
UNIDM: A UNIFIED FRAMEWORK FOR DATA MANIPULATION WITH LARGE
LANGUAGE MODELS

Yichen Qian * 1 Yongyi He * 1 2 Rong Zhu 1 Jintao Huang 1 2 Zhijian Ma 1 Haibin Wang 1 Yaohua Wang 1

Xiuyu Sun 1 Defu Lia 2 Bolin Ding 1 Jingren Zhou 1

ABSTRACT
Designing effective data manipulation methods is a long standing problem in data lakes. Traditional methods,
which rely on rules or machine learning models, require extensive human efforts on training data collection and
tuning models. Recent methods apply Large Language Models (LLMs) to resolve multiple data manipulation tasks.
They exhibit bright benefits in terms of performance but still require customized designs to fit each specific task.
This is very costly and can not catch up with the requirements of big data lake platforms. In this paper, inspired
by the cross-task generality of LLMs on NLP tasks, we pave the first step to design an automatic and general
solution to tackle with data manipulation tasks. We propose UniDM, a unified framework which establishes a
new paradigm to process data manipulation tasks using LLMs. UniDM formalizes a number of data manipulation
tasks in a unified form and abstracts three main general steps to solve each task. We develop an automatic
context retrieval to allow the LLMs to retrieve data from data lakes, potentially containing evidence and factual
information. For each step, we design effective prompts to guide LLMs to produce high quality results. By our
comprehensive evaluation on a variety of benchmarks, our UniDM exhibits great generality and state-of-the-art
performance on a wide variety of data manipulation tasks.

1 INTRODUCTION

Data lake is a general system to store vast amounts of data
with heterogeneous schemas and structures. It provides an
efficient interface that allows users to manage and manip-
ulate data with various kinds of tools. Users could flexi-
bly define different workflows to clean, integrate, interpret
and analyze data according to their applications (Nargesian
et al., 2019; Ouellette et al., 2021). This advantage facil-
itates users’ customized demands on data processing, but
also brings remarkable shortcomings. For any new applica-
tion, the corresponding data processing workflow needs to
be redesigned and tuned by experts from scratch. This is
very costly and can not catch up with the new applications
which may occur every day in big data lake platforms (Hai
et al., 2021).

Literature works have devoted considerable research efforts
to designing automatic and general methods that are ap-
plicable to different data manipulation tasks in data lakes.
Traditional rule-based methods (Dalvi et al., 2013; Singh
et al., 2017; Chu et al., 2013; 2015; Dallachiesa et al., 2013;

*Equal contribution 1Alibaba Group 2University of Science
and Technology of China. Correspondence to: Rong Zhu
<red.zr@alibaba-inc.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

Mayfield et al., 2010; Jin et al., 2020) require specialized
model construction and rule tuning for each data task, which
are not automatic enough. Recent works apply machine
learning (Bilenko & Mooney, 2003; Konda et al., 2016; Hei-
dari et al., 2019; Biessmann et al., 2019; Li et al., 2021a;b;
Wu et al., 2021; Alserafi et al., 2019), especially deep learn-
ing techniques (Mudgal et al., 2018; Ebraheem et al., 2018;
Zhao & He, 2019; Deng et al., 2022), to learn the adaptive
solution for each task. However, their performance heavily
relies on the quality of the trained models, which require a
large amount of labeled training data and specific domain
knowledge related to each task.

In recent time, Large Language Models (LLMs), such as
BERT (Devlin et al., 2018), GPT-3 (Brown et al., 2020), and
LaMDA (Thoppilan et al., 2022), have shown incredible per-
formance on a broad set of downstream tasks (Zhou et al.,
2023; Liang et al., 2022). LLMs are typically deep neu-
ral networks with transformer architecture (Vaswani et al.,
2017). They are pre-trained on enormous corpora of text
to learn universal world knowledge. On NLP tasks, LLMs
have shown remarkable cross-task generality. This is be-
cause the NLP field has accumulated decades of experience
in designing a standard paradigm to unify and solve differ-
ent NLP tasks (Radford et al., 2019; Brown et al., 2020).
Whereas, for data manipulation tasks, the relevant expe-
rience is almost blank, which makes this problem to be

Submission and Formatting Instructions for MLSys 2024

Result

Data Manipulation Tasks

Large Language Model

Automatic
Context Retrieval

Context
Data Parsing

Target
Prompt Construction

T T

Data Lake
Data Pre-process

Retrieve
Natural
textParse Prompt

Task parameters

+
Our

UniDM
Framework

Data flow
Parameters pass

Use LLM

Figure 1. An overview of our UniDM framework.

extensively challenging. To resolve it, we need to answer
the following two key questions:

1) How to design a framework to elegantly unify different
data manipulation tasks? This framework should be general
enough to subsume common and new tasks occurred in data
lake applications and easy to bring LLMs into the solution.

2) How to design a general solution under this unified frame-
work? This solution should contain abstract procedures that
are adaptive to different tasks and at the same time, maxi-
mize the effectiveness of LLMs.

Our Contributions. In this paper, we pave the first step
towards resolving this problem. We propose UniDM, a
unified solution that is verified to attain state-of-the-art per-
formance on a variety of data manipulation tasks on data
lakes. Specifically, we make the following contributions:

1) We propose a unified framework to describe data
manipulation tasks. We formalize a data manipulation task
T as a function FT () to tackle with some records R and
attributes S on a data table D in the data lake. We show that
this framework subsumes a number of commonly occurred
tasks on structured data and can be easily extended to new
and complex tasks even on unstructured data. (in Section 3)

2) We abstract the general procedures to solve different
tasks using LLMs. We observe that, the key to solving a
data manipulation task is to find a proper prompt to inspire
the LLMs to produce accurate results (Wang et al., 2022).
However, due to the complexity of our tasks, it is difficult
and ineffective to directly ask the LLMs for final results by
a singleton prompt (Narayan et al., 2022). As a result, we
decompose a data manipulation task (that could be described
by our unified framework) into several consistent steps such
that each step is a simple, direct and easy job for LLMs.

As illustrated in Figure 1, our solution contains three main
steps. The first step automatically extracts relevant context

information from data table to serve as demonstrations or
background knowledge to solve the task. The second step
transforms the context information from tabular form to
logic text so the LLMs can more easily capture its seman-
tics. Finally, the third step applies prompt engineering to
construct the target prompt to obtain the final results. In
such a way, we attain generality across different tasks and
effectiveness by LLMs. (in Section 4)

3) We design effective (templates of) prompts for each
main step in our solution. For each main step, we abstract
the knowledge that needs to be acquired from LLMs and
design a general template of prompt to automatically extract
such knowledge. In such a way, LLMs could do well in
each step and improve the quality of the final results. (in
Section 4)

4) We conduct extensive experiments to evaluate the per-
formance of our solution UniDM. The evaluation results
on lots of benchmarks exhibit that UniDM attains state-
of-the-art results on a variety of data manipulation tasks,
including data imputation, data transformation, error detec-
tion and entity resolution. Meanwhile, the effectiveness of
each main step in UniDM is also verified by ablation study.
(in Section 5)

2 BACKGROUND AND MOTIVATION

Large Language Models and Prompts. LLMs could be
regarded as a foundation model applicable to numerous
tasks, particularly for tasks requiring to interpret the seman-
tics of data. Instead of fine-tuning the model to fit each task,
we can simply apply prompts to guide LLMs to solve each
task. Specifically, a prompt is an intuitive interface written
in natural text to interact with LLMs. It can take various
forms (e.g., phrases or complex sentences) to guide or ask
the LLMs to extract their knowledge to perform lots of dif-
ferent jobs, such as code generation, question answering,

Submission and Formatting Instructions for MLSys 2024

creative writing, etc. For example, a simple prompt, such as
“Translate English to French: hello =>”, could directly do
the language translation.

The performance of the LLMs is very sensitive to the
prompt (Brown et al., 2020). To obtain high quality results,
we often design prompts with context information to pro-
vide more instructions to LLMs. The context information
could be a few input/output examples or other information
relevant to the task. When combined with the task descrip-
tion, LLMs have more background to extract more accurate
knowledge to answer the questions. For example, for the
prompt “Fill in the value like Genre: Folk; Artist: Bob Dy-
lan. Genre: Jazz; Artist: ?”, the LLM would imitate the
example to find a jazz artist, e.g., “Bill Evans”, as a result.

LLMs for Data Tasks. Some very recent works (Moham-
mad et al., 2023; Brunner & Stockinger, 2020; Li et al.,
2020; Mei et al., 2021; Chen et al., 2023; Narayan et al.,
2022; Wang et al., 2022; Trummer, 2022a;b) observe the
potential benefits of bringing LLMs into some data manipu-
lation tasks. For example, we could ask LLMs to automat-
ically judge whether a value is valid for an attribute using
its intrinsic knowledge instead of designing numerous er-
ror detection rules for each domain. Prior works (Herzig
et al., 2020; Liu et al., 2021; Peeters & Christian, 2021;
Trummer, 2022a) have verified the effectiveness of applying
LLMs to answer questions on data tables. Later, LLMs
have been applied on data pre-processing tasks (Li et al.,
2020), binary classification on tables (Stefan et al., 2022),
data cleaning and integration tasks(Mohammad et al., 2023;
Narayan et al., 2022). These works provide enough evi-
dence to exhibit that the LLM-based methods could attain
very promising, sometimes state-of-the-art, performance on
these tasks.

However, even avoiding human efforts on providing do-
main knowledge, current LLM-based methods are not gen-
erally applicable to data manipulation tasks. The procedures,
along with the prompts, of these methods are all specifically
designed for each task, which require users to manually
extract customized context information to guide the LLMs.
The benefits of the LLMs and the shortcomings of existing
methods motivate us to ask the following question:

Could we find a unified solution with LLMs such that it is
both general and automatic to different data manipulation
tasks on data lakes requiring no manual efforts?

3 PROBLEM DEFINITION

In this section, we propose a unified framework to formalize
the data manipulation tasks we target to solve on data lakes.
Let D = {D1, D2, . . . , Dl} be a data lake. In this paper,
we assume that each element Di ∈ D is a relational data
table containing a number of records (tuples). We denote

the schema, as well as the set of attributes, of table Di as Si.
Unlike with the relational database, the join relations are
not specified for tables in the data lake D. For any record r
and attribute s, we denote the value of r on s as r[s].

Let T represent a data manipulation (e.g., data cleaning or
integration) task on D. We assume that the task description
and the parameters of the task (e.g., a question on the table)
are all encoded in T . We could formalize a number of
different tasks in a unified manner as follows:

Input: a data lake D, a subset of records R ⊆ Di extracted
from a table Di ∈ D, a subset of attributes S ⊆ Si under
the schema Si and a target task T ;

Output: we have a function FT related to the task T that
produces a value Y = FT (R,S,D).

For each different data manipulation task T , the function
FT is defined in different ways according to the applica-
tions. We list a number of example tasks that are commonly
used in real-world applications and can be subsumed by our
framework as follows:

• Data Imputation: This task is to repair dirty data and
impute the missing value within a record. S contains
an attribute in Si and R contains a singleton record in
Di having a missing value on attribute S, FT (R,S,D)
outputs the desired missing value of R[S].

• Data Transformation: This task is the process of con-
verting data from one format to another required format
within a record. S contains an attribute in Si and R con-
tains a singleton record in Di, FT (R,S,D) transforms
the original value R[S] to another new value R′[S] by
user specified rules.

• Error Detection: This task is to detect attribute error
within a record in a data cleaning system. S contains an
attribute in Si and R contains a singleton record in Di,
FT (R,S,D) predicts whether the value R[S] is normal
or not.

• Entity Resolution: This task is the process of predicting
whether two records are referencing the same real-world
thing. S contains a number of attributes describing the
property of each record in Di and R = {r1, r2} contains
two different records in Di, FT (R,S,D) outputs whether
the two records r1 and r2 refer to the same real-world
entity or not.

Notably, in our proposed framework, we just consider the
very fundamental form for the data manipulation tasks in
data lakes. In the following content, we apply the above data
manipulation tasks subsumed by our framework to showcase
how to design a general solution using LLMs. Whereas, our
framework could be easily extended with rich definitions to
support new tasks on unstructured or semi-structured data.

Submission and Formatting Instructions for MLSys 2024

country, population, …

Select top-k instancesSelect attributes

Metadata-wise
Retrieval

Instance-wise
Retrieval

Iterate

Alicante, Florence,…

𝑺𝒎

timezonecountrycity

Central European TimeSpainAlicante

Central European TimeItalyFlorence

Central European TimeBelgiumAntwerp

LLM

Data Parsing LLM

𝑪: context data

LLM

Prompt
Engineering

Automatic Context Retrieval Context Data Parsing Target Prompt Construction

LLM LLM

Task Parameters Data after parsing

Prompt 𝒑𝒓𝒊:
The task is [data imputation]. The target query is [Copenhagen]. Score
the relevance (range from 0 to 3) of the given instances based on the task
and the query: [Alicante, Florence, Athens, Helsinki, Antwerp, London]

(Output) Alicante:3,Florence:2,Athens:1,…

Prompt 𝒑𝒅𝒑:
Given the data, convert the items into a textual format that encompasses
all relevant information in a logical order:

[city: Florence, country: Italy, timezone: Central European Time
city: Alicante, country: Spain, timezone: Central European Time
city: Antwerp, country: Belgium, timezone: Central European Time]

(Output) Florence is a city of Italy and in the timezone Central European
Time...

Prompt 𝒑𝒄𝒒:
Write the claim as a cloze question.
Claim: The task is [data discovery]. The context is [A city is a human
settlement…smart city…] The target query is [smart city?].
Cloze question: The task is to discover data from the context. A city is a human
settlement… A smart city is __.
Claim: The task is [data imputation]. The context is [Florence is a city of Italy
and in the timezone Central European Time…]. The target query is [city:
Copenhagen, country:Denmark, timezone:?].
Cloze question:

(Output Prompt 𝒑𝒂𝒔) The task is to impute the missing value…The context
is … Copenhagen is a city of Denmark and in the timezone __.

Prompt 𝒑𝒓𝒎:
The task is [data imputation]. The target query is [timezone].
The attributes about [city] are [country, population, postalcode]. Which
attributes are helpful for the task and the query?

(Output) country

se
ria

liz
ed

da
ta

de
m
on

st
ra
tio

n

(a) Prompt for automatic context retrieve (b) Prompt for context data parsing (c) Prompt for target prompt construction

metadata instances

postalcodepopulationtimezonecountrycity

3000337482Central European TimeSpainAlicante

1050809314?DenmarkCopenhagen

………...…

Attribute subset: 𝑺

Record subset: 𝑹

Data element: 𝑫𝒊

Task Description 𝑻: Data Imputation

Task Parameters

Data Imputation: Copenhagen, timezone

𝑹𝒎

Prompt 𝒑𝒓𝒎 Prompt 𝒑𝒓𝒊

Serialize function

𝑪′

Prompt 𝒑𝒅𝒑

𝓥

𝑪

Task Parameters

Data Imputation: Copenhagen, timezone𝑪′

Prompt 𝒑𝒄𝒒 Prompt 𝒑𝒂𝒔

Central European Time

Task Query Q: Copenhagen, timezone

Figure 2. The pipeline of UniDM by taking data imputation task as the example.

4 UNIFIED FRAMEWORK FOR DATA
MANIPULATION

To generally support common data manipulation tasks, we
propose the UniDM, a unified framework based on LLMs.
We first analyze this problem and outline our solution in
Section 4.1. Then, Section 4.2 to Section 4.4 elaborate on
the details of each key technique in our method. Finally, the
generality of our method is discussed in Section 4.5.

4.1 Overview

Problem Analysis. Recall that, we could consult the LLMs
using a prompt to acquire the desired knowledge. The
data manipulation tasks could also be solved using proper
prompts. As shown in the following example, we apply two
simple prompts to resolve the data imputation and trans-
formation tasks. Here each prompt is a textual template in
natural language containing: 1) the task description (marked
in red) so the LLMs could understand what to be done, e.g.,
filling in the missing value or transforming the data; 2) the
context information (marked in blue) serving as the demon-
strations or examples to guide the LLMs to perform the task,
e.g., information of other relevant attributes or examples
of the transformation; and 3) the placeholder (marked in
orange) to provide the input of the task.

Prompt A:
Data Imputation: city:Copenhagen,country:Denmark, timezone:?
Prompt B:
Data Transformation: 20210315 to Mar 15 2021, 20201103 to ?

It has been shown that the quality of the LLM results is very
sensitive to the format of the prompt (Brown et al., 2020).
Simple and straightforward prompts (such as the above two
examples) would often have mediocre performance on data
manipulation tasks. This is because LLMs are often trained
on the corpus to reason about direct and simple events, e.g.
“x is contained in y” or “y is the same as z”, but may fail
on complex multi-hop reasoning problems that they have no
explicit evidence (Creswell et al., 2022), e.g. “Is x contained
in z?”. The process of solving a data manipulation task is
too complicated for LLMs. It requires LLMs to interpret
the task description, to extract (and possibly transform)
the context information and to fill in a proper value in the
placeholder at the same time.

Some literature works (Chen et al., 2023; Wang et al., 2022)
have devoted the efforts on designing and tuning prompts for
some specific data manipulation tasks. Whereas, this is very
expensive and not extensible to numerous customized tasks
occurring every day. What we actually need is a general
solution that is applicable to produce effective prompts for

Submission and Formatting Instructions for MLSys 2024

each different data manipulation task.

Our Main Idea and Solution. To attain this goal, we de-
compose a data manipulation task (that could be described
in Section 3) into several consistent steps. The pipeline and
architecture of UniDM are illustrated in Figure 2. Each step
is a simple and direct easy task to reason about for LLMs
using its evidence and logic. Based on this, for each step,
we abstract the knowledge that needs to be acquired from
LLMs and design a general template of prompt to extract
such knowledge. UniDM takes data from a data lake as
input and performs a data manipulation task in an iterative
and interactive fashion. Generally, UniDM proceeds a data
manipulation task in three main steps:

1) Context Retrieval: Given the task T , the records R ⊆ Di

and the attributes S ⊆ Si on a data lake D, at the very begin-
ning, we need to extract the relevant contextual information
C from D to resolve T . C may contain additional informa-
tion from other records and attributes to guide the LLMs to
capture the semantics for task T . We design two templates
of prompts to automatically retrieve context information
from D using LLMs. The first prompt prm aims at retriev-
ing meta-wise information, e.g., a number of attributes that
may provide useful knowledge to task T on attributes in S.
Based on its results, the second prompt pri identifies the
most helpful records related to R to resolve the task in a
more fine-grained manner. After that, we obtain the context
information C in a tabular form.

2) Context Parsing: The raw context information in C
in tabular form is often not friendly to be understood by
the LLMs (as LLMs are mainly trained to interpret the
natural language text). Therefore, the next step is to trans-
form the original context C into another form that is more
easily to be interpreted by the LLMs. Similar to previ-
ous works (Narayan et al., 2022), we first apply a serialize
function to transform C into a regular text V with pairs of
attributes and values, e.g., “city:Florence, country:Italy”.
Then, we design a prompt template pdp to further convert
the text V into the natural text C′ reflecting the logic rela-
tions among different attributes, e.g. “Florence is a city of
Italy”. C′ is smoother and closer to the natural language, so
the LLMs could find more relevant information in its corpus
for downstream procedures.

3) Target Prompt Construction: Finally, we combine the
serialized text C′, the description of the task T and the task
input R and S together to consult the LLMs to obtain the fi-
nal result Y . We utilize prompt engineering to automatically
elicit prompts for any data manipulation task. Specifically,
all data manipulation tasks described by our unified frame-
work in Section 3 could be equivalently transformed into
a cloze question. Cloze question is friendly to LLMs as
it is written in natural language with placeholders. To au-
tomatically generate a proper cloze question, we design a

template of prompt pcq that provides the LLMs a small set
of demonstrations, where each one is a pair of a data ma-
nipulation task and its corresponding cloze question. These
demonstrations include both task-specific and task-agnostic
examples, where LLMs could learn to identify the most
suitable template for any task to output a cloze question pas.
The target prompt pas is fed into LLMs to obtain the final
result Y .

4.2 Automatic Context Retrieval

To capture data knowledge from data lakes in a more in-
terpretable and modular way, we augment LLMs with an
automatic context retrieval component. We require that the
context retrieval component could identify useful informa-
tion while filtering irrelevant data to facilitate the LLMs.
Previous works (Biessmann et al., 2019; Narayan et al.,
2022) ask users to specify the instances (records) and at-
tributes relevant to the task or learn to identify useful records
based on the similarity of attribute values (Mei et al., 2021;
Mohammad et al., 2023). Unlike with them, we design a
purely automatic strategy for extracting helpful attributes
and records with the aid of the LLMs. We first apply meta-
wise retrieval to find relevant attributes from the holistic
view. Then we apply instance-wise retrieval to extract use-
ful records in a more detailed manner.

Meta-wise Retrieval. In the first step, we provide a number
of candidate attributes S′ and ask LLMs to select valuable
ones for our task T and target attribute S. LLMs could ap-
ply the inherent knowledge to measure the relationships be-
tween S′ and S and reserve only promising attributes. This
step could filter irrelevant information in the data lake D in
a coarse-grained manner. The results would contain helpful
meta-wise information describing the high level domain
knowledge of these attributes. Specifically, we construct the
prompt prm using the following template:

Prompt prm:
The task is [T]. The target query is [Q]. The candidate
attributes are [s1, s2, ..., sn]. Which attributes are helpful
for the task and the query?

Here T is the task description such as “data imputation”.
The query Q combines our inputs on the target record R and
attribute S for task T . It has different forms in different tasks.
In data imputation, we represent it as “the primary key of
record R, the attribute S”, e.g., “Copenhagen, timezone”, to
indicate that we want to fill the value of S for record R. The
set of candidate attributes S′ = Si − S = {s1, s2, . . . , sn}
contains all remaining attributes in Si of table Di. For other
tasks, the forms of the query Q and set S′ are different.
We reserve the details in Section 4.5. In this paper, we

Submission and Formatting Instructions for MLSys 2024

do not apply cross-table attributes in table Dj ̸=i ∈ D as
the experimental results on Di (shown in Section 5) are
competitive enough.

We denote St as the task-relevant attributes returned by the
LLMs. In our example in Figure 2 (left), when given the task
description “data imputation” and the target query (attribute)
“timezone”, the LLMs select the attribute “country” towards
inferring about the missing value.

Instance-wise Retrieval. Next, we perform fine-grained
filtering on records to identify relevant ones w.r.t. target
records in R. We first shrink the data in Di − R =
{r1, r2, . . . , rm} to provide a set of candidate records R′ by
random-sampling. After that, we use the LLMs to examine
the relevance between R′ and R. The relevance can be in-
terpreted in different ways for different tasks. For example,
for data imputation, we hope to find records similar to target
records R and attributes S to find the missing value. For the
error detection task, we may want to obtain records reflect-
ing the distribution of the domain value to identify whether
the target value R[S] is abnormal. We still drive LLMs to
consult the semantic knowledge to measure the relevance
scores of the records for the target task by a prompt pri
using the following template:

Prompt pri:
The task is [T]. The target query is [Q]. To score the
relevance (range from 0 to 3) of given instances based on
the task and the query: {r1[St], r2[S

t], ..., rm[St]}

Here for each rj ∈ R′, we only reserve the task-relevant
attributes in St as the other ones are identified to be not
helpful to our task. After examining all records in R′ (or
touching a time limit), we order all instances according to
the relevance score and select the top-k instances Rt as the
task-relevant context C for the downstream procedures.

4.3 Context Data Parsing

The context information C, represented in a tabular form, is
not friendly for the LLMs to interpret its underlying seman-
tics, since the LLMs are often trained on large corpus of
text. To resolve this problem, we consider how to transform
C into a more effective format for LLMs. As all records
Rt in C are all organized in a regular structure under the
schema St, we could easily serialize C into a textual string.
Specifically, let {(s, r[s])|r ∈ Rt, s ∈ St} denote the set of
all pairs of each attribute s and its value in record r. The
information of C is losslessly encoded. Our serialize()
function directly concatenates all pairs to produce a text V .

Previous works (Narayan et al., 2022) directly feed the text
V into LLMs to serve as the contextual information for our

task. Whereas, we further try to integrate the pairs in V
into a logic text C′ reflecting the relations among differ-
ent attributes. For example, in Figure 2 (middle), the text
“country:Italy, timezone: Central European Time” is con-
verted into “The country Italy is in the Central European
Time timezone”. Obviously, the former one rarely occurs
in any article except some tables while the latter one may
frequently occur in some scientific articles in the training
corpus. Therefore, providing C′ rather than V to LLMs
could improve its probability of hitting relevant texts in
inference and produce more accurate results.

Notably, converting the text V to C′ is an easy job for LLMs.
The logic relations among different attributes are often com-
mon and fixed, e.g. “a city is in a country in a timezone”,
so the LLMs could directly capture such knowledge. In
our solution, we apply the following data parsing template
prompt pdp to perform this job. The generated context rep-
resentation C′ is applied in the subsequent procedures.

Prompt pdp: Given the data, convert the items into a tex-
tual format that encompasses all relevant information in a
logical order: [V]

4.4 Effective Target Prompt Construction

To apply LLMs for our task, the ultimate (as well as the most
important) step is to find an effective prompt to organize the
task description T , the context information C′ in logic text
and the query Q encoding the input records R and attributes
S (defined in Section 4.2) together. Moreover, we hope that
the method to find the prompt is generally applicable to
different tasks to avoid exhaustive tuning efforts.

We observe that, all of our tasks described by the claims
(containing T , C ′, R and S as stated above) could be equiv-
alently summarized as a cloze question. Specifically, cloze
question asks the model to fill in the remaining text (“Aus-
tralia and Switzerland won gold medals in total.”). Cloze
question is friendly to LLMs as it is written in natural lan-
guage with placeholders. For example, the data imputation
task is to fill the missing value of R[S] and the error de-
tection task is to fill a normal or abnormal answer for the
value R[S]. Therefore, our problem is how to automatically
organize our claims for different tasks into a proper cloze
question.

Certainly, it requires UniDM to capture the semantics of
each element in our claims, e.g., which element should be
placed in front of others, and organize them in a smooth
natural text. In similar to context data parsing, this job is
suitable to be done by the LLMs themselves. We apply the
following prompt pcq to do this transformation:

Submission and Formatting Instructions for MLSys 2024

Prompt pcq:
Write the claim as a cloze question.
Claim: The task is data imputation. The context is...
Cloze question: ... China’s population is .
Claim: The task is data transformation. The context is...
Cloze question: ... The roman numeral III can be trans-
formed to normal number .
......
Claim: The task is [T]. The context is [C′]. The target
query is [Q].
Cloze question:

Motivated by the discrete prompt search methods (Gao et al.,
2021; Arora et al., 2022), we provide a number of claims and
their corresponding cloze questions as demonstration exam-
ples in pcq. The pairs of claim and cloze question include:
1) examples pertaining to our commonly applied tasks (such
as data imputation and error detection) that are verified to
produce accurate results; and 2) some task-agnostic trans-
formation strategies which are verified to be generally ap-
plicable to different tasks. LLMs could learn from these
examples to identify the most suitable template to transform
our claims on a task to a cloze question pas. In such a way,
we attain both high effectiveness (on common tasks) and
cross-task generality (on new and unseen tasks) in generat-
ing prompts. We only need to maintain the demonstration
examples according to the applications in periodical while
avoiding specialized prompt design for each upcoming task.

Finally, we feed the prompt pas into LLMs to yield the final
answer of our task. The experimental results in Section 5
indicate that the prompts generated by our method are very
effective on a variety of data manipulation tasks.

4.5 Generalization to More Tasks

Our UniDM framework could be easily generalized to other
tasks listed in Section 3 by minor adaptions to the form
of the query Q, which encodes the target records R and
attributes S, and the set S′ of candidate relevant attributes in
prompt prm (defined in Section 4.2). On the other hand, our
method can flexibly combine various modules for different
tasks. The details are listed as follows.

For the data transformation task, we directly set Q = R[S]
to give the attribute value to be transformed. For error
detection, we represent it as “S: R[S]?” to indicate whether
R[S] is a valid value for S. For entity resolution where
R = {r1, r2}, we set Q to be “Entity A is r1, Entity B is r2”
to identify whether r1 and r2 refer to the same entity.

For other tasks that could be subsumed by our framework
defined in Section 3, we could also adjust the parameters
and module combination according to the semantics of the
task.

5 EXPERIMENT

In this section, we conduct extensive experiments on differ-
ent data manipulation tasks to evaluate the generalization
and quality of our UniDM. We also perform an in-depth
analysis of UniDM on more data types and task forms. And
then, we provide several model variants to show the effec-
tiveness of the proposed method.

5.1 Experimental Setup

Implement Details. We implement our UniDM using the
GPT-3-175B parameter model (Brown et al., 2020)(text-
davinci-003) in the OpenAI API (OpenAI, 2021) as the
LLM without fine-tuning. In addition, we give fine-tuning
results for an open-source LLM GPT-J-6B (Ben & Aran,
2021). In our method, in the default setting, we apply the
automatic context retrieval method proposed in Section 4.2.
In detail, we extract one attribute from the candidate set in
the metadata-wise retrieval (see prompt prm in Section 4.2)
and top-3 records from 50 records randomly sampled in
the dataset in the instance-wise retrieval (see prompt pri in
Section 4.2).

Evaluation Tasks and Datasets. We evaluate UniDM on a
number of different data manipulation tasks including data
imputation, data transformation, error detection and entity
resolution. We evaluate the performance of our method
on different benchmark datasets. For data imputation, we
choose two challenging benchmark datasets, namely Restau-
rants and Buy, from (Mei et al., 2021). For Restaurants
dataset, the target attribute to be impute is “city”. For Buy
dataset, the target attribute to be impute is “manufacturer”.
We manually mask the values in the target attributes. Ground
truth information is available for the missing values. For
data transformation, we follow the TDE benchmark in (Yeye
et al., 2018) and choose two datasets, namely StackOverflow
and Bing-QueryLogs. This benchmark covers diverse types
of transformation tasks (e.g., ip, address, phone, etc). For
error detection task, we choose the benchmark Hospital and
Adult datasets widely used in data cleaning papers (Rekatsi-
nas et al., 2017; Heidari et al., 2019). Errors amount to 5%
of the total data. Ground truth information is available for
all cells. For entity resolution, we follow the standard Mag-
ellan benchmark in (Konda et al., 2016) and choose four
datasets across different domains. Each dataset consists of
candidate pairs from two structured tables of entity records
of the same schema. The ground truth labels (positive or
negative) are available for the entity pairs.

Baseline Approaches. We compare UniDM with a variety
of state-of-the-art (SOTA) methods on data manipulation
tasks. The FM (Narayan et al., 2022) method is shown to
attain SOTA performance on multiple data manipulation
tasks with simple prompt learning on LLMs. We reproduce

Submission and Formatting Instructions for MLSys 2024

FM following the original paper and its open-source code.
In its default setting, the context information and the target
prompt are manually selected by guiding rules and it only
applies serialization in context data parsing. We evaluate
FM on data imputation, data transformation, error detection
and entity resolution tasks. We also reproduce a random-
sample version of FM, where the context information of
records is randomly selected from the table.

For data imputation task, we select several methods fol-
lowing different technical routines, including a statistics-
based method HoloClean (Rekatsinas et al., 2017; Wu
et al., 2020), a clustering-based method CMI (Shichao et al.,
2008) and a deep learning based method IMP (Mei et al.,
2021). For data transformation task, we select a search-
based method TDE (Yeye et al., 2018). For error detection
task, we select two machine learning based methods Holo-
Clean (Rekatsinas et al., 2017) and HoloDetect (Heidari
et al., 2019). For entity resolution task, we use a deep
learning method Ditto (Li et al., 2020).

Evaluation Metrics. Following previous works, we employ
widely-used metrics, accuracy, precision, recall and F1-
score to evaluate the effectiveness of these methods. For
data imputation and data transformation, we use accuracy to
denote the fraction of correct repairs over the total number
of repairs performed for cells in the labeled data. For error
detection and entity resolution, we use F1-score based on
precision and recall.

Evaluation Goals. The experimental results mainly answer
the following questions:

• What is the performance of our UniDM solution on dif-
ferent data manipulation tasks? (in Section 5.2)

• What is the contribution of each component in our
UniDM solution? (in Section 5.3)

5.2 Performance Evaluation

Data Imputation. As shown in Table 1, we conduct exper-
iments to compare UniDM with other methods. Here we
also compare the performance of UniDM and FM with an-
other setting, where the context information of records is
randomly selected from the table. We find that:

1) Overall, UniDM attains significantly higher accuracy than
the SOTA results. Although FM applies costly manual se-
lection of context information, the accuracy of UniDM is
still 4.6% higher than FM on Restaurant dataset and compa-
rable on Buy dataset. This verifies the effectiveness of our
UniDM solution, especially the automatic retrieval of the
context information.

2) For the random-setting with the same context information
selected randomly from the table, UniDM still outperforms

Table 1. Accuracy on data imputation task with SOTA.

Method Data Imputation Accuracy (%)
Restaurant Buy

HoloClean 33.1 16.2
CMI 56.0 65.3
IMP 77.2 96.5

FM (random) 81.4 86.2
FM (manual) 88.4 98.5

UniDM (random) 87.2 92.3
UniDM 93.0 98.5

Table 2. Accuracy on data transformation task with SOTA.

Method Data Transformation Accuracy (%)
StackOverflow Bing-QueryLogs

TDE 63.0 32.0
FM 65.3 54.0

UniDM 67.4 56.0

Table 3. F1-score on error detection task with SOTA.

Method Error Detection F1-Score (%)
Hospital Adult

HoloClean 51.4 54.5
HoloDetect 94.4 99.1

FM 97.1 99.1
UniDM 99.8 99.7

FM by 5.8% on the Restaurant dataset and 6.1% on the
Buy dataset. This is because UniDM applies logic transfor-
mation of the context information, rather than only simple
serialization employed in FM. Meanwhile, UniDM searches
for the most effective target prompt by utilizing the knowl-
edge in the LLM, rather than simple construction by users.
This verifies the success on our design choices of the context
data parsing and target prompt construction.

Data Transformation. UniDM also achieves the most
promising results on the data transformation task. As shown
in Table 2, UniDM outperforms the search-based method
TDE and the LLM-based FM. In comparison to FM (the
current SOTA results), UniDM yields nearly 2% gain on
the two datasets in terms of the accuracy. The reasons are
analyzed in the above experiment. This also verifies the
advantages of LLM-based methods over other approaches.

Error Detection. We report the F1-score obtained by
UniDM and competing approaches. UniDM also achieves
a similar behavior on the error detection task. As shown
in Table 3, UniDM outperforms the baseline methods Holo-
Clean, HoloDetect and FM by up to 2.7% in terms of the
F1-score in the Hospital dataset. For the Adult dataset,
UniDM achieves a high F1-score of 99.7%, as it uses the
information on data source. It proves that our method is

Submission and Formatting Instructions for MLSys 2024

Table 4. F1-score on entity resolution task with SOTA.

Method Entity Resolution F1-Score (%)

Beer Amazon-
Google

iTunes-
Amazon

Walmart-
Amazon

Magellan 78.8 49.1 91.2 71.9
Ditto 94.4 75.6 97.1 86.8

FM(random) 92.3 60.7 96.3 73.8
FM(manual) 100 63.5 98.2 87.0

UniDM 96.3 64.3 96.3 88.2

Table 5. Fine-tuning experiments: F1-score of UniDM on entity
resolution task (Walmart-Amazon dataset).

LLM F1-Score (%)
FM UniDM

GPT-J-6B 17.6 17.8
GPT-J-6B (fine-tune) 84.2 86.6

GPT-3-175B 87.0 88.2

useful in interpreting the domain knowledge to detect errors.

Entity Resolution. As shown in Table 4, UniDM is also
effective on the entity resolution task. In comparison to FM
with random context information, UniDM always attains
higher (or at least comparable) accuracy. In comparison to
Magellan and Ditto which fine-tunes the model with large
amounts of task-specific labeled data, UniDM still achieves
comparable or better results in most cases. Sometimes, the
accuracy of UniDM is lower than Ditto and FM with manu-
ally selected context. This is because these datasets contain
very specific domain words that do not commonly occur in
the corpus. As a result, the LLMs have little knowledge
on their semantics and may make errors in inference. A
similar phenomenon is also observed in (Narayan et al.,
2022). To avoid this, Ditto utilizes domain data to fine-tune
the model and FM manually selects instances to learn the
domain knowledge.

For fairness, we also conduct a lightweight fine-tuning on
our UniDM as LLMs’ model capacity scaling. We conduct
the lightweight fine-tuning experiments based on the Hug-
gingFace(Wolf et al., 2020) library. In this setting, we freeze
most of the pre-trained parameters and augment the model
with a small trainable head (Ding et al., 2021). During fine-
tuning, we use an AdamW optimizer and a cosine annealing
learning rate scheduler with the linearly warm-up step of
100, initial learning rate of 4e-5 and final learning rate of
1e-5. Our model is trained over 8 V100 GPUs for 30 epochs
with a batch size of 16. We also reproduced this experiment
on FM under the same setting.

We scale LLMs parameter size from 175B to 6B. Table 5
shows that the fine-tuned 6B LLM is comparable to the
175B LLM, suggesting UniDM has the potential to scale to

Table 6. Accuracy of UniDM with different components on data
imputation task (Restaurant dataset).
Instance-wise

Retrieval
Meta-wise
Retrieval

Target Prompt
Construction

Context Data
Parsing Acc (%)

82.6
✓ 84.9

✓ 90.7
✓ ✓ 90.7
✓ ✓ ✓ 91.9
✓ ✓ ✓ ✓ 93.0

even smaller models with proper fine-tuning. Meanwhile,
on the fine-tuned small model, UniDM performs better than
FM. This indicates that our UniDM could also attain higher
accuracy by fine-tuning.

5.3 Impact of Model Components

For ablation study, we analyze the effectiveness of each
component in UniDM. Specifically, we disable one or more
components in UniDM and compare the performance of
UniDM with its variants. The results are shown in Table 6.
Our findings are described as follows:

Context Retrieval. When disable context retrieval compo-
nent, UniDM randomly samples the same number of at-
tributes and/or records from the table as context information.
At this time, the accuracy of UniDM significantly decreases.
We observe that, by simply using instance-wise and meta-
wise retrieval, the accuracy of UniDM could improve 2.3%
and 8.1% on Restaurant dataset, respectively. This is be-
cause our context retrieval leverages LLMs to capture rele-
vant attributes and/or instances with semantic relationships,
which provides richer background knowledge for the target
prompt.

Context Data Parsing. Without context data parsing, we
only apply the serialization function to convent the tabular
context information into a string. We observe that data
parsing also helps to improve the result accuracy, i.e., 1.1%
on Restaurant dataset. This is because our data parsing
bridges the gap between structured tabular data and natural
language representation to make the context information
more friendly to be interpreted by LLMs.

Target Prompt Construction. We also compare UniDM
with the simple prompt that directly combines the task de-
scription, the context information and the task inputs to
obtain the final result. We find that our constructed tar-
get prompt using cloze questions improves the accuracy by
1.2%. This verifies the effectiveness of our target prompt
construction method. It learns from examples to identify the
most suitable prompt, rather than the simple combination
without semantic connections.

Submission and Formatting Instructions for MLSys 2024

5.4 Discussion

The principal objective of our experimental study is to
demonstrate the effectiveness of LLMs in enhancing data
lakes and minimizing human effort. The challenge of deal-
ing with massive amounts of data is a common issue faced
by data lake systems. Data relationships take on various
forms. For instance, in some cases, we may have shared
values or keys; in others, the data may be complementary
and thus have no value-overlap at all. To address this chal-
lenge, our method utilizes LLMs to understand data rela-
tionships, integrate heterogeneous data sources, and auto-
matically identify the relational data for data tasks. Our
findings suggest that data retrieval can boost performance
by selecting relational data and filtering noisy data. Another
grand challenge for data lake systems is supporting various
on-demand queries. Our UniDM offers a combination of
data modules and task modules in a flexible way. From a
data module perspective, automatic data retrieval is used to
extract useful information, while data parsing is used for
data interpretation. From a task module perspective, prompt
engineering demonstrates remarkable cross-task capabilities
across various data tasks. Overall, our UniDM makes data
in data lakes actionable and enriches data lakes in a flexible
manner.

6 CONCLUSION

In this paper, we design UniDM, a unified framework to
solve data manipulation tasks on data lakes. UniDM summa-
rizes a number of data manipulation tasks into a unified form
and designs general steps to solve these tasks using LLMs
with proper prompts. Experimental results demonstrate that
UniDM exhibits superior performance when compared to
traditional and learned methods on a variety of data ma-
nipulation tasks. In the future work, we show that there
still reserves enough room for improvement in terms of
data, model and algorithm. We hope the strategies proposed
in UniDM could contribute and inspire more advances on
exploring LLMs with database systems.

6.1 future works

UniDM can benefit from explicitly retrieving data, poten-
tially containing evidence and factual information, before
the processing of data manipulation. However, the model
may be unreliable when dealing with domain-specific knowl-
edge that is required for commercial use cases. In such
scenarios, LLMs can generate information that may be prob-
lematic in practical applications where factual accuracy is
crucial. Another limitation is explainability. In most data
applications (e.g., root cause analysis), a good explanation
that includes all the rules applied to reach a conclusion can
be valuable to the user. While LLMs have exhibited remark-
able success in various data tasks, their ability to reason and

explain is often viewed as a limitation. We summarize some
future research directions in terms of different perspectives
of data, model, algorithm and efficiency as follows.

Integration with Domain Knowledge From the results in
Section 5.2, we observe that UniDM can perform well on
universal data but may fall on domain specific data. How-
ever, data lakes often contain data from highly specialized
domains, e.g., financial, biological and academic data. Cur-
rently, the widely adopted method is to fine-tune the LLMs
with domain specific data. Whereas, there still remain chal-
lenges for fine-tuning, such as how to extract high quality
data from data lakes as a corpus to tune the LLMs. Besides,
it is very interesting to explore new integration methods
except fine-tuning LLMs.

Designing Large Models for DB Tasks The LLMs are
mainly trained on a corpus of texts to resolve NLP tasks. Al-
though we could design serialization functions and prompts
to apply LLMs on tabular data, it is essentially a process of
cutting the foot to fit the shoe. A better way is to design and
train large models on tabular (and other types of) data from
scratch to capture semantics for database tasks. Some pre-
vious works have attempted to leverage BERT (e.g., TaPas
(Herzig et al., 2020), TaPEx (Liu et al., 2021), Tableformer
(Yang et al., 2022), TURL(Deng et al., 2022)) to under-
stand (semi-)structured data. However, all of the concepts,
model structures, training methods and the whole paradigm
of large models need to be re-designed to fit database tasks.

Efficiency Consideration LLMs applied in our method
bring benefits but also entail an increase in computational re-
source. In the future work, it is rather important to consider
how to improve the efficiency while retaining the effective-
ness of LLM-based methods. One possible way is to design
more efficient retrieval methods to extract relevant infor-
mation from data to minimize the computation overhead.
Another way is to adapt to select the LLMs with minimal
computation cost to fulfill each task. As we show in Table 5,
a fine-tuned LLM in a smaller size is possible to match the
performance of a universal LLM in a much larger size.

LLM-based and Traditional Methods In spite of our
LLM-based solutions exhibiting superiority in terms of re-
sult effectiveness, they can not totally replace traditional
methods. LLM is still a black-box which is difficult to in-
terpret, debug and analyze. These are all risky factors for
database systems which require rock-solid stability. Tradi-
tional methods relying on rules and logic tuned by human
experience over decades have their unique advantages. They
are more friendly to system deployment. Therefore, LLM-
based and traditional methods are not conflicting but rather
complementary to each other. It would be very practical to
combine their advantages together to control the deployment
risk while still attaining high result effectiveness.

Submission and Formatting Instructions for MLSys 2024

REFERENCES

Alserafi, A., Abelló, A., Romero, O., and Calders, T. Keep-
ing the data lake in form: Ds-knn datasets categorization
using proximity mining. In Model and Data Engineer-
ing: 9th International Conference, MEDI 2019, Toulouse,
France, October 28–31, 2019, Proceedings 9, pp. 35–49.
Springer, 2019.

Arora, S., Narayan, A., Chen, M. F., Orr, L. J., Guha, N.,
Bhatia, K., Chami, I., Sala, F., and Ré, C. Ask me any-
thing: A simple strategy for prompting language models.
arXiv preprint arXiv:2210.02441, 2022.

Ben, W. and Aran, K. Gpt-j-6b: A 6 billion pa-
rameter autoregressive language model, 2021.
URL https://github.com/kingoflolz/
mesh-transformer-jax.

Biessmann, F., Rukat, T., Schmidt, P., Naidu, P., Schelter,
S., Taptunov, A., Lange, D., and Salinas, D. Datawig:
Missing value imputation for tables. Journal of Machine
Learning Research, 20(175):1–6, 2019. URL http:
//jmlr.org/papers/v20/18-753.html.

Bilenko, M. and Mooney, R. J. Adaptive duplicate detection
using learnable string similarity measures. In Proceedings
of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 39–48, 2003.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Brunner, U. and Stockinger, K. Entity matching with trans-
former architectures-a step forward in data integration.
In 23rd International Conference on Extending Database
Technology, Copenhagen, 30 March-2 April 2020. Open-
Proceedings, 2020.

Chen, Z., Gu, Z., Cao, L., Fan, J., Madden, S., and Tang, N.
Symphony: Towards natural language query answering
over multi-modal data lakes. The Conference on Innova-
tive Data Systems Research, 2023.

Chu, X., Ilyas, I. F., and Papotti, P. Holistic data cleaning:
Putting violations into context. In 2013 IEEE 29th In-
ternational Conference on Data Engineering (ICDE), pp.
458–469. IEEE, 2013.

Chu, X., Morcos, J., Ilyas, I. F., Ouzzani, M., Papotti, P.,
Tang, N., and Ye, Y. Katara: A data cleaning system
powered by knowledge bases and crowdsourcing. In
Proceedings of the 2015 ACM SIGMOD international
conference on management of data, pp. 1247–1261, 2015.

Creswell, A., Shanahan, M., and Higgins, I. Selection-
inference: Exploiting large language models for
interpretable logical reasoning. arXiv preprint
arXiv:2205.09712, 2022.

Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A.,
Ilyas, I. F., Ouzzani, M., and Tang, N. Nadeef: a com-
modity data cleaning system. In Proceedings of the 2013
ACM SIGMOD International Conference on Management
of Data, pp. 541–552, 2013.

Dalvi, N., Rastogi, V., Dasgupta, A., Das Sarma, A., and
Sarlós, T. Optimal hashing schemes for entity matching.
In Proceedings of the 22nd international conference on
world wide web, pp. 295–306, 2013.

Deng, X., Sun, H., Lees, A., Wu, Y., and Yu, C. Turl: Table
understanding through representation learning. ACM
SIGMOD Record, 51(1):33–40, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.-T.,
and Sun, M. Openprompt: An open-source framework
for prompt-learning. arXiv preprint arXiv:2111.01998,
2021.

Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani,
M., and Tang, N. Distributed representations of tuples for
entity resolution. Proceedings of the VLDB Endowment,
11(11):1454–1467, 2018.

Gao, T., Fisch, A., and Chen, D. Making pre-trained lan-
guage models better few-shot learners. In Association for
Computational Linguistics (ACL), 2021.

Hai, R., Quix, C., and Jarke, M. Data lake concept and
systems: a survey. arXiv preprint arXiv:2106.09592,
2021.

Heidari, A., McGrath, J., Ilyas, I. F., and Rekatsinas, T.
Holodetect: Few-shot learning for error detection. In
Proceedings of the 2019 International Conference on
Management of Data, pp. 829–846, 2019.

Herzig, J., Nowak, P. K., Müller, T., Piccinno, F., and Eisen-
schlos, J. M. Tapas: Weakly supervised table parsing via
pre-training. arXiv preprint arXiv:2004.02349, 2020.

Jin, Z., He, Y., and Chauduri, S. Auto-transform: learning-
to-transform by patterns. Proceedings of the VLDB En-
dowment, 13(12):2368–2381, 2020.

Konda, P., Das, S., Doan, A., Ardalan, A., Ballard, J. R., Li,
H., Panahi, F., Zhang, H., Naughton, J., Prasad, S., et al.

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
http://jmlr.org/papers/v20/18-753.html
http://jmlr.org/papers/v20/18-753.html

Submission and Formatting Instructions for MLSys 2024

Magellan: toward building entity matching management
systems over data science stacks. Proceedings of the
VLDB Endowment, 9(13):1581–1584, 2016.

Li, G., Zhou, X., Sun, J., Yu, X., Han, Y., Jin, L., Li, W.,
Wang, T., and Li, S. opengauss: An autonomous database
system. Proceedings of the VLDB Endowment, 14(12):
3028–3042, 2021a.

Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., and Zhang,
C. Cleanml: A study for evaluating the impact of data
cleaning on ml classification tasks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE),
pp. 13–24. IEEE, 2021b.

Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W.-C. Deep
entity matching with pre-trained language models. Pro-
ceedings of the VLDB Endowment, 14(1):50–60, 2020.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Liu, Q., Chen, B., Guo, J., Ziyadi, M., Lin, Z., Chen, W.,
and guang Lou, J. Tapex: Table pre-training via learning
a neural sql executor, 2021.

Mayfield, C., Neville, J., and Prabhakar, S. Eracer: a
database approach for statistical inference and data clean-
ing. In Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of data, pp. 75–86,
2010.

Mei, Y., Song, S., Fang, C., Yang, H., Fang, J., and Long,
J. Capturing semantics for imputation with pre-trained
language models. In 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), pp. 61–72. IEEE,
2021.

Mohammad, S. A., Zan, A. N., Mohamed, E., Mourad, O.,
and Nan, T. Retclean: Retrieval-based data cleaning
using foundation models and data lakes. arXiv preprint
arXiv:2303.16909, 2023.

Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krish-
nan, G., Deep, R., Arcaute, E., and Raghavendra, V. Deep
learning for entity matching: A design space exploration.
In Proceedings of the 2018 International Conference on
Management of Data, pp. 19–34, 2018.

Narayan, A., Chami, I., Orr, L., and Ré, C. Can foun-
dation models wrangle your data? arXiv preprint
arXiv:2205.09911, 2022.

Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena,
P. C. Data lake management: challenges and opportu-
nities. Proceedings of the VLDB Endowment, 12(12):
1986–1989, 2019.

OpenAI. Openai api, 2021. URL https://openai.
com/api/.

Ouellette, P., Sciortino, A., Nargesian, F., Bashardoost,
B. G., Zhu, E., Pu, K. Q., and Miller, R. J. Ronin: data
lake exploration. Proceedings of the VLDB Endowment,
14(12), 2021.

Peeters, R. and Christian, B. Dual-objective fine-tuning
of bert for entity matching. Proceedings of the VLDB
Endowment, 14:1913–1921, 2021.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. Holoclean:
Holistic data repairs with probabilistic inference. Pro-
ceedings of the VLDB Endowment, 10:1190–1201, 2017.

Shichao, Z., Jilian, Z., Xiaofeng, Z., Yongsong, Q., and
Chengqi, Z. Missing value imputation based on data
clustering. Transactions on computational science, pp.
128–138, 2008.

Singh, R., Meduri, V. V., Elmagarmid, A., Madden, S.,
Papotti, P., Quiané-Ruiz, J.-A., Solar-Lezama, A., and
Tang, N. Synthesizing entity matching rules by examples.
Proceedings of the VLDB Endowment, 11(2):189–202,
2017.

Stefan, H., Alejandro, B., Hunter, L., Monica, A., Xiaoyi,
J., and David, S. Tabllm: Few-shot classification of
tabular data with large language models. arXiv preprint
arXiv:2210.10723, 2022.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L.,
Du, Y., et al. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239, 2022.

Trummer, I. CodexDB: Synthesizing code for query pro-
cessing from natural language instructions using GPT-3
Codex. PVLDB, 15(11):2921 – 2928, 2022a.

Trummer, i. Db-bert: a database tuning tool that “reads the
manual”. SIGMOD, 2022b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, P., Zeng, X., Chen, L., Ye, F., Mao, Y., Zhu,
J., and Gao, Y. Promptem: prompt-tuning for low-
resource generalized entity matching. arXiv preprint
arXiv:2207.04802, 2022.

https://openai.com/api/
https://openai.com/api/

Submission and Formatting Instructions for MLSys 2024

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on em-
pirical methods in natural language processing: system
demonstrations, pp. 38–45, 2020.

Wu, R., Zhang, A., Ilyas, I., and Rekatsinas, T. Attention-
based learning for missing data imputation in holoclean.
Proceedings of Machine Learning and Systems, 2:307–
325, 2020.

Wu, Z., Yu, P., Yang, P., Zhu, R., Han, Y., Li, Y., Lian, D.,
Zeng, K., and Zhou, J. A unified transferable model for
ml-enhanced dbms. arXiv preprint arXiv:2105.02418,
2021.

Yang, J., Gupta, A., Upadhyay, S., He, L., Goel, R., and
Paul, S. Tableformer: Robust transformer modeling for
table-text encoding. arXiv preprint arXiv:2203.00274,
2022.

Yeye, H., Xu, C., Kris, G., Yudian, Z., Vivek, N., and Surajit,
C. Transform-data-by-example (tde) an extensible search
engine for data transformations. Proceedings of the VLDB
Endowment, 11(10):1165–1177, 2018.

Zhao, C. and He, Y. Auto-em: End-to-end fuzzy entity-
matching using pre-trained deep models and transfer
learning. In The World Wide Web Conference, pp. 2413–
2424, 2019.

Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang,
K., Ji, C., Yan, Q., He, L., et al. A comprehensive survey
on pretrained foundation models: A history from bert to
chatgpt. arXiv preprint arXiv:2302.09419, 2023.

