data or
the values of those attributes. In citation networks, papers pub-
lished in different conferences or organizations usually focus on
different themes. Splitting by conference/organization naturally
leads to node (i.e., paper) classification tasks with non-identical
label distributions (i.e., prior probability shift [15]). Meanwhile, in
recommender systems, the same user often has different tenden-
cies to items in different domains/scenarios, where splitting by
domain/scenario can provide concept shift among clients.

(4) instance_space_splitter : It is responsible for creating feature
distribution skew (i.e., covariate shift). To realize this, we sort the
graphs based on their values of a certain aspect, e.g., for Molhiv,
molecules are sorted by their scaffold, and then each client is as-
signed with a segment of the sorted list.

(5) label_space_splitter : It is designed to provide label distribution
skew. For classification tasks, e.g., relation prediction for knowledge
graph completion, the existing triplets are split into the clients
by latent dirichlet allocation (LDA) [3]. For regression tasks, e.g.,
PCQM4M, FS-G can discretize the label before conducting LDA.

(6) multi_task_splitter : This is mainly designed for multi-task
learning or personalized learning. Sometimes different clients have
different tasks, e.g., in the domain of the molecule, some clients
have the task of determining the toxicity, while some clients have
the task of predicting the HOMO-LUMO gap. A more challenging
case [37] is that the graphs come from the different domains, e.g.,
molecules, proteins, and social networks.

A.2 Details about Our Experiments
Experimental settings. In node-level tasks, the detailed hyper-
parameters in our experiments are as follows: the number of train-
ing rounds is 400, the early stopping is 100, the GNN layers is 2 (in
GPR-GNN, K is 10), the hidden layer dimension is 64 on citation
networks and 1024 on FedDBLP, the dropout is 0.5, weight decay is
0.0005, the number of clients is five on citation networks and the
optimizer is SGD.

More results and analysis about node-level tasks. Particularly,
we consider one of the recently proposed FGL algorithms, Fed-
SAGE+ [42], which is highlighted by simultaneously training gener-
ative models for predicting the missing links so that its GraphSAGE
models can be trained on the mended graphs. We show the results
in Table 7, where FedSage+ significantly outperforms its baseline
(i.e., GraphSage) on most of the datasets. It benefits from the jointly
learned generative models, which enable each client to reconstruct
the missing cross-client links under federated setting.

We present the results on FedDBLP in Table 8, where the fraction
of removed edges reaches 60% and 40% when split by venue and
organizer, respectively. Besides, there are 20 and 8 clients under
the two splitting settings, respectively, larger than the previous
experiments. Since the client-specific graphs are tiny, w.r.t. the
original one, the available training examples are limited for the local
setting. All these factors make the performances of different GNNs
unsatisfactory under the local setting. As for FGL, since FedAvg
aggregates the clients’ updates, it somehow exploits all the training
examples and thus achieves comparable performances against the
global setting. Considering that FedDBLP has simulated the data
interruption in real life, these results confirm the effectiveness of
FGL to handle this emerging challenge.
More results and analysis about link-level tasks. We provide
more experimental results on the FedDBLP, Ciao, and HIV in the
Table. 8, Table. 9, and Table. 10. All experimental settings are con-
sistent with Sec. 7.1.1, Sec. 7.1.2, and Sec. 7.1.3, respectively.
More results and analysis about graph-level tasks. In addi-
tion, we consider the recently proposed FGL algorithm GCFL+ [37],
which clusters clients and performs FedAvg in a cluster-wise man-
ner so that clients with similar data distributions share a com-
mon GIN model. In Table 11, GCFL+ outperforms its baseline (i.e.,
GIN federally learned by FedAvg) on both the IMDB and Multi-
task datasets, and achieves comparable performance on PROTEINS.
GCFL+ clusters the clients according to their sequences of gradi-
ents, where clients belonging to the same cluster share the same
model parameters. Its advantages are likely to come from this smart
mechanism, which handles the non-i.i.d.ness among clients better.
More details about the protocol of our studies onhyper-parameter
optimization. We largely follow the experimental setup in the
Sec. 7.1.1 while extend the search space of the hyper-parameters,
where hidden dim ∈ {32, 64}, dropout ∈ {0.0, 0.5}, and weight de-
cay in ∈ {0, 0.0005}. As PubMed has much more nodes and edges
than the other two citation networks, we target the node classifica-
tion task on PubMed to draw statistically reliable conclusions. In
order to simulate the FL setting, we apply our community_splitter
to divide the PubMed into five parts for five clients.
Non-I.I.D.ness and Personalization Study. In order to generate
different level of homophily graphs, we set 𝜙 ∈ {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8} for cSBM model. We repeat our experiment with GPR-
GNN for three-time with a different seed. In FGL setting, each client
shares the parameters of linear layers, while the parameters of the
label propagation layer are personalized.
Real-world Deployment. We provide more statistical informa-
tion about the real-world E-commerce scenarios dataset. Search
engine scenario contains 106,222 users and 464,904 items. In the
other two scenarios, the first contains 12,588 users and 78,996 items,
and the second contains 107,589 users and 559,796, respectively.

KDD ’22, August 14–18, 2022, Washington, DC, USA Zhen Wang et al.

Table 6: Datasets statistics.

Task Domain Dataset Splitter # Graph Avg. # Nodes Avg. # Edges # Class Evaluation

Node-level

Citation network Cora random&community 1 2,708 5,429 7 ACC
Citation network CiteSeer random&community 1 4,230 5,358 6 ACC
Citation network PubMed random&community 1 19,717 44,338 5 ACC
Citation network FedDBLP meta 1 52,202 271,054 4 ACC

Link-level

Recommendation System Ciao meta 28 5,875.68 20,189.29 6 ACC
Recommendation System Taobao meta 3 443,365 2,015,558 2 ACC

Knowledge Graph WN18 label_space 1 40,943 151,442 18 Hits@n
Knowledge Graph FB15k-237 label_space 1 14,541 310,116 237 Hits@n

Graph-level

Molecule HIV instance_space 41,127 25.51 54.93 2 ROC-AUC
Proteins Proteins instance_space 1,113 39.05 145.63 2 ACC

Social network IMDB label_space 1,000 19.77 193.06 2 ACC
Multi-task Mol multi_task 18,661 55.62 1,466.83 - ACC

Table 7: Comparisons between FedSage+ and GraphSAGE
(with FedAvg) on representative node classification datasets:
Mean accuracy (%) ± standard deviation.

Cora CiteSeer PubMed
random community random community random community

GraphSAGE 85.42±1.80 87.19±1.28 76.86±1.38 77.80±1.03 86.45±0.43 86.87±0.53
FedSage+ 85.07±1.20 87.68±1.55 78.04±0.91 77.98±1.23 88.19±0.32 87.94±0.27

Table 8: Results on representative node classification
datasets withmeta_splitter: Mean accuracy (%) ± standard de-
viation.

FedDBLP (by venue) FedDBLP (by publisher)
Local FGL Global Local FGL Global

GCN 58.86±0.32 77.53±0.03 78.50±0.04 67.59±0.44 77.98±0.04 78.50±0.04
GraphSAGE 51.05±0.43 78.57±0.03 78.96±0.39 61.60±0.19 79.23±0.05 78.96±0.39

GAT 59.06±0.48 77.31±0.07 OOM 68.38±0.61 77.52±0.06 OOM
GPR-GNN 58.07±0.39 76.53±0.23 OOM 66.10±0.25 78.17±0.12 OOM

Table 9: Results on link classification dataset Ciao with
meta_splitter: Mean accuracy (%) ± standard deviation.

Ciao
Local FGL Global

GCN 46.76±0.44 49.18±0.00 49.18±0.00
GraphSAGE 46.62±0.35 49.18±0.00 49.18±0.00

GAT 46.83±0.31 49.18±0.00 49.18±0.00
GPR-GNN 47.73±0.75 49.24±0.08 49.21±0.07

Table 10: Results on graph classification dataset HIV with
instance_space_splitter: Mean ROC-AUC scrore ± standard
deviation.

HIV (ROC-AUC)
Local FGL Global

GCN 0.6193±0.0319 0.6263±0.0332 0.6939±0.0165
GIN 0.6925±0.0354 0.7774±0.0195 0.7958±0.0200
GAT 0.6192±0.0101 0.6287±0.0197 0.7034±0.0201

A.3 Datasets description
As in Table 6, we provide a detailed description of datasets of FS-G
with datasets and suggested Splitter accordingly. The datasets are

Table 11: Comparisons between GCFL+ and GIN (with Fe-
dAvg) on graph classification datasets: Mean accuracy (%) ±
standard deviation.

PROTEINS IMDB Multi-task
GIN 73.74±5.71 64.79±10.55 63.40±2.22

GCFL+ 73.00±5.72 69.47±8.71 65.14±1.23

collected from different domains, and the nodes and edges represent
differentmeanings.Wewill support more datasets and providemore
benchmarks in the future.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Federated Learning
	2.2 Federated Graph Learning
	2.3 FL Software

	3 Infrastructure
	3.1 Requirements of Federated Graph Learning
	3.2 Development based on FederatedScope

	4 GraphDataZoo
	4.1 Splitting Standalone Datasets
	4.2 New Federated Learning Datasets

	5 GNNModelZoo and Model-Tuning Component
	5.1 Federated Hyper-parameter Optimization
	5.2 Monitoring and Personalization

	6 Off-the-shelf Attack and Defence Abilities
	7 Experiments
	7.1 An Extensive Study about Federated Graph Learning
	7.2 Study about Hyper-parameter Optimization
	7.3 Study about Non-I.I.D.ness and Personalization
	7.4 Deployment in Real-world E-commerce Scenarios

	8 Conclusion
	References
	A Appendix
	A.1 Details of Off-the-shelf Splitters
	A.2 Details about Our Experiments
	A.3 Datasets description

