
FS-Real: Towards Real-World Cross-Device Federated Learning
Daoyuan Chen∗, Dawei Gao∗, Yuexiang Xie, Xuchen Pan, Zitao Li,

Yaliang Li†, Bolin Ding, Jingren Zhou
Alibaba Group

ABSTRACT

Federated Learning (FL) aims to train high-quality models in collab-
oration with distributed clients while not uploading their local data,
which attracts increasing attention in both academia and industry.
However, there is still a considerable gap between the flourishing
FL research and real-world scenarios, mainly caused by the char-
acteristics of heterogeneous devices and its scales. Most existing
works conduct evaluations with homogeneous devices, which are
mismatched with the diversity and variability of heterogeneous
devices in real-world scenarios. Moreover, it is challenging to con-
duct research and development at scale with heterogeneous devices
due to limited resources and complex software stacks. These two
key factors are important yet underexplored in FL research as they
directly impact the FL training dynamics and final performance,
making the effectiveness and usability of FL algorithms unclear.
To bridge the gap, in this paper, we propose an efficient and scal-
able prototyping system for real-world cross-device FL, FS-Real. It
supports heterogeneous device runtime, contains parallelism and
robustness enhanced FL server, and provides implementations and
extensibility for advanced FL utility features such as personaliza-
tion, communication compression and asynchronous aggregation.
To demonstrate the usability and efficiency of FS-Real, we conduct
extensive experiments with various device distributions, quantify
and analyze the effect of the heterogeneous device and various
scales, and further provide insights and open discussions about
real-world FL scenarios. Our system is released to help to pave
the way for further real-world FL research and broad applications
involving diverse devices and scales.

1 INTRODUCTION

Cross-device federated learning (FL) aims to leverage a large-scale
distributed group of clients to collaboratively train high-quality
machine learning models, while retaining the client data locally to
devices for privacy protection [18, 19, 35, 37, 54]. In recent years, the
boom of edge intelligence and the growing demand for data privacy
protection has spawned remarkable innovations in FL algorithms
[23, 29, 36]. However, there is still a considerable gap between cross-
device FL research and practical solutions in real-world application
scenarios, particularly in terms of runtime characteristics and the
scale of the participated devices. Without bridging the gap soon, the
effectiveness and usability of both existing and follow-up FL research
are challenged.

To be specific, let us start by explaining why the gap exists in
FL: (a) Homogeneous v.s. Heterogeneous Device. Most exist-
ing studies conduct FL experiments based on homogeneous de-
vice settings: each participated device has the same computational,
storage, and communication capabilities [18, 26]. In real-world
∗Co-first authors.
†Corresponding author, email address: yaliang.li@alibaba-inc.com.

applications, however, the device capabilities are highly heteroge-
neous and dynamically changing. For example, the computational
power of mainstream smartphones can vary by orders of magnitude
[46, 49]. Further, the available computational and communication
resources of an FL device can change due to the competition from
other apps on the same device and the spotty network connection
[17]. (b) Device Scales. Furthermore, it is highly challenging to
conduct research at scale with real heterogeneous devices. Scaling
heterogeneous devices requires researchers to deal with diverse
device hardware and software environments to reflect real com-
puting capacities, and build distributed communications through
the network interface cards to reflect real transmission capabilities
[24]. Due to limited resources and complex software stacks, most
existing works focus on standalone simulation studies with high-
performance servers, which introduces non-negligible simulation
errors compared with real scenarios. For more details, please see
the observations in Section 4.

Notably, the impact of these two key factors on recent advanced
FL algorithms is non-trivial while still under-explored. For example,
in practical FL scenarios, it is important to get a high-performance
model in a short time andwith few resources. Personalized FL shows
promising results to improve the performance when dealing with
Non-IID data [6, 44, 57]; communication compression [14, 20, 48]
and asynchronous aggregation [7, 38, 50] can effectively accelerate
FL training speed by reducing traffic and increasing device utiliza-
tion respectively. However, there are inconsistent training dynamics,
convergence time and trained model of FL with heterogeneous and
homogeneous devices, which are closely related to the performance
of individual clients. Furthermore, such inconsistency is exacer-
bated by various real-world scales of FL devices, calling for further
validation of effectiveness and usability of existing solutions.

To bridge this gap, in this paper, we propose a prototyping sys-
tem for real-world FL, FS-Real, based on which we aim to identify
major challenges in real heterogeneous device and scalable FL sce-
narios, providing reusable functionality and valuable insights for
further FL research, development and deployment. Specifically, FS-
Real contains a flexible heterogeneous device runtime, a group of
efficient and scalable FL device executors and FL server, and imple-
mentations for a number of practical and advanced FL enhancement
techniques with easy extensions. (1) The FS-Real runtime enables
users to easily and cost-efficiently study FL performance in real
FL scenarios, where the devices can have diverse scales and highly
different hardware capabilities, e.g., with configurable computa-
tion and communication resources such as CPU cores and network
types. (2) Based on a computation engine optimized for edge intelli-
gence, MNN [33], we implement efficient lightweight executors for
FL behaviors such as local training, which can be executed in real
Android phones and IoT devices. To enhance the training efficiency
and scalability, we carefully decouple and schedule the FL plan so

ar
X

iv
:2

30
3.

13
36

3v
1

 [
cs

.L
G

]
 2

3
M

ar
 2

02
3

that server-side processing behaviors such as sending, receiving,
and aggregation of information can be efficiently parallelized and
scaled up. (3) Further, we incorporate several representative per-
sonalized FL, communication compression, and asynchronous FL
algorithms into FS-Real, and provide simple and easily customiz-
able programming interfaces for future extensions.

With the implemented FS-Real, we conduct an extensive evalua-
tion to demonstrate its usability, efficiency, and scalability. We first
examine the performance of existing FL algorithms with different
hardware device distributions and varied device scales. We find that
both distribution differences and quantity differences in heteroge-
neous devices bring a substantial model performance gap between
homogeneous and heterogeneous scenarios, and such gap becomes
more noticeable in terms of fairness-related metrics and at large
device scales. These findings confirm the strong need of FS-Real.
Besides, heterogeneous devices exhibit complex differences in con-
vergence speed, network traffic and client utilization, which are
specific to the device scales and device distributions, challenging
the utility of FL algorithms in real-world cross-device federated
learning scenarios. Moreover, we find advanced FL techniques, such
as personalized FL, communication compression, and asynchronous
aggregation, work well in most evaluated heterogeneous device
cases, while the performance gain of these techniques suffers from
high variance especially at large scales, calling for future attention
to their usability and robustness.

Our contributions are summarized as follows:
• We propose an efficient and scalable prototype system FS-
Real for real-world cross-device FL, which supports het-
erogeneous device runtime and includes several advanced
FL utility features such as personalization, communication
compression, and asynchronous concurrency.

• With experiments conducted on up to thousand-scale hetero-
geneous devices (android phones), we quantify and analyze
how the underexplored factor, heterogeneous device, affects
the FL performance under different scenarios and different
device distributions, and point out some challenges and open
issues when scaling up FL.

• We release the system at https://github.com/alibaba/Federated
Scope/tree/FSreal. With the open-sourced system and pro-
vided insights, we hope that our work can greatly facilitate
further research and broad applications on real-world FL
scenarios that would otherwise be infeasible without a dedi-
cated real system.

2 BACKGROUND AND RELATEDWORK

2.1 FL Algorithms

A great deal of effort has been devoted to FL algorithm research
[18, 26, 37, 47]. Typically, FL algorithms adopt the following work-
flow similar to the well-known FedAvg [35]: At the 𝑡-th FL round,
the server first selects 𝑛 available clients C𝑎𝑣𝑎 from all the 𝑁 partic-
ipated clients, and sends the current global model weight 𝜽 𝒕𝒈 to the
selected clients. Then the selected client 𝑖 trains the received model
with their local private data, and uploads the updated weight 𝜽 𝒕+1𝒊
to the server. Finally, the server aggregates the model updates from
𝑛′ responded clients C𝑟𝑒𝑠 ⊆ C𝑎𝑣𝑎 to generate the next-round global
model as 𝜽 𝒕+1𝒈 =

∑𝑛′
𝑖=1𝑤𝑖𝜽 𝒕+1𝒊 where𝑤𝑖 is the aggregation weight

that is usually defined as the ratio of the number of training data
of client 𝑖 and the total number for all the 𝑛′ clients. This process is
repeated until 𝜽𝒈 converges or the round reaches the pre-defined
maximum number 𝑇 .

In real-world FL scenarios, 𝑁 can be in various scales and even
be very large with highly heterogeneous data distribution, and the
clients usually have limited device resources and spotty connec-
tions. These pose difficulties to learn high-quality FL models with
fast convergence speed and low resource cost. Researchers have
proposed fruitful algorithms to improve FedAvg such as personaliza-
tion with client-specific model 𝜽𝒊 [10, 25, 27, 39, 44], heterogeneity-
aware sampling protocols [22, 43], communication compression
[14, 19, 52] and asynchronous aggregation [7, 31, 50]. However,
most existing FL algorithms are studied and validated in homoge-
neous device simulation environments, in which the responded
clients C𝑟𝑒𝑠 at each round will differ from the one in heteroge-
neous device setting, and subsequently leads to inconsistent avail-
able clients C𝑎𝑣𝑎 , convergence round 𝑇 ′ and aggregated model
sequence {𝜽2

𝒈 , 𝜽
3
𝒈 , · · ·, 𝜽

𝑻 ′

𝒈 }. In this work, different from most exist-
ing homogeneous device works, we focus on real heterogeneous
device scenarios and study the effect of various heterogeneous
device scales.

2.2 FL Systems and Tools

There are a number of FL systems and tools that make efforts to
translate academic FL progress into real-world or scalable solutions.
Some industrial systems have performed FL on real heterogeneous
runtime mobile devices with 𝑛′ in the hundreds to thousands scale,
such as Google FL stack [4], Papaya proposed by Facebook [16], and
Apple FL [41]. However, these works are closed-source. Among
the many open-source frameworks, benchmarks and tools such
as LEAF [5], TensorFlow Federated [45], PySyft [58], FedML [15],
Flower [3], OpenFL [12], IBM FL [32], FederatedScope [?], FLARE
[42], large-scale realistic heterogeneous device runtime is not yet
well supported. Ideally, one can approximate the response time of
an individual device as |𝜽 |/𝐵𝑢𝑝+|𝜽 |/𝐵𝑑𝑜𝑤𝑛+|𝐷 |𝑠+𝑡𝑜𝑡ℎ𝑒𝑟 , where |𝜽 |
indicates the model size, 𝐵𝑢𝑝 and 𝐵𝑑𝑜𝑤𝑛 indicates the upload and
download speeds respectively, |𝐷 | is the size of the local training
data, 𝑠 is the training speed and 𝑡𝑜𝑡ℎ𝑒𝑟 indicates the total delay of
other processings such as I/O. Any one of these factors can vary by
orders of magnitude on different devices (e.g. 𝐵𝑢𝑝 on a 4G network
can be 200 times faster than on a 3G network) and consequently
cascade to cause huge inter-device response differences. In addition,
some device states tend to change dynamically and become unavail-
able according to conditions defined by specific FL protocols and
applications, such as network type switching, FL executor being
shut down by the user or OS, device running low on power, etc.
FedScale [21] and FLASH [53] consider introducing heterogeneous
message arrival times with cost models and virtual timestamps, but
their fidelity is still limited by the capability of the cost models,
and the precision and coverage of the device capacity values (e.g.,
𝑠 and 𝑡𝑜𝑡ℎ𝑒𝑟 mentioned above). Our work differs from theirs by
supporting real and scalable heterogeneous device runtime with an
efficient device training engine, and high-fidelity simulation with
different mobile types and device distributions.

2

Besides, these above works mainly focus on functionality and us-
ability of system or tool. Different from them, we studied the impact
of different device runtime distributions and scales on the FL, espe-
cially in conjunction with some of the recent FL algorithms such
as personalization, compression, and asynchronous aggregation.

3 THE PROPOSED FS-REAL

In this section, we describe the design and implementation of our
system optimized for real-world FL.

3.1 Design Principles

The two main characteristics of real cross-device FL (i.e., heteroge-
neous device and large scale) impose a number of unique system
requirements in terms of the following aspects: (i) Usability and

Efficiency. The hardware and software environments of devices
are very different from cloud-based high-performance servers, hav-
ing various instruction sets (x86, ARM, etc.,), operating systems,
and library dependencies. A cross-device FL system should have
good usability and can conduct evaluation for a wide range of de-
vice runtimes. Besides, devices often have limited resources, such
as computing capacity, communication bandwidth, and storage. It
is critical for cross-device FL systems to efficiently conduct training,
inference, and management for local models with minimal con-
sumption of device resources. (ii) Scalability and Robustness.

As the participating devices can be on diverse scales, the FL server
should be highly scalable, make good use of system resources, and
yield a corresponding improvement in model quality and training
speed as more system resources are invested. Moreover, in real
scalable FL scenarios with heterogeneous devices, many devices are
prone to be slow and disconnected as we discussed aforementioned.
How to robustly handle such devices is also one of the key chal-
lenges. (iii) Flexibility and Extensibility. Real FL applications
require the collaboration between devices and the server, which
involves a large number of potentially inconsistent software stacks
and programming interfaces. Supporting flexible customization and
extension of FL algorithms is therefore necessary to improve the
model quality and convergence for diverse scales and scenarios.

Next we introduce how we implement the components to ful-
fill the above requirements (RS), including an easy-to-use and
high-fidelity simulation platform and efficient FL device execu-
tors (Sec.3.2 for RS i); a scalability enhanced robust server (Sec.3.3
for RS ii); and supports and extensions of diverse advanced FL
algorithms (Sec.3.4 for RS iii).

3.2 Heterogeneous Device Runtime

For the sake of usability and efficiency, we implement a dedicated
high-performance FL execution engine for heterogeneous devices.
The major modules are designed as a portable learner based on the
MNN [33], and a communication and storage manager based on
the native APIs of the target OS (e.g. Android SDK). The learner
is responsible for local model training and monitoring, and can be
selectively packaged and compiled into lightweight dynamic link
libraries for different target hardware (e.g. x86 CPUs, ARM CPUs,
and CUDA-GPU). We leverage MNN to automatically optimize
the computational graphs for the target hardware, such that the

computation and memory access can be accelerated, and the binary
size can be reduced.

Besides, the communication and storage manager is responsible
for sending messages to (and receiving messages from) the server
and for the serialization of the data model, in which we leverage
gRPC and compressed MNN models to enable high-performance
network transmission. Here we use the MNN model file as an inter-
mediate representation of the exchanged model, which facilitates
cross-platform execution and reduces development costs. With sup-
port for mainstream model formats such as onnx [2], Tensorflow
[1], Torchscripts [40] and a large number of widely used operations,
we can easily define computational graphs on the server side us-
ing python and various frameworks, which will be automatically
and uniformly converted to MNN model on devices, reducing the
programming burden for diverse devices.

Our efficiency optimization is multi-granular in terms of (1)
the device learning behaviors with efficient C++ implementation
and leveraging of heterogeneous computing hardware (e.g., high-
performance assembly codes for different operators with the help of
MNN), (2) the communication and storage manager implemented
with native OS API to reduce redundant memory accesses and
computational calls from other intermediate code bases and (3)
the compact binary size and minimal dependency that reduce the
burden on users’ storage resources. In Sec.4, we will give some
quantitative comparisons to demonstrate the efficiency of FS-Real.

3.3 Enhanced FL Server

In real-world FL scenarios, the FL server can easily become a per-
formance bottleneck for the whole system due to the fact that as
the scale of clients increases, both the consumed resources and the
number of slow or disconnected devices increase. In this section, we
introduce the enhanced FL server in FS-Real for better scalability
and robustness.

3.3.1 Message Concurrency. To enhance the scalability of the sys-
tem,we implement concurrency atmultiple granularities.We choose
a message-passing-based FL library FederatedScope [?] as a start-
ing point for the server implementation, and further extend and
optimize it. By focusing on the unified message object, we can easily
analyze and handle potential space-time contention and redundant
resource overheads. Specifically, we first abstract FL server behav-
iors into Message Transmitter that is responsible for the transfer of
messages between clients and server, and Message Processor that
is responsible for a series of FL transactions to process messages,
such as model aggregation and monitoring. We implementMessage
Transmitters and Message Processors with multiple individual pro-
cesses for interleaved execution, due to the fact that they typically
occupy different hardware resources (e.g., CPU, Network Interface
Card and disks) and have great potential for concurrency. Note that
this design and optimization is necessary and effective because the
transmission latency and processing latency of messages can vary
by even several orders of magnitude in different FL and network
situations. Furthermore, for transmitters, we introduce separate
process pools of configurable size for parallel gRPC sending and
receiving, so that they can be flexibly and automatically scale out
to efficiently handle different scales of FL participated devices.

3

3.3.2 Robust Client Selection. The FL server needs to select the
available devices and broadcast messages to them to initiate local
training in each round, perform aggregation at the proper time ac-
cording to the response messages, and subsequently start the next
round of broadcasting. In real FL scenarios, the response times be-
tween devices can differ by order of magnitude as aforementioned.

To advance the FL process robustly and efficiently in various
scenarios, we design a timeout mechanism for FL workload adapta-
tion. Suppose that a server in an FL round has selected 𝑛 devices
from 𝑛𝑎𝑣𝑎 available devices to broadcast messages and expects to
receive 𝑛′ device responses for aggregation. Given a timeout bud-
get 𝑡𝑜 , if the number of received messages is less than 𝑛′ within 𝑡𝑜
time after broadcasting, we will rebroadcast the messages to other
𝑚𝑖𝑛(𝑛,𝑚𝑎𝑥 (𝑛𝑎𝑣𝑎 − 𝑛, 0)) available devices and reset the timeout
timer. Inspired by the AIMD (Additive Increase, Multiplicative De-
crease) congestion control algorithm [8], we double 𝑡𝑜 after each
triggered rebroadcast and subtract 𝛿𝑡 from 𝑡𝑜 when no rebroadcast
is triggered for 𝑘 consecutive rounds. This mechanism takes into
account the diverse load and dynamics of the available heteroge-
neous devices, allowing for efficient advancement of FL process
across time and scenarios based on the overall responsiveness of
the devices. Besides, we support the over-selection mechanism on
the server side, by broadcasting to 𝑚𝑖𝑛(𝑛𝑎𝑣𝑎, ⌊𝑞𝑛⌋) available de-
vices, where 𝑞 indicates the over-selection rate (e.g. 150%). This
mechanism enhances the robustness of synchronous aggregation
scenarios, while in the next section, we describe asynchronous
algorithms that can make FL algorithms more efficient and robust.

3.4 Advanced FL Techniques

In order to provide flexible and easy FL algorithm extensions, we
design simple and unified configuration options and programming
interfaces for both the cloud and the device side in FS-Real. These
APIs abstract a set of expressive behaviors for common yet nec-
essary objects in FL such as messages, models, trainers, monitors,
etc., which are decoupled from the target device runtime and can
be flexibly customized. In particular, here we support and provide a
number of advanced FL technology implementations that are impor-
tant for scaling heterogeneous devices FL, including personalization,
communication compression, and asynchronous aggregation.

(1) Personalization is important to improve the quality of client-
specific models and ensure the user experience of end-intelligence
applications where each device corresponds to a single real user.
In the Device Executor (Sec.3.2), we provide device-wise configu-
ration and interfaces such as “set_local_module”, “fine_tune” and
implement SOTA personalized FL algorithms such as personalized
fine-tuning, FedRep [10] and FedBABU [39]. (2) Communication
compression reduces the message size to save the running time and
reduce development costs (such as the fee charged for mobile traffic).
In the server’s Message Transmitter (Sec.3.3), we provide interfaces
such as “channel_compress”, “para_compress” and support com-
pression techniques such as lossless gzip and deflate algorithm [11],
and lossy half-precision floating point (FP16) and INT2∼INT8 quan-
tization [28]. (3) Asynchronous aggregations combine messages
received in different FL rounds to improve training efficiency and
robustness. In the server’sMessage Processor, we provide convenient
maintenance of message staleness and necessary interfaces such as

“stale_aggregation” for asynchronous algorithms, and implement
the SOTA algorithm, FedBuff [38].

3.5 Heterogeneous Device Simulation Platform

Preparing the corresponding hardwares (e.g., mobile phones) for
heterogeneous runtimes to run real FL requires high costs in terms
of development time, financial expense for acquiring new hardware
devices and potential loss of user experience (e.g., testing with
users’ devices). To accelerate real-world FL research and reduce the
incurred costs, we further implement a high-fidelity and easy-to-use
heterogeneous runtime simulation platform in FS-Real.

As mentioned in Sec.2, the computing, communication, and stor-
age capabilities of the participated devices have the most direct
impact on FL, thus we mainly focus on fidelity to these aspects.
We run separate processes for the participated clients based on the
Android official native simulation tool 1, and allow users to config-
ure the number of CPU cores, memory footprint, network types,
and network latency. Note that with our simulation platform, each
device runs in the same software environment (e.g., OS and library
dependencies) as a real phone and will communicate realistically
across machines via gRPC, which greatly reduces the gap between
emulation and real FL.

In addition, we provide easy-to-use configurable tools to quickly
start simulated heterogeneous devices and run FL at scale with
a single command. To enhance the utilization of simulation host
resources, we introduce a scalable, self-managing device pool that
supports different types of heterogeneous runtime distributions
and allocates available devices to participated clients at each FL
round. This configuration system is comprehensive: At the global
level, users can specify common FL settings (e.g. dataset, FL scale,
network topology, FL algorithm); At the local client level, different
personalized hyperparameters and data configurations can be spec-
ified for each client; At the device level, different device capabilities
(e.g. CPU, network type) can be specified for each emulated device,
as well as the device pool distributions (we will give some examples
in Sec.5.1). Hyperparameter optimization is also supported with
early stopping and easy configuration.

Based on the available host resources and specified configura-
tions such as the number of devices and device capacity, the device
pool will automatically perform auxiliary engineering actions such
as Android phone startup, FS-Real runtime (App) installation, port
mapping, network connecting, clients’ data switching and storage,
failure reboot, etc., allowing users to only focus on emulation con-
figuration and not worry about the complexity of dealing with
heterogeneous devices. Here the device allocation can be random-
ized to simulate the changes in device runtime (e.g., CPU contention
and network bandwidth fluctuations).

4 HOW FS-REAL BENEFITS REAL FL?

In this section, we conduct experiments to show that the proposed
FS-Real is usable, efficient and scalable to cross-device FL for both
research and deployment.

1https://developer.android.com/studio/run/emulator
4

Table 1: Comparisons of on-device FL training time (seconds). We train a ConvNet2 model on FEMNIST for 50 training rounds

and use the same local data size each round. The marker “★” indicates the estimated value of FedScale according to its original

cost model (#𝑆𝑎𝑚𝑝𝑙𝑒 · 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒) +𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑧𝑒/𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, which is a fixed value for different configurations.

CPU Loads Wifi Bandwidth Batch Size Running Time per FL Round (Seconds)
FS-Real, Real FS-Real, Simula. FedScale, Real FedScale, Simula.

Idle 100Mbps
16 3.58 ~ 3.77 1.99 ~ 3.12 7.24 ~ 7.75

5.85★

32 3.42 ~ 3.62 1.70 ~ 2.45 6.33 ~ 6.94
64 3.31 ~ 3.51 1.54 ~ 2.10 5.84 ~ 6.63

Idle 25Mbps 32 8.66 ~ 9.24 3.31 ~ 4.54 12.28 ~ 13.27
Idle 5Mbps 32 43.7 ~ 53.1 20.31 ~ 28.98 51.55 ~ 50.18
Light 100Mbps 32 3.48 ~ 3.54 3.07 ~ 5.76 6.53 ~ 7.44

Moderate 100Mbps 32 3.66 ~ 4.05 2.12 ~ 3.56 7.84 ~ 8.94

101 102 103 104 105

Number of clients

0

2e3

4e3

Av
er

ag
e

tim
e

pe
r r

ou
nd

 (s
)

OOM

FS
FS w/ parallel FL transactions
FS-Real
FedScale

Figure 1: The scalability study of FS-Real.

4.1 Heterogeneous Device Runtime

To demonstrate the usability and efficiency of the proposed FS-Real
for hetero-device runtime (introduced in Section 3.2), we conduct
a series of experiments with FS-Real on both real mobile phones
(RedMi K40) and simulated Android devices, denoted as “FS-Real,
Real” and “FS-Real, Simula.” respectively. We vary the configu-
rations of CPU loads (idle/light/moderate), network bandwidth
(100Mbps/25Mbps/5Mbps), and batch sizes (16/32/64) to mimic di-
verse FL environments. For real mobile phones, a light CPU load
indicates that a video player and a music player are running, and
a moderate CPU load indicates that a large game is running and
high-quality lighting effects are turning on. For simulated Android
devices, we adjust the available CPU cores to imitate different CPU
loads (4/2/1 CPU cores for idle/light/moderate CPU loads). Mean-
while, we compare a representative FL tool, FedScale [21], which
also supports FL deployment (denoted as “FedScale, Real”) and sim-
ulation (denoted as “FedScale, Simula.”) for heterogeneous devices.

The results of the running time per FL training round are re-
ported in Table 1. Based on the results, we can conclude that FS-Real
outperforms FedScale in terms of both the efficiency of real-world
application and the fidelity of simulation. The reason is that FS-Real
allows users in running FL on real mobile devices based on MNN
(with C++ codes), while FedScale is based on the Termux App to run
Linux on Android (with Python codes). We also note that FS-Real
requires only a portable app with 163 MB to run FL on the device,
while the FedScale runtime takes up to 8.98 GB overhead, including

a number of dependencies such as installed Linux OS, Numpy, and
Pytorch. (2) For fidelity of the simulation, we can observe that the
simulation tool provided in FS-Real can faithfully reflect the real-
world diverse, changeable device runtimes within ranges, under
different computing and communication configurations (CPU cores,
network bandwidths, and bath sizes). By contrast, FedScale adopts
a cost model to estimate the FL running time per round with a
formula: (#𝑆𝑎𝑚𝑝𝑙𝑒 ·𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒) +𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑧𝑒/𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ.
This estimation generates coarse-grained point results and ignores
factors that can directly affect the running time, such as I/O, hard-
ware resource competition, and inaccurate pre-computation for
𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒 and 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ.

4.2 Scalability

In the proposed FS-Real, we enhance the concurrent processing
capability of the FL server by providing multiple processes for
Messages Transmitters and Processors (denoted as parallel FL trans-
actions), and providing process pools for parallel gRPC sending and
receiving (denoted as parallel communications), as introduced in
Section 3.3. To confirm the effect of these concurrency techniques
in improving the scalability of FS-Real, we perform a stress test
for the FL server, and compare the proposed FS-Real with Fed-
Scale, FederatedScope (FS), and FS equipped only with parallel FL
transactions. We design a stress generator in which the devices skip
local training and only send/receive dummy model parameters, and
track the average running time per FL round.

The experimental results are shown in Figure 1, from which we
can conclude that the proposed FS-Real performs much better than
FS and FedScale in terms of scalability. In particular, as the scales
of clients increase, FS-Real can effectively work in scenarios with
up to 100,000 FL clients. By contrast, when using the same high-
performance server (1 TB memory and 64 CPU cores with 2.5 GHz
frequency), FedScale takes 1.4x ∼ 3.9x time consumption longer
than the proposed FS-Real, and FS suffers from out-of-memory
(OOM) at the scale of 100,000 and also excessive time consumption
at the other scales. Besides, we can see that when ablating the two
concurrency optimizations (i.e., from red line to blue and green
lines), the FL times significantly increase, which verifies the neces-
sity and effectiveness of our optimizations that improve potentially
heavy competition for different hardware resources and reduce the

5

corresponding queuing delays. In Appendix B.1, we will further
show more benefits of these two optimizations in asynchronous FL
aggregation, which involves more intense competition for server
system resources than the synchronized FL.

5 HOW BIG IS THE GAPW.R.T DEVICE

RUNTIME AND SCALE?

In this section, we use the simulation platform provided in FS-Real
to investigate the FL performance in hetero-device and scalable
scenarios, by varying the device distributions and the scales of
participated clients.

5.1 Simulation Settings

5.1.1 Heterogeneous Devices. We consider fairly diverse heteroge-
neous devices with different computation, memory, and communi-
cations capacities. Specifically, the devices can have 1∼ 4 CPU cores,
and CPU frequencies within 2.55 Ghz, 2.9 Ghz and 3.3 GHz. The de-
vice memory can be one of {256, 1024}Mb. The network delays are
one of {80 ∼ 400, 35 ∼ 200, 0} in seconds, and the communication
bandwidths (upload/download) can be one of {58, 000/173, 000,
75, 000/285, 000, 340, 000/1, 024, 000} in kbps, which are some
representative configurations indicating network speeds and states
of different quality such as 4G and WiFi.

0 10 20 30 40 50 60 70
Device Capability

0.00

0.05

0.10

0.15

0.20

PD
F

Near-normal
Strong-heavy
Double-tails

Figure 2: Illustration of different device distributions.

Based on the above hetero-device configurations, we consider
generating multiple device distributions in the simulation device
pool that corresponds to different application scenarios: (1)Homo-

device case: all the participated devices have the same configu-
ration (one of the configurations provided in FS-Real), which is
adopted bymost existing works; (2)Uniform case: the devices have
diverse configurations uniformly drawn from the set of provided
configurations. This case differs homo-device in only the heteroge-
neous device types; (3)We further consider the device heterogeneity
in terms of quantity (number of different device types). Specifically,
we draw each device configuration from a beta-binomial distri-
bution with parameters (𝛼 = 10, 𝛽 = 10), which we denoted as
Near-normal case corresponding to most applications where the
devices with medium capacities have dominant numbers. Simi-
larly, we change the parameter of beta-binomial distribution into
(𝛼 = 10, 𝛽 = 2) for Strong-heavy case and (𝛼 = 0.2, 𝛽 = 0.2)
for Double-tails case where the major devices have strong and
both strong and weak capacities respectively. We illustrate the

distributions in Figure 2, where the x-axis indicates the 72 device
combinations ordered by their capacities (we sort the capacity ma-
trix diagonally, and thus the larger index, the stronger capacity).
Moreover, to simulate the changes in device runtime in real-world
applications (e.g., CPU contention and network signal volatility),
the device pool will randomly allocate available (i.e., no FL task is
executing) devices to participated clients at each FL round.

5.1.2 FL Settings. We consider the widely adopted FL algorithm
FedAvg and conduct experiments on the federated datasets FEM-
NIST, CelebA and Twitter [5]. Following previous works [6, 27, 34],
we adopt the ConvNet model with different capacities for FEM-
NIST and CelebA datasets, and LR model for Twitter. We vary the
number of participated clients to investigate the effect of device
scales 𝑛 while keeping the available device rate to be 0.3𝑛 at each FL
round. Due to the space limitation, we present more details about
the implementation and adopted hyper-parameters in Appendix A.

5.1.3 Evaluation Metrics. We adopt comprehensive metrics to ex-
amine the FL performance in terms of (a) Prediction Accuracy.

Both globally averaged and individual prediction accuracies are
considered. Specifically, we calculate the average accuracy of each
client weighted by their local data size (denoted as 𝑎𝑐𝑐), the bottom
90% decile (denoted as (

𝑎𝑐𝑐), and the standard deviation (denoted
as 𝜎𝐴𝑐𝑐) among all individual accuracies. (b) Training and Com-

munication Efficiency.We track the FL convergence round and
wall-clock times in hours (denoted as 𝑇𝑐𝑜𝑛𝑣) to measure training
efficiency, and use total communication bytes and network traf-
fic (comm. bytes /sec) as metrics for communication efficiency. (c)
Client Utilization. For each participated client, we calculate the
number of contributions per unit of time as 𝑁𝑐𝑜𝑛𝑡𝑟𝑖𝑏/𝑇𝑐𝑜𝑛𝑣 , where
𝑁𝑐𝑜𝑛𝑡𝑟𝑖𝑏 indicates the total number of times the client successfully
contributed to FL (uploaded models for aggregation). We consider
the mean (denoted as 𝑢𝑡𝑖) and standard deviation (denoted as 𝜎𝑢𝑡𝑖)
for this metric among all clients to reflect the extent to which this
federation unites the various participants. All the experiments are
repeated 2 times with different random seeds.

5.2 Accuracy and Fairness

We show various accuracy results (𝑎𝑐𝑐, (

𝑎𝑐𝑐 and 𝜎𝑎𝑐𝑐) under different
hetero-device distributions on FEMNIST in Figure 3 and Figure 4.
The results within Figure 3 are evaluated on the participated clients
(e.g., the number of evaluated clients is 450, 900, ...), while the results
within Figure 4 are evaluated on all clients of the full datasets (i.e.,
the 3,596 clients of FEMNIST).

From these figures, we can see that there is a substantial ac-

curacy gap between the homo-device case and hetero-device

cases, which is more noticeable in the fairness-related met-

rics and at large device scales. Specifically, for both the partici-
pated and full clients (Figure 3(a) and Figure 4(a)), the𝑎𝑐𝑐 differences
between homo- and hetero-device cases are not negligible, and the
difference increases as the clients scale increases (from −1.6% at
the scale of 450 to 2.7% at the scale of 3,596). When considering the
fairness-related metrics, the differences become larger, e.g., at the
scale of 3,596, there is about 7% (

𝑎𝑐𝑐 gap in Figure 4(b) and about
1.5% 𝜎𝑎𝑐𝑐 gap in Figure 3(c), this is because that the inconsistent
training dynamics between homo- and hetero-device cases have

6

450 899 1798 3596
Participated clients

72

74

76

78

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

(a) 𝑎𝑐𝑐

450 899 1798 3596
Participated clients

50

52

54

56

58

60

62

64

Bo
tto

m
 A

cc
ur

ac
y

(%
)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

(b) (

𝑎𝑐𝑐

450 899 1798 3596
Participated clients

12

13

14

15

Ac
cu

ra
cy

 S
td

 (%
)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

(c) 𝜎𝐴𝑐𝑐

Figure 3: Accuracy w.r.t. increasing number of participated clients under different hetero-device distributions on FEMNIST.

450 899 1798 3596
Participated clients

72

73

74

75

76

77

78

79

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

(a) 𝑎𝑐𝑐

450 899 1798 3596
Participated clients

54

56

58

60

62

Bo
tto

m
 A

cc
ur

ac
y

(%
)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

(b) (

𝑎𝑐𝑐

450 899 1798 3596
Participated clients

12

13

14

Ac
cu

ra
cy

 S
td

 (%
)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

(c) 𝜎𝐴𝑐𝑐

Figure 4: Accuracy w.r.t. increasing number of all clients under different hetero-device distributions on FEMNIST.

a greater impact on individual clients, especially on those having
slow response speeds. We also find that with the increasing number
of participated clients, the accuracy of homo-device setting im-
proves by about 3% ∼ 4% for 𝑎𝑐𝑐 , and 6% ∼ 7% for (

𝑎𝑐𝑐 . However,
the results of other hetero-device distributions have much smaller
changes, leaving the huge potential to improve the accuracy and
practicality of FL under hetero-device and scalable scenarios.

Moreover, both distribution differences and quantity dif-

ferences in heterogeneous devices do matter. Among the com-
pared hetero-device distributions, there are large homo-hetero dif-
ferences of 𝑎𝑐𝑐 , (

𝑎𝑐𝑐 and 𝑎𝑐𝑐𝜎 even for the Uniform distribution case,
which differsHomo-device case in only the participated device types.
When taking the quantity differences into consideration, the accu-
racy differences become larger for the other hetero-device cases,
such as 2.7% for 𝑎𝑐𝑐 metric on Near-normal distribution at scale of
3,596. Besides, the variances of results of homo-device w.r.t. differ-
ent FL experiments are much larger than the ones of hetero-device
cases due to the fact that all clients have the same opportunity to
contribute to FL aggregation in homo-device distribution, verifying
the existence and significance of the gap again.

5.3 FL System Efficiency

In addition to model accuracy, we also quantify the impact of de-
vice heterogeneity and scales on the system efficiency. Figure 5
demonstrates the results of the convergence wall-clock time in

hours, the network traffic (communication bytes per second), and
the client utilization (the contribution number per hour averaged
over all clients, 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖). Compared with the results for homo-
device case, we observed that hetero-device cases exhibit complex

differences in the time to convergence, network traffic, and

client utilization specific to device scales and device distribu-

tions, challenging the utility of FL in real-world scenarios involving
constrained time resources, constrained network traffic, and user
incentive mechanisms.

Specifically, (1) The variance of time to convergence increases
with increasing number of participated clients (e.g. 0.09 with 450
participated clients and 1.34 with 3,596 participated clients for
Strong-heavy case). On the one hand, this instability of convergence
rate affects the iteration scheduling of real FL applications, as well as
potentially more resource usage than budgeted. On the other hand,
the degree of fluctuation is very different across heterogeneous
distributions and scales, suggesting that different hetero-device
distributions and scales amplify the differences in convergence due
to the initialization of the model parameters and the aggregation
dynamics (we varied the random seeds acrossmultiple experiments),
leaving an open question about how to design FL algorithms with
more stable convergence under real FL scenarios.

(2) For communication load, interestingly, hetero-device cases
have on average lower communication loads than homo-device

7

450 899 1798 3596
Participated clients

2

4

6

8

Ti
m

e
to

 C
on

ve
rg

en
ce

 (h
) Homo-device

Uniform
Near-normal
Strong-heavy
Double-tails

450 899 1798 3596
Participated clients

80

100

120

140

160

180

Ne
tw

or
k

Tr
af

fic
(M

B/
s)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

450 899 1798 3596
Participated clients

10

20

30

40

50

60

Cl
ie

nt
s U

til
iza

tio
n(
h−

1)

Homo-device
Uniform
Near-normal
Strong-heavy
Double-tails

Figure 5: Performance under different hetero-device distribution w.r.t time to convergence (left), communication traffic (mid-

dle), and clients utilization (right) on FEMNIST.

Table 2: Experimental results of personalized FL algorithms on FEMNIST under Near-normal device distribution.

Method # Clients = 225 # Clients = 450 # Clients = 900
𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣

FedAvg 70.21 54.23 13.17 0.42 74.36 55.21 13.65 1.47 75.70 57.27 13.01 1.89
FT 72.62 54.05 16.24 0.76 75.16 58.82 15.05 1.72 75.36 59.38 15.22 1.96
FedBABU 74.03 55.39 18.43 0.97 75.01 58.57 15.95 1.16 75.83 58.29 17.15 1.48

case (e.g., -13.1% for Strong-heavy case) and on average signifi-
cantly larger load variance than homo-device case (+4,989%). This
indicates that in real FL applications, the network traffic consumed
by the entire FL server (the FL service provider) and clients (proba-
bly the individual users) in an acceptable time may be less than the
estimated results with homogeneous devices. Also note that our
system enables timeout re-broadcasting and over-selection mecha-
nisms to match the real scenarios, thus some wasted traffic is also
included in the reported traffic load. How to further reduce traffic
waste is still under-explored, especially in conjunction with the
heterogeneous device distributions and scales.

(3) For client utilization, except for the two highly biased hetero-
distributions (Strong-heavy andDouble-tails), the average utilization
of the other ones is lower than that of the homo-device case. Besides,
the utilization variance under hetero-device cases are significantly
larger than those of the homo-device scenarios, especially with
medium device scales, which implies that more clients are not able
to contribute their uploaded messages efficiently to FL aggregation.
It is important to improve the 𝑢𝑡𝑖 and reduce the 𝜎𝑢𝑡𝑖 in scalable
hetero-device FL that involve incentive mechanisms [55, 56].

6 ADVANCED FL FEATURES WITH FS-REAL

In this section, we will show several use cases of advanced FL
features with FS-Real, including personalization (Section 6.1), com-
pression (Section 6.2), and asynchronous training (Section 6.3). Due
to the space limitation, we present more results about the perfor-
mance gap between homo- and hetero- device distributions for
these studied advanced FL features in Appendix B.2, and more
results about the end-to-end evaluation when combining these
studied advanced FL features in Appendix B.3.

6.1 Personalized FL (pFL)

Personalization is one of the promising directions of FL to maximize
the model utility for individual clients. To demonstrate how well
FS-Real supports personalized FL research, we take FedAvg as a
baseline and compare it with fine-tuning (FedAvg + FT) and Fed-
BABU [39], a SOTA pFL algorithm. Specifically, FedBABU freezes
the final classification layer during FL training, lets clients train and
upload other layers of the model to the server for aggregation, and
fine-tune the whole model before evaluation. With the results of
FedBABU on FS-Real, we want to demonstrate the potential of FS-
Real for supporting more customized training/upload/aggregation
behaviors in the FL personalization study.

We summarize the results in Table 2 and 3 based on heteroge-
neous devices following Near-normal distribution for FEMNIST and
CelebA dataset respectively. In general, the pFL algorithms achieve
better accuracy than FedAvg (both𝑎𝑐𝑐 and (

𝑎𝑐𝑐) on FEMNIST dataset,
while larger 𝜎𝑎𝑐𝑐 with un-fairness. Besides, the performance ad-
vantages of pFL algorithms over FedAvg decrease on FEMNIST
as the device scale increases (e.g. the 𝑎𝑐𝑐 difference between Fed-
BABU and FedAvg is 3.82, 0.65 and 0.13 at the scale of 225, 450, 900
respectively). Interestingly, compared to the results on FEMNIST,
the accuracy advantage of pFL algorithms over FedAvg is more
significant on CelebA dataset (e.g., the absolute 𝑎𝑐𝑐 improvements
are 2.64% and 5.89% on FEMNIST and CelebA respectively). This
discrepancy may be due to the different amount of local data (the
average number of local data size is 21.4 for CelebA, which is less
than FEMNIST’s 226.8). It is suggested to improve the fairness and
stability for future personalized FL algorithms by collaboratively
accounting for device heterogeneity and data heterogeneity.

8

Table 3: Experimental results of personalized FL algorithms on CelebA under Near-normal device distribution.

Method # Clients = 250 # Clients = 500 # Clients = 1000
𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣

FedAvg 74.57 50.00 23.56 0.73 73.31 33.33 25.28 1.36 75.36 50.00 22.49 1.68
FT 76.74 50.00 23.32 0.78 79.35 50.00 22.49 1.36 79.66 50.00 21.54 1.70
FedBABU 77.21 40.00 24.86 0.77 79.20 50.00 21.39 1.44 80.64 50.00 25.01 1.73

Table 4: Experimental results of compression techniques on FEMNIST under Near-normal device distribution.

Method # Clients = 225 # Clients = 450 # Clients = 900
𝑎𝑐𝑐 net. traffic 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐 net. traffic 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐 net. traffic 𝑇𝑐𝑜𝑛𝑣

FedAvg w/o comp. 70.21 135.08 0.42 74.36 106.02 1.47 75.70 133.34 1.89
+Gzip 70.43 90.24 0.54 73.75 93.78 0.98 75.36 94.62 2.12
+FP16 69.63 56.23 0.44 73.99 64.38 0.78 74.58 88.71 1.16
+INT8 65.58 32.39 0.41 72.63 42.58 0.63 74.46 43.29 1.19

Table 5: Experimental results of asynchronous aggregation on FEMNIST under different device distributions.

Method # Clients = 225 # Clients = 450 # Clients = 900

𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖

Sync, Near-normal 70.21 54.23 13.17 41.68±18.87 74.36 55.21 13.65 27.63±3.98 75.70 57.27 13.01 24.33±3.72
Async, Near-normal 80.81 67.65 10.01 54.93±3.81 77.97 62.50 11.77 72.84±9.14 78.34 63.01 14.57 79.41±4.31
Sync, Strong-heavy 70.74 54.99 12.66 46.90±12.49 74.23 57.41 12.89 42.86±6.94 74.83 56.32 13.31 32.75±5.34
Async, Strong-heavy 77.84 55.88 14.20 59.02±4.70 73.43 54.55 13.20 77.16±8.69 74.94 56.25 16.26 81.32±6.95

6.2 Communication Compression

In real FL scenarios, communication cost is one of the most im-
portant metrics, especially in low-resource cross-device federated
learning. To illustrate how the compression techniques affect the
trade-off between the communication cost and model utility on
FS-Real, we conduct experiments to compare accuracies, commu-
nication cost and time to convergence of the FedAvg using vanilla
gradients transmission (no compression), transmission with Gzip
(lossless compression), quantized transmission in FP16 and INT8
(lossy model quantization). The results on FEMNIST are summa-
rized in Table 4.

One can see from Table 4 that, as the number of clients increases,
the accuracies of models using different communication modes
also increase as expected for the Near-normal distribution. The
reducing network traffic effect is significant when the compression
communication mode is turned on. Compared with the communica-
tion cost of the vanilla communication mode, Gzip reduces the 33%
cost with almost indistinguishable accuracy differences. As for the
lossy compressions, FP16 reduces about 58% communication cost
while INT8 has only 1/3 communication cost of the vanilla one. Al-
though lossy compression introduces slight accuracy declines, the
gap between the vanilla communication mode and the lossy ones is
narrowed down to only about 1% differences when the number of
clients increases to 900. Another benefit of using lossy compression
lies in the time to convergence of FL training. We also measure the

convergence time (wall time in hours) and show that the training
with lossy compression usually takes less time to converge.

Overall, by comparing the result of different communication
modes, we demonstrate that our FS-Real can have great potential
in federated learning model compression.

6.3 Asynchronous Aggregation

Applying asynchronous aggregation in FL balances the training
efficiency andmodel utility, since clients get out of waiting for strag-
glers to finish local training at each FL round. For cross-device FL,
asynchronous aggregation is particularly essential for handling the
heterogeneity, however, it also brings additional challenges to the
system design. For example, compared with synchronous aggrega-
tion, applying asynchronous aggregation might create more serious
resource competition for sending and receiving messages, and lead
to the training time growing rapidly with the scale. With the help
of the FL Server in FS-Real (Section 3.3), separate process pools are
provided for parallel sending and receiving messages, which makes
it scalable and efficient to apply asynchronous aggregation in FL.

Furthermore, we provide observations and discussions on the
effectiveness and efficiency of asynchronous aggregation with dif-
ferent device distributions and device scales, calling for further
careful adaptation towards real-world hetero-device FL. The experi-
mental results are reported in Table 5. Overall, we can observe that
applying asynchronous aggregation achieves competitive model

9

performance and significantly higher utilization of clients’ contribu-
tions compared to those of synchronous aggregation. When the de-
vice scale increases, the utilization becomes higher when applying
asynchronous aggregation (e.g., 59.02/77.16/81.32 for 225/450/900
participated clients under Near-normal device distributions), while
the utilization becomes lower when applying synchronous aggre-
gation (e.g., 46.90/42.86/32.75 for 225/450/900 participated clients
under Near-normal device distributions). These results confirm the
importance and necessity of asynchronous techniques towards real-
world hetero-device FL. Besides, it is worth pointing out the impact
of different device distributions on the model performance (e.g., 𝑎𝑐𝑐
and 𝜎𝑎𝑐𝑐). When using synchronous aggregation, the model perfor-
mance varies slightly (e.g., ±0.53/0.13/0.87% on 𝑎𝑐𝑐 when the num-
ber of clients is 225/450/900 comparing between Near-normal and
Strong-heavy) under different device distributions. However, there
exist noticeable variances (e.g., ±2.97/4.54/3.40% on 𝑎𝑐𝑐 when the
number of clients is 225/450/900 comparing between Near-normal
and Strong-heavy) in model performance when applying asynchro-
nous aggregation under different device distributions. These vari-
ances inspire us to call on the community to pay more attention to
the hetero-device distribution of real-world FL applications for im-
proving the usability and robustness of cross-device FL studies, and
to carefully adapt some async-mode configurations (e.g., staleness
toleration and aggregation goal) and develop new FL algorithms
according to the hetero-device distributions.

7 CONCLUSIONS

While most existing FL studies consider little about the heteroge-
neous devices with various scales in practice, in this paper, we
introduce our released system FS-Real, which is featured by its
high usability and strong robustness for handling real-world cross-
device FL tasks with a massive amount of heterogeneous client
devices. This is achieved by the key components of the system,
including the optimized device executor for efficient and diverse
mobile runtimes, and the enhanced FL server for scalable message
transmission and transaction execution. In addition, our system
provides flexible programming interfaces for several advanced FL
topics, including personalization, compression and asynchronous
aggregation. We further implement a high-fidelity heterogeneous
device simulation platform to give researchers and developers an
easy-to-run option for cost-efficiently prototyping FL solutions.
All the above contributions are demonstrated via our extensive
experiments, in which we also investigate the impact of device
heterogeneity and device scales for real-world FL tasks. We hope
that our system can facilitate further real-world FL studies and
applications, and our observations and discussions can contribute
to a deeper understanding of the impact of device heterogeneity
and device scales in the FL community.

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
arXiv preprint arXiv:1603.04467 (2015).

[2] JunFjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: Open Neural Network
Exchange. https://github.com/onnx/onnx.

[3] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pe-
dro PB de Gusmão, and Nicholas D Lane. 2020. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390 (2020).

[4] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. In Proceedings of Machine Learning and Systems (MLSys’19), Vol. 1. 374–
388.

[5] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[6] Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, and Bolin Ding. 2022.
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning.
In Proceedings of Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.

[7] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. 2020. Asynchro-
nous online federated learning for edge devices with non-iid data. In 2020 IEEE
International Conference on Big Data (BigData’20). 15–24.

[8] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks and
ISDN systems 17, 1 (1989), 1–14.

[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017. EM-
NIST: Extending MNIST to handwritten letters. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN’17). 2921–2926.

[10] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. 2021.
Exploiting Shared Representations for Personalized Federated Learning. In Pro-
ceedings of the 38th International Conference on Machine Learning (ICML’21),
Marina Meila and Tong Zhang (Eds.), Vol. 139. 2089–2099.

[11] Peter Deutsch. 1996. GZIP file format specification version 4.3. Technical Report.
[12] Patrick Foley, Micah J Sheller, Brandon Edwards, Sarthak Pati, Walter Riviera,

Mansi Sharma, Prakash Narayana Moorthy, Shi-han Wang, Jason Martin, Parsa
Mirhaji, Prashant Shah, and Spyridon Bakas. 2022. OpenFL: the open federated
learning library. Physics in Medicine & Biology (2022).

[13] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification
using distant supervision. CS224N project report, Stanford 1, 12 (2009), 2009.

[14] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad
Mahdavi. 2021. Federated learning with compression: Unified analysis and sharp
guarantees. In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS’21). 2350–2358.

[15] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan
Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman
Avestimehr. 2020. FedML: A Research Library and Benchmark for Federated
Machine Learning. arXiv preprint arXiv:2007.13518 (2020).

[16] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
et al. 2022. Papaya: Practical, private, and scalable federated learning. In Proceed-
ings of Machine Learning and Systems (MLSys’22).

[17] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M. Hadi Amini.
2022. A Survey on Federated Learning for Resource-Constrained IoT Devices.
IEEE Internet of Things Journal 9, 1 (2022), 1–24.

[18] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Kho-
dak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar,
Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng
Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. 2021. Advances and open
problems in federated learning. Foundations and Trends in Machine Learning 14,
1–2 (2021), 1–210.

[19] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016.
Federated optimization: Distributed machine learning for on-device intelligence.
arXiv preprint arXiv:1610.02527 (2016).

[20] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[21] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, andMosharaf Chowdhury. 2022. Fedscale: Benchmarkingmodel and
system performance of federated learning at scale. In Proceedings of International

10

https://github.com/onnx/onnx

Conference on Machine Learning (ICML’22). 11814–11827.
[22] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. 2021.

Efficient Federated Learning via Guided Participant Selection. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI’21).

[23] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. 2020. A review of applications in
federated learning. Computers & Industrial Engineering 149 (2020), 106854.

[24] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and
Bingsheng He. 2021. A Survey on Federated Learning Systems: Vision, Hype and
Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and
Data Engineering (2021), 1–1.

[25] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair
and robust federated learning through personalization. In Proceedings of the
International Conference on Machine Learning (ICML’21). 6357–6368.

[26] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60.

[27] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021.
Fedbn: Federated learning on non-iid features via local batch normalization. In
Proceedings of the International Conference on Learning Representations (ICLR’21).

[28] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[29] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-
Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. 2020. Federated
learning inmobile edge networks: A comprehensive survey. IEEE Communications
Surveys & Tutorials 22, 3 (2020), 2031–2063.

[30] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning
face attributes in the wild. In Proceedings of the IEEE international conference on
computer vision (ICCV’15). 3730–3738.

[31] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.
2019. Differentially private asynchronous federated learning for mobile edge
computing in urban informatics. IEEE Transactions on Industrial Informatics 16, 3
(2019), 2134–2143.

[32] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali Anwar, Shashank
Rajamoni, Yuya Ong, Jayaram Radhakrishnan, Ashish Verma, Mathieu Sinn, et al.
2020. IBM Federated Learning: an Enterprise Framework White Paper V0. 1.
arXiv preprint arXiv:2007.10987 (2020).

[33] Chengfei Lv, Chaoyue Niu, Renjie Gu, Xiaotang Jiang, Zhaode Wang, Bin Liu,
Ziqi Wu, Qiulin Yao, Congyu Huang, Panos Huang, Tao Huang, Hui Shu, Jinde
Song, Bin Zou, Peng Lan, Guohuan Xu, Fei Wu, Shaojie Tang, FanWu, and Guihai
Chen. 2022. Walle: An End-to-End, General-Purpose, and Large-Scale Production
System for Device-Cloud Collaborative Machine Learning. In Proceedings of
the 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’22). 249–265.

[34] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard
Vidal. 2021. Federated Multi-Task Learning under a Mixture of Distributions. In
Proceedings of the Advances in Neural Information Processing Systems (NeurIPS’21).
15434–15447.

[35] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017. Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the Artificial intelligence and statistics
(AISTATS’17). 1273–1282.

[36] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali De-
hghantanha, and Gautam Srivastava. 2021. A survey on security and privacy of
federated learning. Future Generation Computer Systems 115 (2021), 619–640.

[37] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and
H Vincent Poor. 2021. Federated learning for internet of things: A comprehensive
survey. IEEE Communications Surveys & Tutorials 23, 3 (2021), 1622–1658.

[38] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,
Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered asyn-
chronous aggregation. In Proceedings of the Artificial intelligence and statistics
(AISTATS’22). 3581–3607.

[39] Jaehoon Oh, SangMook Kim, and Se-Young Yun. 2022. FedBABU: Toward En-
hanced Representation for Federated Image Classification. In Proceedings of the
International Conference on Learning Representations (ICLR’22).

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS’19). 8024–8035.

[41] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier
van Dalen, Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al.
2021. Federated evaluation and tuning for on-device personalization: System
design & applications. arXiv preprint arXiv:2102.08503 (2021).

[42] Holger R Roth, Yan Cheng, Yuhong Wen, Isaac Yang, Ziyue Xu, YuanTing Hsieh,
Kristopher Kersten, Ahmed Harouni, Can Zhao, Kevin Lu, Zhihong Zhang, Wenqi

Li, Andriy Myronenko, Dong Yang, Sean Yang, Nicola Rieke, Abood Quraini,
Chester Chen, Daguang Xu, Nic Ma, Prerna Dogra, Mona G Flores, and Andrew
Feng. 2022. NVIDIA FLARE: Federated Learning from Simulation to Real-World.
In Workshop on Federated Learning: Recent Advances and New Challenges (in
Conjunction with NeurIPS 2022).

[43] Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. 2022. FedBalancer: Data
and Pace Control for Efficient Federated Learning on Heterogeneous Clients.
In Proceedings of the 20th Annual International Conference on Mobile Systems,
Applications and Services (MobiSys’22). 436–449.

[44] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards person-
alized federated learning. IEEE Transactions on Neural Networks and Learning
Systems (2022).

[45] Tensorflow Team. 2021. Tensorflow Federated. https://github.com/tensorflow/
federated.

[46] Solutions UL. 2023. Smartphones Benchmark. https://benchmarks.ul.com/
compare/best-smartphones. [Online; accessed 10-July-2023].

[47] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMa-
han, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly,
Deepesh Data, et al. 2021. A field guide to federated optimization. arXiv preprint
arXiv:2107.06917 (2021).

[48] Yujia Wang, Lu Lin, and Jinghui Chen. 2022. Communication-efficient adaptive
federated learning. In Proceedings of the International Conference on Machine
Learning (ICML’22). 22802–22838.

[49] Carole-JeanWu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. 2019. Machine
learning at facebook: Understanding inference at the edge. In 2019 IEEE interna-
tional symposium on high performance computer architecture (HPCA’19). 331–344.

[50] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934 (2019).

[51] Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang,
Yaliang Li, Bolin Ding, and Jingren Zhou. 2023. FederatedScope: A Flexible Fed-
erated Learning Platform for Heterogeneity. Proceedings of the VLDB Endowment
16, 5 (2023), 1059–1072.

[52] Jinjin Xu, Wenli Du, Yaochu Jin, Wangli He, and Ran Cheng. 2020. Ternary
compression for communication-efficient federated learning. IEEE Transactions
on Neural Networks and Learning Systems 33, 3 (2020), 1162–1176.

[53] Chengxu Yang, QipengWang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin
Liu, and Xuanzhe Liu. 2021. Characterizing impacts of heterogeneity in federated
learning upon large-scale smartphone data. In Proceedings of the Web Conference
(WWW’21). 935–946.

[54] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. 2019.
Federated learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 13, 3 (2019), 1–207.

[55] Rongfei Zeng, Chao Zeng, Xingwei Wang, Bo Li, and Xiaowen Chu. 2021. A
comprehensive survey of incentive mechanism for federated learning. arXiv
preprint arXiv:2106.15406 (2021).

[56] Yufeng Zhan, Peng Li, Zhihao Qu, Deze Zeng, and Song Guo. 2020. A learning-
based incentive mechanism for federated learning. IEEE Internet of Things Journal
7, 7 (2020), 6360–6368.

[57] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. 2021. Federated learning on
non-IID data: A survey. Neurocomputing 465 (2021), 371–390.

[58] Alexander Ziller, Andrew Trask, Antonio Lopardo, Benjamin Szymkow, Bobby
Wagner, Emma Bluemke, Jean-Mickael Nounahon, Jonathan Passerat-Palmbach,
Kritika Prakash, Nick Rose, et al. 2021. Pysyft: A library for easy federated
learning. In Federated Learning Systems: Towards Next-Generation AI. 111–139.

11

https://github.com/tensorflow/federated
https://github.com/tensorflow/federated
https://benchmarks.ul.com/compare/best-smartphones
https://benchmarks.ul.com/compare/best-smartphones

APPENDIX

A IMPLEMENTATION DETAILS

A.1 Datasets

Our experiments are conducted on several widely used FL datasets
with diverse scales and tasks. Specifically, FEMNIST [5, 9] is for
hand-written digits classification and contains 3,550 clients whose
local data is partitioned by the writers. CelebA [5, 30] is for the
classification of celebrities’ characteristics and contains 9,343 clients
whose local data is partitioned by the celebrities. Twitter [5, 13]
is for sentiment classification and we adopt the subset used in [6],
which contains 13,203 clients whose local data is partitioned by the
Twitter users. We randomly split the datasets into train/valid/test
sets with a ratio of 6:2:2.

A.2 Models and Baselines

Following previous works [5, 6, 34, 51], we adopt CNN models for
FEMNIST and CelebA datasets, and an LR model for the Twitter
dataset. Specifically, for FEMNIST, the training model consists of
two convolution layers and two linear layers, whose dimensions
are 32, 64, 1024 and 62 respectively. For CelebA, we use the model
with the same architecture as the one used for FEMNIST, but with
dimensions [32, 64, 256, 2] to avoid out-of-memory in devices. For
Twitter, we use an LR model and represent the sentence features
by concatenating the 50d Glove embeddings. 2

A.3 Platform and Hyper-Parameters

We conduct the experiments on a cluster of 10 servers, whose CPU
cores are within [196, 256, 512] and the CPU frequencies are within
[2.55, 2.9, 3.3] Ghz. The codes are built upon FederatedScope in
version 0.2.0, MNN in version 2.0.0, Clang in version 14.0.0, and
android JDK in version 1.8.

For each adopted dataset, we vary the number of participated
clients to investigate the effect of device scales 𝑛, while keeping the
available device rate to be 0.3𝑛 at each FL round, i.e., the server only
sends messages to 0.3𝑛 randomly selected clients at each FL round.
As we mentioned in Section 3.3, there are slow and disconnected
devices in real hetero-device scenarios, we thus enable the over-
selection with ratio 𝑞 = 1.5 for all experiments in synchronous
mode, and enable the timeout mechanism with the timeout param-
eters 𝑡𝑜 = 60, 𝛿𝑡 = 5. Besides, we run FL in at most 200 rounds, set
the local run step to be 1 epoch for each device, and grid search the
hyper-parameters of FL algorithms.

In synchronous aggregation, the learning rate is searched from
{0.001, 0.025, 0.05, 0.1, 0.5, 1}.We adopt 0.1 for FEMNIST and 0.025
for CelebA. We train FL models for 200 training rounds with a batch
size of 16 for both datasets. In Section 6.1, we locally fine-tune the
models for 5 epochs for each client before evaluation. In asynchro-
nous aggregation, similarly, we train the FL models for 200 training
rounds with a local learning rate of 0.1. The batch size is set as 16.

2https://nlp.stanford.edu/data/glove.6B.zip.

B ADDITIONAL EXPERIMENTS

B.1 Scalability Study for Asynchronous

Aggregation

In Section 4.2, we have studied the scalability of FS-Real that is
enhanced by two optimizations, the parallel FL transactions, and the
parallel communications. In fact, these two optimizations will bring
additional benefits in asynchronous aggregation FL. We adopt the
same experimental settings as Section 4.2 to compare the training
time at different FL scales, except that the FL algorithm is replaced
from synchronous FedAvg to asynchronous FedBuff. The results
are shown in Figure 6 and we do not compare to FedScale here
since it does not natively support asynchronous FL. Notably, the
training time per round of FS with parallel FL transactions is 1.18x
∼ 4.77x longer than FS-Real, while FS stills failed in the scale of
100,000 due to the OOM.

101 102 103 104 105

Number of clients

0

2e3

4e3

Av
er

ag
e

tim
e

pe
r r

ou
nd

 (s
)

OOM

FS
FS w/ parallel FL transactions
FS-Real

Figure 6: The scalability study of FS-Real in asynchronous

aggregation FL.

B.2 Homo-Hetero Gap Study for Advanced FL

Features

In Section 5, we empirically show that there are substantial perfor-
mance gaps for FedAvg between homogeneous and heterogeneous
device distributions, in terms of various aspects such as accuracy,
time to convergence, network traffic, and client utilization. In this
section, we investigate whether the gap still exists for the advanced
FL features within FS-Real. Specifically, we conduct experiments us-
ing the same baseline settings we adopted in Section 6, and present
the results in Table 6 for personalization, Table 7 for communication
compression, and Table 8 for asynchronous FL.

From the personalization results (Table 6), we observe that the
runs on Near-normal distribution usually gain lower 𝑎𝑐𝑐 while
higher (

𝑎𝑐𝑐 and 𝜎𝑎𝑐𝑐 than the runs on Homo-device. For example,
on Near-normal distribution, FedBABU achieves 1.12% ∼ 1.52%
lower 𝑎𝑐𝑐 , while 2.27% ∼ 6.79 % higher (

𝑎𝑐𝑐 than the ones on Near-
normal distribution. This suggests an enhancing effect of device
heterogeneity on the bias associated with personalization, which
is more severe than that demonstrated in existing homogeneous
research work.

While for the compression results (Table 7), in a nutshell, when
using the same advanced FL algorithms and parameter settings,
the runs on Near-normal distribution gain better accuracy than the
runs on Homo-device in the vast majority of cases. Taking the INT8
quantization as an example, onNear-normal distribution, it gains on
average 2.43% 𝑎𝑐𝑐 higher than the ones onHomo-device distribution,

12

Table 6: Experimental results of personalized FL algorithms on FEMNIST under Near-Normal and Homo-device distribution.

Distribution Method # Clients = 225 # Clients = 450 # Clients = 900
𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑇𝑐𝑜𝑛𝑣

Near-normal
FedAvg 70.21 54.23 13.17 0.42 74.36 55.21 13.65 1.47 75.70 57.27 13.01 1.89
FT 72.62 54.05 16.24 0.76 75.16 58.82 15.05 1.72 75.36 59.38 15.22 1.96
FedBABU 74.03 55.39 18.43 0.97 75.01 58.57 15.95 1.16 75.83 58.29 17.15 1.48

Homo-device
FedAvg 71.35 54.96 15.34 0.54 73.19 55.94 13.34 1.53 75.14 59.54 12.19 1.71
FT 75.43 44.50 17.79 0.62 75.28 47.02 17.12 1.76 76.61 52.81 17.00 1.25
FedBABU 75.55 53.12 17.51 0.65 76.13 51.78 16.86 1.72 77.24 53.33 15.13 1.64

Table 7: Experimental results of compression techniques on FEMNIST under Near-Normal and Homo-device distribution.

Distribution Method # Clients = 225 # Clients = 450 # Clients = 900
𝑎𝑐𝑐 net. traffic 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐 net. traffic 𝑇𝑐𝑜𝑛𝑣 𝑎𝑐𝑐 net. traffic 𝑇𝑐𝑜𝑛𝑣

Near-normal

FedAvg w/o comp. 70.21 135.08 0.42 74.36 106.02 1.47 75.70 133.34 1.89
+Gzip 70.43 90.24 0.54 73.75 93.78 0.98 75.36 94.62 2.12
+FP16 69.63 56.23 0.44 73.99 64.38 0.78 74.58 88.71 1.16
+INT8 65.58 32.39 0.41 72.63 42.58 0.63 74.46 43.29 1.19

Homo-device

FedAvg w/o comp. 71.35 130.44 0.54 73.19 110.14 1.53 75.14 144.45 1.71
+Gzip 70.54 83.45 0.64 72.46 87.74 0.72 74.60 87.99 0.74
+FP16 68.33 51.95 0.49 72.05 59.22 0.75 72.31 78.84 0.69
+INT8 64.50 30.74 0.38 69.43 40.16 0.67 71.45 50.42 0.73

Table 8: Experimental results of asynchronous aggregation on FEMNIST under Near-Normal and Homo-device distribution.

Distribution Method # Clients = 225 # Clients = 450 # Clients = 900

𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖 𝑎𝑐𝑐

(

𝑎𝑐𝑐 𝜎𝑎𝑐𝑐 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖

Near-normal
Sync 70.21 54.23 13.17 41.68±18.87 74.36 55.21 13.65 27.63±3.98 75.70 57.27 13.01 24.33±3.72
Async 80.81 67.65 10.01 54.93±3.81 77.97 62.50 11.77 72.84±9.14 78.34 63.01 14.57 79.41±4.31

Homo-device
Sync 71.35 54.13 15.34 46.64±8.34 73.19 55.94 13.34 25.55±3.86 75.14 59.54 12.19 33.89±5.85
Async 80.17 63.87 11.58 89.23±7.85 80.05 61.55 12.31 81.68±16.59 78.21 55.03 15.22 44.47±5.54

indicating the great potential of compression technology when
device heterogeneity is taken into account.

As for the asynchronous FL (Table 8), we can see that compared
with the runs on Homo-device, the runs on Near-normal distribution
gain lower client utilization at the small device scales (−43.3 and
−8.84 𝑢𝑡𝑖 difference when the number of clients is 225 and 450
respectively), while higher client utilization at the large device
scale (+ 34.94 𝑢𝑡𝑖 when the number of clients is 900). The training
acceleration brought by asynchronous FL is more and more obvious
on a larger scale under heterogeneous devices, enlightening us
on the applicable scenarios and potential improvement space of
asynchronous aggregation in real FL applications.

B.3 End-to-End Evaluation

In section 6, we study several advanced FL techniques with FS-Real
respectively. In this section, we examine the end-to-end perfor-
mance on Twitter dataset by leveraging all the introduced advanced

techniques, and summarize the results in Table 9. Interestingly, we
can find that when comparing the all-in-one method (the last line)
with the methods ablating one of the three techniques (the middle
three lines), all the three techniques have yielded corresponding
gains in the metrics they excel at, i.e., 𝑎𝑐𝑐 for personalization, net-
work traffic for INT8 quantization, and client utilization for asyn-
chronous FL. However, simple quantization still drags down the
entire system (compared to the first line), as personalization at this
point brings no greater improvement than the model degradation
brought by the INT8 technique, which reveals that there is still
much room for exploration in efficient personalization techniques.

13

Table 9: The end-to-end evaluation of FS-Device on Twitter dataset under Near-normal device distribution.

Method # Clients = 250 # Clients = 500 # Clients = 1,000

𝑎𝑐𝑐 net. traffic 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖 𝑎𝑐𝑐 net. traffic 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖 𝑎𝑐𝑐 net. traffic 𝑢𝑡𝑖 ± 𝜎𝑢𝑡𝑖

FedAvg, Syn, w/o INT8 61.02 3.14 95.45 ± 14.87 62.44 4.65 120.84 ± 18.59 63.93 6.09 123.88 ± 19.01
+FT, +Asyn 70.26 2.04 131.86 ± 12.59 70.83 2.82 159.79 ± 15.98 70.74 4.58 78.09 ± 12.32
+FT, +INT8 53.94 2.16 78.09 ± 12.32 53.93 2.98 99.80 ± 15.92 46.09 3.59 111.56 ± 17.10
+INT8, +Asyn 52.45 1.89 142.41 ± 14.44 53.15 2.52 137.31 ± 17.55 53.23 3.55 142.90 ± 19.91
+FT, +Asyn, +INT8 53.31 1.91 134.13 ± 17.78 53.57 2.49 139.23 ± 16.98 51.35 3.58 149.13 ± 19.24

14

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 FL Algorithms
	2.2 FL Systems and Tools

	3 The Proposed FS-Real
	3.1 Design Principles
	3.2 Heterogeneous Device Runtime
	3.3 Enhanced FL Server
	3.4 Advanced FL Techniques
	3.5 Heterogeneous Device Simulation Platform

	4 How FS-Real benefits real FL?
	4.1 Heterogeneous Device Runtime
	4.2 Scalability

	5 How big is the gap w.r.t device runtime and scale?
	5.1 Simulation Settings
	5.2 Accuracy and Fairness
	5.3 FL System Efficiency

	6 Advanced FL Features with FS-Real
	6.1 Personalized FL (pFL)
	6.2 Communication Compression
	6.3 Asynchronous Aggregation

	7 Conclusions
	References
	A Implementation Details
	A.1 Datasets
	A.2 Models and Baselines
	A.3 Platform and Hyper-Parameters

	B Additional Experiments
	B.1 Scalability Study for Asynchronous Aggregation
	B.2 Homo-Hetero Gap Study for Advanced FL Features
	B.3 End-to-End Evaluation

