
Answering Multi-Dimensional AnalyticalQueries
under Local Differential Privacy

Tianhao Wang
∗

Purdue University

tianhaowang@purdue.edu

Bolin Ding

Alibaba Group

bolin.ding@alibaba-inc.com

Jingren Zhou

Alibaba Group

jingren.zhou@alibaba-inc.com

Cheng Hong

Alibaba Group

vince.hc@alibaba-inc.com

Zhicong Huang

Alibaba Group

zhicong.hzc@alibaba-inc.com

Ninghui Li

Purdue University

ninghui@cs.purdue.edu

Somesh Jha

University of Wisconsin

jha@cs.wisc.edu

ABSTRACT
Multi-dimensional analytical (MDA) queries are often issued

against a fact table with predicates on (categorical or ordinal)

dimensions and aggregations on one or more measures. In

this paper, we study the problem of answering MDA queries

under local differential privacy (LDP). In the absence of a

trusted agent, sensitive dimensions are encoded in a privacy-

preserving (LDP) way locally before being sent to the data

collector. The data collector estimates the answers to MDA

queries, based on the encoded dimensions. We propose sev-

eral LDP encoders and estimation algorithms, to handle a

large class of MDA queries with different types of predicates

and aggregation functions. Our techniques are able to an-

swer these queries with tight error bounds and scale well

in high-dimensional settings (i.e., error is polylogarithmic

in dimension sizes). We conduct experiments on real and

synthetic data to verify our theoretical results, and compare

our solution with marginal-estimation based solutions.

ACM Reference Format:
Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong

Huang, Ninghui Li, and Somesh Jha. 2019. Answering Multi-

Dimensional Analytical Queries under Local Differential Privacy.

In 2019 International Conference on Management of Data (SIGMOD
’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3299869.3319891

∗
Work done at Alibaba Group.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319891

1 INTRODUCTION
Large volumes of users’ data about their profiles and activi-

ties are collected by enterprises to make informed business

decisions. In order to meet users’ expectation of their pri-

vacy, applications and services must provide rigorous pri-

vacy guarantees on how their data is collected and analyzed.

Differential privacy (DP) [14] has emerged as the de facto
standard for privacy guarantees, and is being used by, e.g.,
Apple [32], Google [16], Uber [23], and Microsoft [9].

A well-studied DP model is in the centralized setting,

where a trusted data collector obtains exact data from users,

and injects noise in the analytical process to guarantee DP. In

the absence of such a trusted party, users prefer not to have

their private data leave their devices in an unprotected form,

and thus, the centralized setting of DP is no longer applicable.

In such scenarios, one can adopt the local differential privacy
model (LDP) [12]. Each user’s private data is encoded by a

randomized algorithm before being sent to the data collector.

LDP guarantees that the likelihood of any specific output of

the algorithm varies little with input, i.e., the private data. In
this way, users do not need to trust the data collector.

Data model and application scenarios. LDP fits the class

of analytical applications considered in this paper well. Sup-

pose a number of individuals use a service in the cloud, and

each user generates some multi-dimensional data during the

service. Some dimensions, called measure attributes, are nat-
urally known to the service provider, e.g., active time and

purchase amount for the billing purpose; some other dimen-

sions are sensitive, e.g., income and location, and users prefer

to have them collected only in a privacy-preserving way;

the remaining ones are non-sensitive. On the other side, the

provider wants to analyze how the service performs by is-

suing analytical queries that aggregate measure attributes

under constraints on sensitive dimensions. While all the

dimensions will never be released to the public and the ana-

lytics are conducted internally by the provider, the provider

needs to guarantee that the sensitive dimensions are handled

properly by providing an LDP data collection algorithm that

runs on each user’s device. A motivating example follows.

tianhaowang@purdue.edu
bolin.ding@alibaba-inc.com
jingren.zhou@alibaba-inc.com
vince.hc@alibaba-inc.com
zhicong.hzc@alibaba-inc.com
ninghui@cs.purdue.edu
jha@cs.wisc.edu
https://doi.org/10.1145/3299869.3319891
https://doi.org/10.1145/3299869.3319891

Age Salary State OS ActiveTime Purchase
D1 D2 D3 D4 M1 M2

t1 30 50K NY Win 1.6h $120

t2 60 80K WA iOS 1.2h $100

t3 50 90K NY Win 1.0h $100

t4 40 70K NY iOS 1.8h $100

Table 1: A relational tableT with sensitive dimensions

Server SideClient Side

LDP encodedSensitive data Fact table

Estimated answer P̄(q)

processor P̄

User t2

User t3

User tn

... ...

User t1
A

A

A

A

Estimation

Online MDA query q

Figure 1: Answering MDA queries under LDP

Example 1.1. The multi-dimensional data model of users in
an online shopping app is shown in Table 1. Users are anony-
mous. Measure attributes ActiveTime (how much time a user
spent in the app) and Purchase (amount of money spent in
the app), are inherently known to the service provider. Age,
Salary, and State are sensitive dimensions, and attribute OS is
non-sensitive. The service provider wants to analyze how much
money is spent by a specific group of users using a query:

SELECT SUM(Purchase) FROM T (1)

WHERE Age ∈ [30, 40] AND Salary ∈ [50K, 150K].

In this paper, we study how to (approximately) answer a

class of multi-dimensional analytical (MDA) queries, while
each user’s sensitive data is collected under LDP. An MDA
query is a SQL query with aggregation (e.g., COUNT, SUM,

orAVG) onmeasure attributes (accessible by service provider),

and a predicate with equality and range constraints on sen-

sitive dimensions (to be collected under LDP).

Overview of our solution (Figure 1). On the client side,

each user holds some multi-dimensional data, and runs an

LDP encoding algorithmA on the sensitive dimensions. The

output is sent to the server. A fact table on the server side is

a combination of LDP encoded dimensions collected from

users and dimensions/measures that are non-sensitive or

known to the server. An arbitrary number of MDA queries

can be issued as the privacy is guaranteed for each user be-

fore her/his data is collected. Since sensitive dimensions are

encoded with random noise injected, we need an algorithm

P̄ to estimate the query answers (with bounded errors).

Challenges. Answering MDA queries under LDP is closely

related to the recent line of works on releasing marginals

under LDP [8, 30, 41]. Amarginal table records the (empirical)

probability distribution between a set of dimensions. Each

row in amarginal is equivalent to aCOUNT query. In Table 1,
e.g., a row in the 2-way marginal (Age, Salary) is:

SELECT Age, Salary,COUNT(∗) FROM T (2)

WHERE Age = 30 AND Salary = 50K.

LDP marginals can be adapted to answer an MDA query

by summing up marginal rows such as (2) covered by the

query. For example, to answer a COUNT query with Age ∈
[30, 40] AND Salary ∈ [50K, 150K], assuming Salary takes

values in thousands, we need to add up 11 × 101 rows in

the 2-way marginal on (Age, Salary), with the error variance

potentially amplified 11 × 101 times.More generally, suppose

there are d ordinal dimensions, each withm distinct values,

the worst-case squared error is proportional to O(md), as we

may need to sum upmd
such rows under range constraints.

The worst-case error could be exorbitant whenm is large.

LDP frequency oracles [4, 5, 9, 13, 35] are in another related

line. Here, each user has a private value and encodes it with

noise in an LDP way. Each LDP encoded value is sent to the

server, and on the server, we want to estimate the frequency

of a given value (i.e., how many users hold this value). Some

very simple MDA queries, e.g., in Table 1,

SELECT COUNT(∗) FROM T WHERE State = NY

can be translated into frequency queries, e.g., the frequency
of “NY”. However, it was unknown how to handle other

aggregations, e.g., SUM, with frequency oracles and how to

handle complicated predicates, e.g., range constraints, on

multiple dimensions without blowing up estimation errors.

Contributions. We aim to process MDA queries with both

privacy and accuracy guarantees. To this end, we first revisit

LDP frequency oracles, which are building blocks in our so-

lution. We propose a weighted frequency oracle: each user

is associated with a public weight and holds a private value;

an LDP version of the value is sent to the server. We want to

estimate, for a given value, the total weight of users holding

this value. It will be used to handle more general aggrega-

tions, e.g., SUM, AVG, and STDEV, of measures attributes –

each measure is regarded as the weight of each user.

Our solution (A, P̄) relies on a hierarchical decomposition

of the ordinal dimensions into sub-intervals, and can reduce

the worst-case squared error from O(md) in the marginal-

based solution to log
O(d)m (keeping other terms that are

dependent on data size and privacy budget the same).

The decomposition schema on each single dimension is

not new, which has been used to answer range COUNT
queries in the centralized DP setting firstly by [22]. Our

new contribution is a novel way to incorporate weighted

frequency oracles in the hierarchy, so that the error in the

estimated answer is polylogarithmic in the cardinality of

dimensions (instead of polynomial if we adopt LDPmarginals

in a naive way). A more important contribution is that we

extend the decomposition schema for d dimensions so that

the error is still polylogarithmic, i.e., log
O(d)m.

The main idea behind the hierarchical decomposition is

that the privacy budget is partitioned across a polylogarith-

mic number of levels in the hierarchy, and the query is par-

titioned into a polylogarithmic number of sub-queries on

sub-intervals in the hierarchy. An alternative is that each

user encodes and sends only one randomly selected level in

the hierarchy, so that less LDP noise is added to that level but

sampling noise is introduced in the estimation. By carefully

exploring the properties of our weighted frequency oracles,

a bit surprisingly, this alternative can boost the accuracy of

estimated answers to MDA queries by orders of magnitude,

which we will demonstrate theoretically and empirically.

Finally, we consider the case when the total number of

private dimensions is large, but the number of dimensions

in the query is small (which is often true in practice). By

exploring variants of our weighted frequency oracles, we

propose an LDP mechanism whose estimation error is only

exponential in the number of dimensions in the query, but

less heavily dependent on the total number of dimensions.

Organization. Section 2 presents the data model and the

privacy guarantee. Section 3 introduces our weighted LDP

frequency oracle. Section 4 gives our solution for one dimen-

sion, which will be generalized and optimized for multiple

dimensions in Section 5. Experimental results are reported in

Section 6. We present extensions to our solution in Section 7,

and discuss related work in Section 8.

2 PRELIMINARIES
We first introduce MDA queries and the privacy guarantee.

2.1 Multi DimensionalModel andAnalytics
Each user contributes a tuple t to a table with a set of at-

tributes, called dimensions ormeasures. A dimension, denoted

by D, appears in predicates, and a measure, denoted by M ,

is aggregated in analytical questions. We also use D orM to

denote the domain (the set of possible values) of an attribute,

and t[D] and t[M] are the attribute values in a tuple.

Multi-dimensional analytical (MDA) queries. Let T be

the relational table, called fact table. We focus on the follow-

ing class of multi-dimensional analytical queries:

QT (F(M),C) : SELECT F(M) FROM T WHERE C (3)

• Aggregation F(M) isCOUNT(∗), SUM(M), or AVG(M). We

focus on SUM(M) in the main text (COUNT is a special

case and AVG can be derived from the other two).

• Predicate C consists of point constraints “Di = vi ” for
categorical dimensions, and range constraints “Di ∈ [li , ri]”

for ordinal dimensions. We will first focus on conjunctions

(AND-only) of one or more such constraints.

Wewill introduce how to generalize our solution for the other

aggregate functions and AND-OR predicates in Section 7.

2.2 Local Differential Privacy (LDP)
A server collects tuples from users into T . In the application

scenarios introduced in Section 1, some dimensions are con-

sidered sensitive by users, and thus need to be collected in

a privacy-preserving way; measures are public or known to
the server (e.g., how much time a user spends on a service is

known to the service provider for the billing purpose).

Trust model of LDP. Users do not trust the server and re-

quire formal privacy guarantees before they are willing to

send their dimension values. We adopt the local model of dif-
ferential privacy (LDP) [13], which is also called randomized

response model [39], γ -amplification [17], or FRAPP [2]. Un-

der LDP, sensitive dimensions in a tuple t from each user are

encoded by a randomized algorithmA , and the outputA(t),
called an LDP report, is sent to the server. Intuitively, LDP

guarantees that, no matter what A(t) is, it is approximately

equally as likely to have come from t as any other t ′ differing
from t in one or more sensitive dimensions. Hence, if A(t),
instead of t , is collected, t ’s information on sensitive dimen-

sions is protected (to some degree measured by the privacy

budget ϵ). More formally, suppose D1, . . . ,Dd are sensitive

dimensions, we provide the following LDP guarantee:

Definition 1 (Local Differential Privacy [13]). A ran-
domized algorithm A is ϵ-locally differentially private or ϵ-
LDP, if for any pair of different tuples t and t ′, with t[Di] ,
t ′[Di] for at least one i ∈ {1, . . . ,d}, and anyO ⊆ Range(A),

Pr [A(t) ∈ O] ≤ eϵ · Pr [A(t ′) ∈ O] .

In comparison to previous work on LDP, we identify a sep-

aration between sensitive (but users volunteer to contribute

under LDP) and non-sensitive (e.g., measures that server will

always know), and utilize the non-sensitive information.

Example 2.1. The multi-dimensional data model in Table 1
has six attributes. D1 and D2 are ordinal dimensions; D3 and
D4 are categorical dimensions. There are also two numeric
measures M1 and M2. The query in Example 1.1 is an MDA
query with two range constraints on D1 and D2.
D1-D3 are sensitive dimensions, and thus need to be collected

under LDP. LDP guarantees that we cannot distinguish between
two users with (30, 50K, NY) and (40, 70K, NY) based on their
LDP reports, and thus, their dimension values are protected.

Sequential composability. An important property of DP,

sequential composability [26], also holds for LDP (consider-

ing a dataset with one row in the centralized model), and

will be used repeatedly in the rest of this paper.

Proposition 2 (Directly from [26]). Suppose A i satis-
fies ϵi -LDP, the algorithm A which simultaneously releases
A(t) = ⟨A 1(t), . . . ,Ak (t)⟩ satisfies

∑k
i=1

ϵi -LDP.

2.3 Private Multi-Dimensional Analytics
We study the task of private multi-dimensional analytics in
this paper. An LDP mechanism for this task is a pair (A , P̄).

Client side (LDP encoder A). Each user t runs an ϵ-LDP
algorithm Aϵ

on her/his sensitive dimensions, and sends

the output Aϵ (t), i.e., the LDP report, to the server. If ϵ is

clear from the context, we simply write Aϵ
as A .

Server side (estimation processor P̄). There are n users

whose tuples form a fact table T = {t1, . . . , tn}. The server
receives A(T) = {A(t1), . . . , A(tn)}. An MDA query q =
QT (F(M),C), in the form of (3), can be approximately an-

swered on LDP reports A(T) and other public attributes of T
using an estimation algorithm P̄. Let P̄(q) be the estimate.

An arbitrary number of MDA queries can be issued on the

server, since LDP is preserved for each user t on the report

A(t) and P̄ can be regarded as “post-processing” of reports.

Error metric. Let q also denote the exact answer to an MDA

query. Let Err(P̄(q)) be the expected (over randomness in A)
squared error E[(P̄(q) − q)2] in P̄(q). If P̄(q) is an unbiased

estimator of q, Err(P̄(q)) = Var
[
P̄(q)

]
. Our goal is to bound

Err(P̄(q)) for the supported MDA queries.

3 WEIGHTED FREQUENCY ORACLE
We introduce building blocks used in our LDP mechanisms

for MDA. We first introduce weighted frequency queries and
their relationship to MDA. We present an LDP mechanism

(weighted frequency oracle) for such queries. We introduce

how to estimate weighted frequencies if a random sample

of users send their LDP reports – this twist will be used

(in Sections 4-5) to boost the accuracy of MDA. Finally, a

marginal-based solution for answering MDA is presented.

3.1 Weighed Frequency Queries and MDA
In a multi-dim data model, each user t has a private dimen-

sion t[D] ∈ D and a public measure t[M] ∈ R. A weighted
frequency query asks, for a set of users S , what is the total
measure of users with a given dimension value v , i.e.,

fMS (v ;D) =
∑

t ∈S∧t [D]=v

t[M] (4)

⇔ SELECT SUM(M) FROM S WHERE D = v . (5)

We write fMS (v ;D) as fMS (v) if D is clear from the context.

3.2 An LDP Frequency Oracle (FO)
As t[D] is sensitive, each user uses an ϵ-LDP algorithmAFO
to encode t[D] as AFO(t[D]) before sending it to the server.

For a user set S , the server obtains an estimator f̄MS (v) of
fMS (v) from the LDP reports AFO(S) = {AFO(t[D])}t ∈S and

the public measure M . An LDP weighted frequency oracle
refers to a pair of encoder and estimator (AFO, f̄

M).

3.2.1 Existing Unweighted FrequencyOracles (AFO, f̄). When

t[M] = 1 for all users, fMS (v) is equal to the (unweighted) fre-
quency of v , fS (v), which is equivalent to a COUNT query:

fS (v) =
∑

t ∈S∧t [D]=v

1 = | {t ∈ S | t[D] = v} |. (6)

There have been previous works, e.g., [4, 5, 9, 13, 35], on
LDP unweighted frequency oracles with asymptotically opti-

mal error. We use OLH (optimal local hashing) from [35]. It

maps t[D] from D to a smaller domain using a hash function

H randomly picked from a universal family, and randomly
perturb H (t[D]) to a different value y in the domain with

certain probability. AFO(t[D]) = ⟨H ,y⟩ is the LDP report

from t . It is ϵ-LDP as long as the perturbation distribution is

“flat” enough. For the completeness, we describe details about

AFO and the estimator f̄ in Algorithm 3 in Appendix A. We

state its asymptotically optimal error bound in Lemma 3.

Lemma 3 (OLH [35]). There is an ϵ-LDP frequency oracle
(AFO, f̄) (Algorithm 3). For any dimension value v ∈ D, f̄S (v)
is an unbiased estimator of fS (v), and we can bound its error:

Err(f̄S (v)) = E
[(

f̄S (v) − fS (v)
)

2

]
=

4|S |eϵ

(eϵ − 1)2
+ fS (v).

3.2.2 Our Weighted Frequency Oracle (AFO, f̄
M). We now

show how to generalize an unweighted frequency oracle into

a weighted frequency oracle. We use OLH [35] in our work.

Those in [4] can be also applied and analyzed similarly.

The idea behind (AFO, f̄
M) is to partition users into groups

by their measures. Let Sx = {t ∈ S | t[M] = x} be the group
of users in S with measure equal to x . For a dimension value

v , we establish the relationship between f and fM via Sx :

fMS (v) =
∑

distinct x

fMSx (v) =
∑

distinct x

x · fSx (v). (7)

We use an unweighted frequency oracle (AFO, f̄Sx) to en-

code t[D] = v in each Sx . We can then approximate fMS (v)
with the estimator f̄M by combining the frequency estimates:

f̄MS (v) =
∑

distinct x

x · f̄Sx (v), (8)

Example 3.1. Consider such a query against T in Table 1:

SELECT SUM(Purchase) FROM T WHERE State = NY

The answer is 120 + 100 + 100 + We have defined S120 =

{t1} and S100 = {t2, t3, t4}. The frequency of “NY” in S120,
fS120
(NY) = 1, and, in S100, fS100

(NY) = 2. Thus, the answer
can be also calculated 120 × 1 + 100 × 2 + . . ., and to estimate
the answer, we can estimate fS120

(NY) and fS100
(NY) instead.

Proposition 4 (Weighted Frequency Oracle). Mechanism
(AFO, f̄

M) is ϵ-LDP. For a set of users S and a value v ∈ D,
f̄MS (v) is an unbiased estimator of fMS (v). LetM

2

S =
∑

t ∈S t[M]
2

andM2

S (v) =
∑

t ∈S∧t [D]=v t[M]
2. The error is

Err(f̄MS (v)) = E
[(

f̄MS (v) − fMS (v)
)

2

]
=

4M2

Se
ϵ

(eϵ − 1)2
+M2

S (v)

≤
M2

S (e
ϵ + 1)2

(eϵ − 1)2
= O

(
|S |∆2

ϵ2

)
when ϵ is small,

where ∆ is the range ofM , i.e., ∆ = max(M) −min(M). More-
over, estimation errors for two different values are additive:

Var
[
f̄MS (u) + f̄MS (v)

]
= Var

[
f̄MS (u)

]
+ Var

[
f̄MS (v)

]
.

Note that the above result does not depend on how large

or how small each Sx is; in an extreme case, even if every

distinct value of measureM appears only once (|Sx | = 1 for

each x), we still have the same expected error.

3.3 Oracle Running on Random Samples
If we ask a random sample of users to report their private

values t[D] using AFO, we can still estimate the weighted

frequency of a value v in this sample using f̄M , and then

scale the estimate up for the whole population – what is the

accuracy loss in this procedure? This twist will be used in

our mechanisms to boost its performance.

More formally, for a set of users S , we first randomly

partition S into S1, . . . , Sk (each user in S randomly chooses

i ∈ {1, . . . ,k}, with equal probability 1/k , and joins Si). We

run the weighted frequency oracle (AFO, f̄
M) only on one

sample, say, S1. For a dimension value v , we can estimate its

weighted frequency fMS (v) in S using f̄M on S1. Define

f̃MS ,1/k (v) = k · f̄
M
S1

(v), (9)

where S1 (or any of S1, . . . , Sk generated above) is a random

sample of S with sampling rate 1/k . f̃MS ,1/k (v) in (9) is an

unbiased estimator of weighted frequency fMS (v), because

E
[
f̄MS1

(v)
]
= E

[
E
[
f̄MS1

(v)
�� S1

]]
= ES1

[
fS1
(v)

]
=

1

k
· fS (v).

The second equality is from the unbiasedness of f̄M and the

third one is due to the sampling process. The error in f̃MS ,1/k (v)
comes from two sources, one due to LDP noise and the other

due to sampling process. We can bound it as follows.

Proposition 5 (Accuracy Loss on Samples). f̃MS ,1/k (v) is
an unbiased estimator of fMS (v), and the error is bounded as

Err(f̃MS ,1/k (v)) =
4kM2

Se
ϵ

(eϵ − 1)2
+ (2k − 1)M2

S (v)

≤
2kM2

S (e
2ϵ + 1)

(eϵ − 1)2
= O

(
k |S |∆2

ϵ2

)
when ϵ is small,

where ∆ is the range ofM , i.e., ∆ = max(M) −min(M).

3.4 Answering MDA via LDP Marginals
Mechanisms to estimate LDP marginals [8, 30, 41] focus on

COUNT queries. However, they can be adapted to handle

MDA queries via a transition that is similar to (7).

(AMG, P̄MG): To answer an MDA query QT (F(M),C) in (3),

we first partition T by measureM into sub-tables Tx = {t ∈
T | t[M] = x}. We use marginals estimated under LDP to

count how many tuples inTx satisfy the predicate C as n̄x by

summing up cells in the marginal on dimensions in C. For a
SUM query QT , its answer can be estimated as

∑
x x · n̄x .

Let’s consider the SUM query in Example 1.1. We partition

T by Purchase. In a sub-table, e.g.,T$100, estimate themarginal

SELECT COUNT(∗) FROM T$100 GROUP BY Age, Salary.

Sum up (11 × 101) rows in the above 2-way marginal with

Age ∈ [30, 40] ∧ Salary ∈ [50K, 150K] to obtain n̄$100, which

contributes a term ($100 · n̄$100) in the estimated answer.

Error analysis.We can analyze errors in the abovemarginal-

based solution for data with one sensitive dimension using

Proposition 4. Let D be a sensitive ordinal dimension, and

we want to handle MDA queries with range constraints,

q : SELECT SUM(M) FROM T WHERE D ∈ [l, r].

WepartitionT byM . For each distinctx ∈ M , in the estimated

LDP marginal of Tx on the dimension D, we sum up rows

with D ∈ [l, r], each contributing x in the answer. Since a

1-way marginal can be optimally estimated with a frequency

oracle, the estimated answer to q is equivalent to:∑
distinct x

©«
∑

v ∈[l ,r]

x · f̄Tx (v)
ª®¬ =

∑
v ∈[l ,r]

f̄MT (v). (10)

The error now depends on how many distinct values of

D we have within [l, r]. If D has m distinct values, from

Proposition 4, the error of the above estimation is:

(r − l + 1) · Err(f̄MT) = Θ

(
m |T |∆2/ϵ2

)
(11)

with a linear dependency on r − l + 1 orm.

Suppose there are d sensitive dimensions, each with m
distinct values, the worst-case error in the above solution is

proportional tomd
, as we may need to sum upmd

marginal

rows under range constraints on these dimensions.

In Sections 4-5, we propose new mechanisms to remove

the linear/polynomial dependency onm in the error, via care-

ful query decomposition and privacy-budget partitioning.

Their error is poly-logarithmically dependent onm.

4 MDAWITH ONE PRIVATE DIMENSION
We first focus on one sensitive dimension, and will generalize

our solution for multi-dimensional MDA in Section 5.

7654

L0

L1

L2

L3

t1[D1] = 3 t2[D1] = 6

ID1

t1[Lj] t2[Lj] (j = 0, 1, 2, 3)

1 2 3 8

Figure 2: Hierarchy of intervals and HI mechanism

4.1 Hierarchical-Interval (HI) Mechanism
We propose amechanism (AHI, P̄HI), whose one-dimensional

version is inspired by the structure of a binary search tree,

to ensure that the error is sublinear inm. Similar structures

have also been used by previous work, e.g., [22, 28], to answer
range counting queries in the centralized DP setting.

Hierarchy of intervals. Suppose the ordinal dimension

D has m distinct values, in the order of z1, z2, . . . , zm . We

construct a hierarchical collections of intervals with a fan-
out b, which can be viewed as a perfect b-way tree: each node

corresponds to an interval, and has b children (except leaves),

corresponding to b equally sized subintervals. We assume

m = bh (if not, we can add some dummy values in D).
Level 0 in the hierarchy is L0 = {[z1, zm]}. [z1, zm] cor-

responds to the root, and is recursively partitioned into b
equally sized subintervals until we reach the leaves, i.e., in-
tervals with unit length Lh = {[z1, z1], . . . , [zm, zm]}. There
are b j intervals on level j, each coveringm/b j values:

L j = {[z(i−1)·m/b j+1
, zi ·m/b j] | i = 1, 2, . . . ,b j }.

Let ID = {L0, . . . ,Lh} be the whole hierarchy (h = logbm).

Example 4.1. Consider an ordinal dimension D1 with 8

values. Figure 2 shows its hierarchical intervals (with b = 2).

Query rewritingwithHI. In a queryq = QT (SUM(M),D ∈
[l, r]), the interval [l, r] can be decomposed into 2(b−1) logbm
(or less) disjoint intervals, I 1, . . . , Ip , in the hierarchy ID . q
can be decomposed into sub-queries on these intervals. If

every user tells the server whether her/his dimension value

is in each interval in ID , in an LDP way, each sub-query

QT (SUM(M),D ∈ I i) can be estimated (i = 1, 2, . . . ,p). The
query q can be answered by assembling estimates for the

p ≤ 2(b − 1) logbm sub-queries, and thus with a polyloga-

rithmic factor in the error. Following is a rewriting example.

Example 4.2. Assume that the ordinal dimension D1 in
Table 1 takes values in {1, 2, . . . , 8}. Consider the query

q1 : SELECT SUM(M1) FROM T WHERE D1 ∈ [2, 7].

[2, 7] is decomposed into 4 intervals (the blue ones in Figure 2);
correspondingly, q1 is rewritten as the sum of four queries with
“D1 ∈ [2, 2]”, “D1 ∈ [3, 4]”, “D1 ∈ [5, 6]”, and “D1 ∈ [7, 7]”.

In a naive implementation of the above strategy, each user

sends Θ(m) LDP reports (as there are Θ(m) intervals in ID).
We will show that, in fact, Θ(logm) LDP reports suffice.

The main idea is that the dimension value t[D] of a user
t belongs to exactly h + 1 intervals in ID , one on each level:

suppose t[D] belongs to I ∈ L j
on level j, we let t[L j] =

I . We only need h frequency oracles, each encoding and

collecting the interval t[L j] on level j, for j = 1, . . . ,h.
In general, [l, r] is partitioned into p disjoint intervals:

[l, r] = I 1 ∪ . . . ∪ Ip – suppose I i is on level Lki
. We rewrite

QT (SUM(M),D ∈ [l, r]) =
p∑
i=1

QT (SUM(M),D ∈ I i) (12)

where each sub-queryQT (SUM(M),D ∈ I i) can be estimated

by the weighted frequency oracle on Lki
as f̄MT (I

i).

Example 4.3. In the hierarchy of D1 in Figure 2, a tuple t1
with t1[D1] = 3 belongs to one interval on each level (those
crossed by the dashed arrowed line): t1[L3] = [3, 3], t1[L2] =

[3, 4], t1[L1] = [1, 4], and t1[L
0] = [1, 8]. The first three

intervals are encoded and collected using frequency oracles.
As in Example 4.2, q1 is decomposed into four sub-queries:

the one with “D1 ∈ [3, 4]” can be estimated with f̄MT ([3, 4]).

HI mechanism (AHI, P̄HI). On the client side, the privacy

budget is partitioned evenly for the h levels L1, . . . ,Lh
, and

the interval a tuple t belongs to on each level (i.e., t[Li]) is

encoded using AFO in a weighted frequency oracle.

On the server, for a query q, we estimate each sub-query

QT (SUM(M),D ∈ I i) in (12) using the weighted frequency

estimator f̄M (I i), and sum them up as an estimation to q.

P̄HI(q) =

p∑
i=1

f̄MT (I
i). (13)

Theorem 6 (1D-HI). i)AHI satisfies ϵ-LDP. ii) P̄HI(q) is an
unbiased estimator of q, and the expected squared error

Err(P̄HI(q)) ≤ 2(b − 1) logbm ·M
2

T ·
(eϵ/logb m + 1)2

(eϵ/logb m − 1)2
(14)

= O

(
n∆2

log
3m

ϵ2

)
when ϵ is small,

where n = |T | is the number of users, ∆ is the range of M ,
M2

T =
∑

t ∈T t[M]
2, and the constant b is the fan-out.

4.2 Better Accuracy via Level Partitioning
In AHI, the privacy budget ϵ is partitioned evenly for the

h levels. An alternative is to randomly partition the users

into h groups instead of partitioning the privacy budget:

users in a group S j , corresponding to level j , can be regarded

as a random sample with sampling rate 1/h, and spend all

the privacy budget on only level j. A bit surprisingly, this

Client side: Encode private dimension t[D].

1: Randomly pick j ∈ {1, 2, . . . ,h} with equal prob.

2: Suppose t[D] is in interval I ∈ L j
: t[L j] ← I ;

3: Create LDP report:

AHIO(t) ←
(
j,Aϵ

FO(t[L
j])

)
. (16)

Server side: MDA query q = QT (SUM(M),D ∈ [l, r]).

1: Let user groups S j ← ∅ for j = 1, . . . ,h.
2: For each user t . if we get

(
j,Aϵ

FO(t[L
j])

)
:

3: S j ← S j + {t};

4: Decompose [l, r] into p disjoint intervals I 1 ∈ Lk1
, I 2 ∈

Lk2
, . . . , Ip ∈ Lkp

in the hierarchy ID .
5: For each i = 1, 2, . . . ,p:

6: Estimate fMT (I
i) as f̃MT ,1/h(I

i) (using (9)):

f̃MT ,1/h(I
i) = h · f̄MSki (I

i); (17)

7: Output an estimation to q as:

P̄HIO(q) =

p∑
i=1

f̃MT ,1/h(I
i). (18)

Algorithm 1: 1D HI Optimized (AHIO, P̄HIO)

alternative has the accuracy boosted by orders of magnitude.

The intuition behind this is: we gain accuracy by spending

more privacy budget on each level, but lose accuracy as each

level is supported for a random sample of users (refer to

Proposition 5 in Section 3.3); as long as the accuracy gain

overcomes the loss, the overall accuracy can be boosted.

Query q = QT (SUM(M),D ∈ [l, r]) is decomposed in the

same way as (12). For a sub-query QT (SUM(M),D ∈ I i) in
(12), where I i is on level ki , we refer to the user group Ski
that corresponds to level ki . As introduced in Section 3.3, we

can run frequency oracles on the random sample Ski , and
scale up the estimation f̄MSki

(I i) by a factor of h, to approxi-

mate the sub-query’s answer. Based on the above idea, we

propose a mechanism (AHIO, P̄HIO) with details described in

Algorithm 1. Its error bound is given in Theorem 7.

Theorem 7 (1D-HIO). i) AHIO satisfies ϵ-LDP. ii) P̄HIO(q)
is an unbiased estimator of q with expected squared error

Err(P̄HI(q)) ≤ 4(b − 1) log
2

bm ·M
2

T ·
(e2ϵ + 1)

(eϵ − 1)2
(15)

= O

(
n∆2

log
2m

ϵ2

)
when ϵ is small,

where n = |T |, ∆ is the range ofM , andM2

T =
∑

t ∈T t[M]
2.

The HIO mechanism boosts the accuracy by a factor of

logbm in comparison to the HImechanism (14).We useb = 5

in our implementation to minimize RHS of (15).

5 MULTIPLE PRIVATE DIMENSIONS
We now introduce how to handle multiple private dimen-

sions inMDAqueries.Wewill first focus on the casewhenwe

have multiple ordinal dimensions and range constraints in

an MDA query, for which we extend our HI/HIO mechanism

in Section 4 to a multi-dimensional one. We will then intro-

duce how to handle a combination of ordinal and categorical

dimensions. Finally, when there are many sensitive dimen-

sions in the data model and the worst-case error blows up,

we will introduce a split-and-conjunction mechanism which

is designed to handle low-dimensional queries.

5.1 Multiple Ordinal Dimensions
In order to extend our HI mechanism for multiple dimen-

sions, let’s first introduce a multi-dimensional hierarchy of

intervals, which naturally generalizes the one-dimensional

hierarchy in Section 4.1. An MDA query can be decomposed

into a polylogarithmic (in dimension cardinalities) number

of sub-queries in this hierarchy, and they together are aggre-

gated to answer the original MDA query without blowing

up the worst-case error. Similar user-partitioning techniques

as in Section 4.2 can be applied to boost the accuracy.

5.1.1 Multi-dimensional Hierarchical Intervals. Recall that
ID = {L0

D , . . . ,L
h
D } is the hierarchy for dimension D: level

0 is L0

D = {[z1, zm]} and L
j+1

D is obtained by partitioning

each interval inL
j
D into b equally sized subintervals. W.l.o.g.,

assume each dimension has the same cardinalitym = bh (i.e.,
distinct values) for the simplicity of explanation.

Two-dimensional hierarchy. Let’s first focus on two di-

mensions. Define a 2-dim hierarchy to be:

ID1
⊗ ID2

=
{
L

j1
D1

× L
j2
D2

��� 0 ≤ j1, j2 ≤ h
}
.

Each L
j1
D1

× L
j2
D2

is called a 2-dim level. There are a total of
(h + 1)2 2-dim levels in a 2-dim hierarchy. Each pair ⟨I1, I2⟩ ∈

L
j1
D1

×L
j2
D2

is called a 2-dim interval. We will write I1I2 . . . Id
as a shorthand for ⟨I1, I2, . . . , Id ⟩ in the rest part.

Consider a tuple t , for each j1 and j2, t[D1] and t[D2] be-

long to exactly one interval I j1
1
∈ L

j1
D1

and one I j2
2
∈ L

j2
D2

,

respectively. Conceptually, we augment t with a new dimen-
sion “L

j1
D1

× L
j2
D2

” for the corresponding 2-dim level: let

t[L j1
D1

× L
j2
D2

] = I j1
1
I j2
2
,

which means that t[D1] ∈ I
j1
1
∧ t[D2] ∈ I

j2
2
. Indeed, we have

QT (SUM(M),D1 ∈ I
j1
1
∧ D2 ∈ I

j2
2
)

=QT (SUM(M),L
j1
D1

× L
j2
D2

= I j1
1
I j2
2
) = fMT (I

j1
1
I j2
2
).

In an MDA query q = QT (SUM(M),D1 ∈ [l1, r1] ∧ D2 ∈

[l2, r2]), [l1, r1] can be decomposed intop1 disjoint intervals in

L0
D1

L1
D1

L2
D1

L3
D1

t[D1] = 3

L0
D2

L1
D2

L2
D2

L3
D2

⊗ L2
D1

L1
D2

×ID1
ID2

t[D2] = 5

t[L2
D1

× L1
D2
]

, L2
D1

× L2
D2
, . . . }= {. . . ,

×

1 2 3 4 5 6 7 8 81 2 3 4 5 6 7

Figure 3: 2D hierarchy of intervals, query decomposition, and HI mechanism

ID1
: [l1, r1] = I 1

1
∪ . . .∪I

p1

1
, and similarly [l2, r2] = I 1

2
∪ . . .∪I

p2

2
.

We can then decompose q into p1 × p2 sub-queries:

QT (SUM(M),D1 ∈ [l1, r1] ∧ D2 ∈ [l2, r2])

=
∑

1≤a≤p1,1≤b≤p2

QT (SUM(M),D1 ∈ I
a
1
∧ D2 ∈ I

b
2
)

=
∑

1≤a≤p1,1≤b≤p2

fMT (I
a
1
Ib
2
). (19)

As p1,p2 ≤ 2(b − 1) logbm, there are O(log
2m) sub-queries.

Each sub-query can be estimated as f̄MT (I
a
1
Ib
2
) using aweighted

frequency oracle on the corresponding 2-dim level, and then

we just need to sum up these estimates to answer q.

Example 5.1. Suppose the two ordinal dimensions D1 and
D2 take values in {1, 2, . . . , 8}. A 2-dim hierarchy on them
is shown in Figure 3. Their individual 1-dim hierarchies ID1

and ID2
are on the left, each with 4 levels. The 2-dim hierarchy

is a Cartesian product of the two, with 4 × 4 2-dim levels. In
particular, the 2-dim level, L2

D1

× L1

D2

, depicted on the right,
is a Cartesian product of two 1-dim interval sets L2

D1

and L1

D2

,
with 4 × 2 2-dim intervals, each of which is a pair of 1-dim
intervals, with one from L2

D1

and the other from L1

D2

. For
example, the 4th one (top-to-bottom) in the figure is [3, 4][5, 8].

Consider a tuple t with t[D1] = 3 and t[D2] = 5. It belongs
to the above 2-dim interval as t[D1] ∈ [3, 4] and t[D2] ∈ [5, 8].
Thus, the augmented dimension t[L2

D1

× L1

D2

] = [3, 4][5, 8].
Consider the following MDA query:

q2 :SELECT SUM(M1) FROM T

WHERE D1 ∈ [2, 7] AND D2 ∈ [3, 8]

As shown in Figure 3, [2, 7] can be partitioned into 4 intervals in
ID1

(blue ones), and [3, 8] partitioned into 2 in ID2
(green ones).

Thus, q2 can be decomposed into 4× 2 disjoint sub-queries that
are to be answered using weighted frequency oracles – two are
on the 2-dim levelL2

D1

×L1

D2

: one with “D1 ∈ [3, 4] ANDD2 ∈

[5, 8]” and one with “D1 ∈ [5, 6] AND D2 ∈ [5, 8]”.

d-dim hierarchy. The construction of a 2-dim hierarchy

can be easily extended for more dimensions. Define:

ID1
⊗ . . . ⊗ IDd =

{
L

j1
D1

× . . . × L
jd
Dd

��� 0 ≤ j1, j2, . . . , jd ≤ h
}

to be a hierarchy of d-dim levels (there are (h + 1)d levels).

Each I1I2 . . . Id ∈ L
j1
D1

× . . . × L
jd
Dd

is a d-dim interval.
An MDA query q = QT (SUM(M),D1 ∈ [l1, r1]∧ . . .∧Dd ∈

[ld , rd]) can be thus decomposed intop1×. . .×pd sub-queries:

QT (SUM(M),D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd])

=
∑

1≤i1≤p1, ...,1≤id ≤pd

fMT (I
i1
1
I i2
2
. . . I idd), (20)

where p1,p2, . . . ,pd ≤ 2(b − 1) logbm.

5.1.2 Multi-dimensional HI Mechanism (AHI, P̄HI). On the

client side, an augmented dimension tells which interval

a user belongs to in each d-dim level. We use AFO in a

weighted frequency oracle to encode the (h + 1)d augmented

dimensions, each of which uses a privacy budget of ϵ/(h+1)d .

On the server side, from how q is rewritten in (20), we can

estimate the weighted frequency of each d-dim interval and

sum up the estimates to approximate the answer to q:

P̄HI(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̄MT (I
i1
1
I i2
2
. . . I idd). (21)

It is formally described in Appendix B (Algorithm 4).

Theorem 8 (HI). i) AHI satisfies ϵ-LDP. ii) P̄HI(q) is an
unbiased estimator of q with expected squared error

Err(P̄HI(q)) ≤ (2(b − 1) logbm)
dqM2

T ·
(eϵ/(logb m+1)d + 1)2

(eϵ/(logb m+1)d − 1)2

= O

(
n∆2

log
dq+2d m

ϵ2

)
when ϵ is small, (22)

where n = |T | is the number of users, d (dq) is the number
of sensitive dimensions (in the query q), ∆ is the range of M ,
M2

T =
∑

t ∈T t[M]
2, and the constant b is the fan-out.

5.1.3 Boosting Accuracy via User Partitioning. Similar to the

1-dim case in Section 4.2, HI’s accuracy can be boosted by ran-

domly partitioning users by levels. On the client, a user picks

one of the (h + 1)d d-dim levels randomly, and encodes only

the d-dim interval in this level with privacy budget ϵ . On the

server, we estimate the weighted frequency fMT (I
i1
1
I i2
2
. . . I idd)

in (20) with LDP reports in the corresponding level from a

random 1/(h + 1)d portion of users (as in Section 3.3).

Client side: Encode dimensions t[D1], . . . , t[Dd].

1: Randomly pick (j1, . . . , jd) ∈ {0, 1, . . . ,h}
d
.

2: Suppose t[Di] is in interval Ii ∈ L
ji
Di

(i = 1, . . . ,d):

let t[L j1
D1

× . . . × L
jd
Dd
] ← I1I2 . . . Id .

3: Create LDP report:

AHIO(t) ←
(
(j1, . . . , jd),A

ϵ
FO(t[L

j1
D1

× . . . × L
jd
Dd
])

)
. (23)

Server side: MDA query q = QT (SUM(M),
D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd]).

1: Let S(j1, ..., jd) ← ∅ for each (j1, . . . , jd) ∈ {0, 1, . . . ,h}
d
.

2: For each user t , if we get ((j1, . . . , jd),A
ϵ
FO(·)):

3: S(j1, ..., jd) ← S(j1, ..., jd) + {t};
4: For i = 1 to d do:

5: Decompose [li , ri] intopi disjoint intervals [li , ri] →
I 1

i ∪ I
2

i ∪ . . . ∪ I
pi
i in the hierarchy IDi ;

6: For each (i1, . . . , id) ∈ {1, . . . ,p1} × . . . × {1, . . . ,pd }:

7: Estimate fMT (I
i1
1
I i2
2
. . . I idd) as (suppose I

ik
k ∈ L

jk
Dk

):

f̃MT ,1/(h+1)d
(I i1

1
I i2
2
. . . I idd)

= (h + 1)d · f̄MS(j
1
, . . ., jd)
(I i1

1
I i2
2
. . . I idd); (24)

8: Output an estimation to q as:

P̄HIO(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̃MT ,1/(h+1)d
(I i1

1
I i2
2
. . . I idd). (25)

Algorithm 2: d-dim HI Optimized (AHIO, P̄HIO)

The resulting mechanism (AHIO, P̄HIO) is in Algorithm 2.

Theorem 9 shows that the gain from a larger privacy budget

spent on the picked level per user overcomes the error due

to running weighted frequency oracles on samples. P̄HIO has

a significant accuracy boost over P̄HI.

Theorem 9 (HIO). i) AHIO satisfies ϵ-LDP. ii) P̄HIO(q) is
an unbiased estimator of q with expected squared error

Err(P̄HIO(q)) (26)

≤(2(b − 1)(logbm + 1))dq (logbm + 1)dM2

T ·
(e2ϵ + 1)

(eϵ − 1)2

=O

(
n∆2

log
dq+d m

ϵ2

)
when ϵ is small,

where n = |T | is the number of users, d (dq) is the number
of sensitive dimensions (in the query q), ∆ is the range of M ,
M2

T =
∑

t ∈T t[M]
2, and the constant b is the fan-out.

5.2 Ordinal and Categorical Dimensions
A categorical dimension D can be regarded as a hierarchy

with two levels: L0

D = {∗} and L
1

D = {[v1], [v2], . . . , [vc]},

where ‘∗’ means ‘anything’, andv1,v2, . . . ,vc are distinct val-
uesD. As there are only point constraints onD, e.g., “D = vi ”,
all the intermediate levels are unnecessary. Such a categorical
hierarchy can be incorporated into the multi-dimensional

hierarchy of intervals introduced in Section 5.1.1. Refer to

Appendix C for how our HIO mechanism is extended.

5.3 Split-and-Conjunction: When the
Dimensionality is High

HI and HIO mechanisms have errors exponentially depend-

ing on both the number of dimensions in the query (dq) and
the total number of sensitive dimensions in the data model

(d). On the client side, they partition privacy budget ϵ or

users into Θ(log
d m) portions, one for each d-dim level, and

thus may introduce too much LDP noise for large d . When

dq ≪ d , there is room for improvement: whether it is possi-

ble to remove the exponential dependency on d .
We introduce our split-and-conjunction (SC) mechanism in

this section. Instead of encoding a tuple on the d-dim hierar-

chy, a user maintains d one-dim hierarchies, on which the d
dimensions are encoded and reported independently. The pri-

vacy budget ϵ is thus partitioned into Θ(d logm) portions (d
dimensions each withΘ(logm) one-dim levels). The question

is, while all dimensions are reported independently, whether

we can estimate how many rows have, e.g., t[D1] = v1 and
t[D2] = v2 conjunctively. To this end, we will first intro-

duce a new class of estimators in frequency oracles, called

conjunctive estimators as a building block of SC.

5.3.1 Conjunctive Estimators f̂ and f̂M . Let D1 and D2 be

two sensitive dimensions. A conjunctive weighted frequency
query asks, for a set of users S , and v1 ∈ D1 and v2 ∈ D2, the

total measure of users with t[D1] = v1 and t[D2] = v2, i.e.,
weighted frequency fMS (v1v2) =

∑
t ∈S∧t [D1]=v1∧t [D2]=v2

t[M]
of ⟨v1,v2⟩ on the domain D1 ×D2, or unweighted frequency

fS (v1v2) = | {t ∈ S | t[D1] = v1 ∧ t[D2] = v2} |.

Given two sets of independently-generated LDP reports

{AFO(t[D1])}t ∈S and {AFO(t[D2])}t ∈S , we want to estimate

fMS (v1v2), for any v1 ∈ D1 and v2 ∈ D2. More generally, we

can estimate fMS (v1 . . .vk) from reports on k dimensions. For

this purpose, we introduce conjunctive estimators f̂ and f̂M .

States and transition.Recall that an LDP reportAFO(t[Di])

= ⟨H ,y⟩ is a pair of a randomhash functionH and a randomly

perturbed value y (refer to Section 3.2.1 and Appendix A).

We define two indicator variables for the query term vi :

input state: Bi (t) =

{
0, if t[Di] , vi

1, if t[Di] = vi
and (27)

output state: Ai (t) =

{
0, if H (vi) , y

1, if H (vi) = y
(for i = 1, 2). (28)

Input state Bi (t) is deterministic and depends onvi ; output
state Ai (t) is a random variable and depends on both vi and
randomness in AFO. We can define the following transition
probabilities (with their values calculated in Appendix A):

Pb→a , Pr [Ai (t) = a | Bi (t) = b] (for a,b ∈ {0, 1}).

A tuple with two dimensions has 4 possible 2-dim input
states: “11” (meaning B1(t) = 1 ∧ B2(t) = 1), “01”, “10”, and

“00”. After applyingAFO, the LDP report has 4 possible 2-dim
output states “11” (meaning A1(t) = 1 ∧A2(t) = 1), “01”, “10”,

and “00”. We can derive 2-dim transition probabilities:

Pb1b2→a1a2
(for a1,a2,b1,b2 ∈ {0, 1})

, Pr [A1(t) = a1 ∧A2(t) = a2 | B1(t) = b1 ∧ B2(t) = b2]

= Pb1→a1
· Pb2→a2

(as A1(t) and A2(t) are independent),

since dimensions are encoded independently.

Estimation via transition matrix. For a set S of users and

their LDP reports {AFO(t[D1])}t ∈S and {AFO(t[D2])}t ∈S , we

observe the frequency of each 2-dim output state. With them,

we can estimate the frequencies of input states via transition

probabilities, and in particular, the frequency of 2-dim input

state “11” is equal to unweighted frequency fS (v1v2).

The frequencies of input states are, forb1b2 = 11, 01, 10, 00:

bS (b1b2) = |{t ∈ S | B1(t) = b1 ∧ B2(t) = b2}|.

And those of output states are, for a1a2 = 11, 01, 10, 00:

aS (a1a2) = |{t ∈ S | A1(t) = a1 ∧A2(t) = a2}|.

Consider the corresponding frequency vectors of input

and output states, b = [bS (11), bS (01), bS (10), bS (00)]⊤ and

a = [aS (11), aS (01), aS (10), aS (00)]⊤. We can establish the

relationship between b and a through transition matrix P:

P·b ,
©«
P11→11 P01→11 P10→11 P00→11

P11→01 P01→01 P10→01 P00→01

P11→10 P01→10 P10→10 P00→10

P11→00 P01→00 P10→00 P00→00

ª®®®¬
©«
bS (11)

bS (01)

bS (10)

bS (00)

ª®®®¬ = E[a] ,

from the property of P and the linearity of expectation. By

observing the frequency vector a, we can estimate b as:

ˆb = [ˆbS (11), ˆbS (01), ˆbS (10), ˆbS (00)]⊤ = P−1 · a (29)

and, in particular, f̂S (v1v2) = ˆbS (11). (30)

From the linearity of expectation, we have E[ˆb] = P−1 ·E[a] =
P−1P · b = b, and thus E[f̂S (v1v2)] = bS (11) = fS (v1v2).

Similar to (8), for the weighted case, we can derive

f̂MS (v1v2) =
∑

distinct x

x · f̂Sx (v1v2), (31)

where Sx = {t ∈ S | t[M] = x}. Its unbiasedness is from f̂ ’s.

In order to extend f̂ and f̂M from two dimensions to d
dimensions, we extend 2-dim input/output states to d-dim
input/output states. Correspondingly, their frequencies are:

bS (b1 . . .bd) = |{t ∈ S | B1(t) = b1 ∧ . . . ∧ Bd (t) = bd }|,

aS (a1 . . . ad) = |{t ∈ S | A1(t) = a1 ∧ . . . ∧Ad (t) = ad }|.

The transition matrix P is a 2
d ×2

d
one, as there are 2

d
states.

The errors in f̂ and f̂M can be bounded as follows.

Proposition 10 (Conjunction of Oracles). Run an ϵ-LDP
encoderAϵ

FO on each of the d dimensions independently (over-
all, the procedure is (dϵ)-LDP). For anyk dimensions and values
v1, . . . , vk on them, we have unbiased estimators f̂S and f̂MS of
conjunctive unweighted and weighted frequencies, respectively,

with error Err(f̂S (v1 . . .vk)) = O

(
|S |/ϵ2k

)
and

Err(f̂MS (v1 . . .vk)) = O

(
|S |∆2/ϵ2k

)
,

where ∆ = max(M) −min(M). If we guarantee ϵ-LDP across
all the d dimensions, each dimension gets a privacy budget
ϵ/d , and thus, the error of f̂MS is O

(
|S |∆2/(ϵ/d)2k

)
.

5.3.2 Split-and-Conjunction (SC) Mechanism. We describe

our SC mechanism (ASC, P̄SC) formally in Algorithm 5 in

Appendix D. On the client side, a user reports each one-

dim interval s/he belongs to (one per level) in each one-

dim hierarchy IDi using AFO independently, with a privacy

budget of ϵ/(dh). The estimator on the server side is the same

as the one in HI mechanism, except that, instead of f̄M , the

conjunctive estimator f̂M (from Section 5.3.1) is used as we

have no access to the (LDP version of) d-dim hierarchy. Error

in the estimated answer to an MDA query is exponentially

dependent on only dq (number of private dimensions in q).

Theorem 11 (SC). i) ASC satisfies ϵ-LDP. ii) P̄SC(q) is an
unbiased estimator of q with expected squared error

Err(P̄SC(q)) = O

(
n∆2d2dq

log
3dq m

ϵ2dq

)
when ϵ is small, (32)

where n = |T | is the number of users, d (dq) is the number of
sensitive dimensions (in the query q), and ∆ is the range ofM .

5.4 Performance Comparison
The accuracy of mechanisms introduced depends on some

parameters, e.g., number/sizes of dimensions, in different

ways. We can identify the analytical turning points of their

performance, which will be verified experimentally later.

Marginal/FO v.s. HIO. Worst-case errors in the marginal

or FO-based solution (introduced in Section 3.4) depend on ϵ ,
|T |, and ∆ in the same way as errors in HIO asymptotically.

Consider the marginal with all the dimensions in the pred-

icate. Define the volume vol(q) of a query q to be the ratio of

marginal rows satisfying its predicate to all marginal rows.

A 1-dim query with a range constraint D ∈ [l, r] has volume

vol(q) = (r−l+1)/m, From (11) in Section 3.4 and Theorem 7,

HIO is better than the marginal/FO-based solution if

(r − l + 1) ≥ Θ(log
2m) ⇔ vol(q) ≥ Θ(log

2m/m). (33)

If there are d sensitive dimensions, from Section 3.4 and

Theorem 9, HIO is better than the marginal-based solution if

vol(q) ≥ Θ(log
2d m/md) (when dq = d). (34)

HIO v.s. SC. Comparing Theorem 11 to Theorem 9, SC re-

moves d from the power of logm in the error, but incurs an

additional term d2dq
. Only when (from Theorems 9 and 11)

(d logm/ϵ)2dq ≤ Θ(log
d m/ϵ2), (35)

i.e., dq is small enough relative to d , SC is better than HIO.

Please refer to Appendix F for a comparison of comlexity

of different mechanisms we have introduced so far.

6 EVALUATION
We evaluate our mechanisms in various settings. HIO per-

forms the best most of time, with a normalized absolute error

less than 5% in most queries, and a relative error less than

5% if the predicate is not too selective; SC performs better

in high-dimensional settings if the number of dimensions in

the query is much less than the total number of dimensions.

We also conduct a case study in an e-commerce application.

Mechanisms are implemented in Python and evaluated on

an Intel Xeon E5 2682 v4 PC with 64GB memory.

Datasets. We conduct experiments on three datasets:

• Adult [11]: A dataset from the UCI ML repository with

around 45 thousand tuples after removing missing values.

• IPUMS [31]:AUS census dataset from the IPUMS repository.

It contains around 3 million records.

• A real dataset with 150million records from an e-commerce

application. Details are deferred to Section 6.2.3.

Experiment settings. We compare the four mechanisms:

•MG: Processing MDA queries with the state-of-the-art LDP

marginal-releasing technique [41] (described in Section 3.4).

• HI: Hierarchical-interval mechanism (AHI, P̄HI).

• HIO: HI Optimized (AHIO, P̄HIO).

• SC: Split-and-conjunction (SC) mechanism (ASC, P̄SC).

We use fan-out b = 5 for HI, HIO, and SC.

We test SUM/COUNT/AVG queries (SUM by default).

Error measures. We use two error measures:

• Mean Normalized Absolute Error MNAE = AVGq(
|P̄(q)−q |

ΣS

),

where the absolute error is normalized by ΣS =
∑

t |t[M]| to
[0, 1]. It is used for SUM queries, and measures how large

errors are relative to the maximum possible answer (ΣS).

• Mean Relative Error MRE = AVGq(
|P̄(q)−q |

|P̄(q) |). It is used for

SUM/COUNT/AVG queries, and measures how large the

error is relative to the true answer for each query.

In Section 6.1, we use MNAE for SUM queries to verify

theoretical results and compare the mechanisms, as they all

have theoretical guarantees about absolute errors, which are

independent of (or not dominated by) query sizes/answers.

In Section 6.2, we use relative error MRE to demonstrate

the utility of ourmechanisms for SUM/COUNT/AVG queries.

Queries are partitioned into groups by selectivity of their

predicates: in each group, queries have similar sizes and an-

swers, and thus MRE’s for different queries are comparable.

For each data point in every figure, we test 30 random

queries and plot their MNAE or MRE (Y-axis) with 1-std.

6.1 Experimental Comparison
We compare different mechanisms for varying factors that

potentially influence the accuracy: i) query volume vol(q)
(defined in Section 5.4), ii) number of dimensions, iii) domain

sizes (cardinalities of dimensions), iv) data size, and v) ϵ .

6.1.1 One Ordinal Dimension. We start from MDA queries

with one sensitive ordinal dimension: q = QT (SUM(M),D ∈
[l, r]). We create the ordinal dimension with sizem = 1024

by bucketizing a numeric column of the table.

Varying query volume. Figures 4(a)-4(b) show the MNAE

for different query volumes onAdult and IPUMS (1M sample).

The interval [l, r] is generated randomly with r − l + 1 =

m · vol(q). The accuracy of MG deteriorates quickly as vol(q)
increases. Only when vol(q) is as small as 0.01, MG is better

than HIO (the errors of both are small, too); vol(q) = 0.1
is the break-even point, which conforms with our analysis

in Section 5.4; when vol(q) = 0.8, error of MG is ∼ 3× that

of HIO. The performance of different methods on IPUMS is

better than that on Adult, because the data size is larger.

Varying data size. We sample 0.1, 0.2, 0.5, 2 and 3 million

rows from IPUMS (without replacement), and test queries

with volume 0.25. As can be seen in Figure 4(c), the larger

the dataset, the better the estimation accuracy, which is con-

sistent with our theorems. HIO always performs best.

Varying privacy budget ϵ . Figure 5 shows performance of

different mechanisms on IPUMS for varying ϵ . All methods

benefit from larger ϵ , with HIO performing the best.

In the rest of Section 6.1, we will use vol(q) = 0.25, data

size |T | = 1 million, and ϵ = 2, as their default values.

6.1.2 Two Ordinal Dimensions. We create two ordinal di-

mensions on IPUMS with sizesm1 andm2 by bucketizing

numeric columns. Two configurations ofm1 ×m2 are tested:

(a) Adult: vary vol(q) (b) IPUMS 1M: vary vol(q) (c) IPUMS: vary |T | (million)

Figure 4: Comparing different mechanisms: vary query volume and data size (ϵ = 2 and d = 1)

Figure 5: IPUMS 1M: vary ϵ (d = 1)
(a) m1 ×m2 = 256 × 256: vary ϵ (b) m1 ×m2 = 256× 256: vary |T | (million)

Figure 6: Two sensitive ordinal dimensions: vary ϵ and data size (d = 2)

(a) m1 ×m2 = 256 × 256: vary vol(q) (b) m1 ×m2 = 1024 × 64: vary vol(q)
Figure 7: Two sensitive dimensions: vary query volume (ϵ = 2 and d = 2)

Figure 8: Three sensitive dimensions:
vary query volume (ϵ = 2 and d = 3)

256 × 256 and 1024 × 64. The query predicate is the conjunc-

tion of two range constraints: D1 ∈ [l1, r1] ∧ D2 ∈ [l2, r2],

with volume vol(q) = (r1 − ℓ1 + 1) × (r2 − ℓ2 + 1)/(m1 ×m2).

Figures 6-7 shows the results of different mechanisms

for the two configurations, when varying ϵ , |T |, and vol(q).
When vol(q) ≤ 0.01, MG is better, which is consistent with

our analysis in Section 5.4; otherwise, MG is much worse

than HIO for varying ϵ and |T |, as an MDA query with two

range constraints can be decomposed into toomanymarginal

cells, whose errors accumulate when being aggregated.

6.1.3 Three Ordinal Dimensions. We create three sensitive

ordinal dimensions on IPUMS with sizes 256 × 256 × 64.

The query predicate is the conjunction of the two range

constraints. Errors in HI are much larger than those in HIO,

so we omit it here. Figure 8 shows the results of HIO and

MG, when varying vol(q). Errors in MG highly depend on

vol(q), which is consistent with our analysis in Sections 3.4

and 5.4. On the other hand, although more challenging, HIO

can still work, with consistently better estimations than MG.

When vol(q) ≥ 0.5, HIO is at least 3× more accurate.

6.2 Relative Error and Practical Usage
We now focus on the utility of our mechanisms in more

real settings and conduct a case study. We will report their

relative errors (MRE). We consider data models with four or

more sensitive dimensions, but MDA queries may or may not

contain all of them. When there are more than two sensitive

dimensions, HI and MG already give much worse accuracy

than HIO does. Thus, their performances are not reported

here. We will evaluate HIO and SC, as their benefit is more

pronounced when there are more sensitive attributes.

6.2.1 Two Ordinal and Two Categorical Dimensions. We start

with four dimensions in IPUMS (m = 5
4
by default – we can

change domain sizes via finer or looser bucketization).

Sample queries on with varying ϵ . Three sample queries

Q1-Q3 (listed in Appendix G) are processed using HIO, and

their estimated/true answers shown in Figure 9. The relative

errors of estimations are within 5% most of the time. Q3

has the most selective predicate, and error in its estimated

answers is also the largest among the three.

Varying selectivity of predicate. Since our theorems give

guarantees on absolute errors for COUNT and SUM queries

(e.g., Theorem 9), relative errors are highly impacted by sizes

of query answers, which in-turn depend on the selectivities

of predicates. We test COUNT, SUM, and AVG queries with

four types of predicates, 1+0, 1+1, 2+0, and 2+2 (a+b means
a ordinal dimensions and b categorical dimensions), and vary-

ing selectivities. We plot the results in Figure 10 (COUNT
queries have very similar trends to SUM). Their relative er-

ror decreases with increasing selectivity. AVG is estimated

ϵ = 0.5 1 2 5 true

Q1 26.29 24.36 26.81 26.07 26.32

Q2 36.97 32.36 33.77 32.79 33.11

Q3 27.07 34.69 24.22 26.68 27.01

Figure 9: One-run estimations (using HIO)
of sample AVG queries and true answers

(a) SUM queries (b) AVG queries

Figure 10: Relative error of HIO: vary selectivity

(a) ϵ = 2: vary domain size (b) ϵ = 5: vary domain size

Figure 11: Relative error of HIO on 2 (ordinal) + 2 (categorical) dimen-
sions: vary domain sizes and query types (SUM queries)

Figure 12: Relative error of HIO and
SC on 4 (ordinal) + 4 (categorical) di-
mensions: vary query types (ϵ = 5)

ϵ = 0.5 1 2 5 true selectivity

Q4 0.185 0.154 0.178 0.167 0.168 0.049

rel. err. 0.102 0.081 0.061 0.005 - -

Q5 0.157 0.148 0.160 0.170 0.171 0.011

rel. err. 0.086 0.138 0.066 0.008 - -

Table 2: One-run estimated answers in the case study

as SUM/COUNT, and thus, its relative error has a similar

trend. We get reasonable relative errors for both ϵ = 2 and 5.

Varying query type and domain size. For varying domain

sizes and different types of predicates, we evaluate HIO and

SC on queries with selectivity around 0.1. SC is worse in

almost all types (refer to Figure 14 in Appendix G). Errors of

HIO are reported in Figure 11. The errors are larger when the

domains are larger due to the logm term in the error bounds.

Also, queries of types 1+0 and 1+1 can be answered more

accurately than 2+0 and 2+2 queries, which is consistent

with Theorems 9 and 11 – the error increases as dq increases.

6.2.2 Four Ordinal and Four Categorical Dimensions. We

evaluate HIO and SC in the 8-dim setting, for different query

types, and report the results in Figure 12. In this high-dim

setting, according to Section 5.4, SC should give better esti-

mations for queries with fewer dimensions in the predicates.

Empirically, SC performs better than HIO for the almost

all the query types except 2+1. This is consistent with our

analytical results and is the purpose of introducing SC.

6.2.3 Case Study: E-Commerce Analytics. We test HIO for a

real-world e-commerce application, where wewant to collect

delivery information from users in a privacy-preserving way.

The tableT collected via HIO contains more than 150 million

users with four attributes. Attributes about each user’s loca-

tion (Region) and the product s/he bought (Category, Price)
are sensitive dimensions, and the postage fee (Postage) is a
public measure attribute. Suppose we want to analyze the

postage distribution for certain group of users and products

(Q4-Q5 listed in Appendix G), Table 2 gives the answers es-

timated by HIO for different ϵ . With the a large number of

users, the accuracy is much improved.

7 EXTENSIONS AND DISCUSSION

Other space partitioning techniques. Frequency oracles

can be combined with QuadTree to handle MDA queries: in-

tuitively, a user can encode the tree nodes containing her/his

tuple locally via frequency oracles. However, QuadTree in-

curs larger errors, because, to answer a 2D range query, in

the worst case, the entire QuadTree needs to be traversed

and thus too many noisy counts (the number is linear in the

domain size) are added up which amplifies the error.

Coefficients in wavelet transforms (used in Privelet [40])

can be encoded using frequency oracles. Each user randomly

selects a level in the decomposition tree of the wavelet trans-

form, and reports his location on that level. However, as each

level has a different weight in the estimation, it is unclear

how to partition users across levels to optimize the utility.

In general, the idea proposed in this paper can also be used

in other space partitioning techniques. Basically, each user

has a local view of the data structure (with one data point),

and report this structure under LDP. This can be optimized

by having each user randomly select a sub-structure that

has a fixed sensitivity (e.g., a level). The server collects and
adds up the LDP data structure from users, and then uses

the result to answer queries. It is interesting future work to

customize frequency oracles for different space partitioning

techniques and compare them systematically.

Non-sensitive + private dimensions in predicates. If an
MDA query has both private and public dimensions in the

predicate, the server can evaluate the public part first, and,

process the remaining rows/users with estimation processor

P̄ in our mechanisms. For example, in Table 1, the query

SELECT SUM(Purchase) FROM T WHERE

Age ∈ [30, 40] AND OS =Win; ⇔ can be evaluated as:

T
pub
= SELECT ∗ FROM T WHERE OS =Win;

SELECT SUM(Purchase) FROM T
pub

WHERE Age ∈ [30, 40];

whereTpub can be evaluated using a normal query processor,

and the last line is processed with P̄ in our mechanisms.

Handling other aggregation functions. As long as the

aggregation function can be rewritten as SUM() functions,
our mechanisms can be extended to handle it. For example,

STDEV(M) can be computed from SUM(M2), SUM(M), and
COUNT. We can also support aggregations on multiple mea-

sures, e.g., SUM(a ·M1 + b ·M2), as long as M1 and M2 are

public (conceptually, defineM ′ = a ·M1 + b ·M2).

AND-OR expressions.AnMDA query with OR in the pred-

icate can be rewritten as sub-queries with only AND using

the inclusion-exclusion principle. For example,

SELECT SUM(Purchase) FROM T

WHERE Age ∈ [30, 40] OR Salary ∈ [50K, 150K]

can be rewritten as three sub-queries: “. . .Age ∈ [30, 40]” +

“. . . Salary ∈ [50K, 150K]”− “. . .Age ∈ [30, 40]ANDSalary ∈
[50K, 150K]”, each to be estimated using P̄ in our mechanisms.

More generally, an AND-OR expression can be converted

into a disjunctive normal form, and we apply the inclusion-

exclusion principle over clauses as in the above example.

8 RELATEDWORK
We review related topics in both the centralized setting of

differential privacy (DP) [15] and its local model (LDP).

LDPmechanisms. There have been several LDP frequency

oracles [1, 4, 5, 9, 13, 16, 35] proposed. They rely on tech-

niques like hashing (e.g., [35]) and Hadamard transform (e.g.,
[1, 4]) for good utility. LDP frequency oracle is also used in

other tasks, e.g., finding heavy hitters [4, 6, 36], frequent item-

set mining [29, 37], and histogram estimation [24, 34, 38].

LDP mean/median estimation is another relevant line of

works [9, 12, 13], as we also support AVG aggregation func-

tion in MDA queries. However, the settings are different and

orthogonal: we assume that the attribute to be aggregated is

public while the dimensions in the predicate are private.

Releasing marginals privately. Releasing marginal tables

can be viewed as a special case of MDA queries (with only

COUNT aggregations and equality constraints). This task

has been studied exhaustively in the central setting of DP.

Laplace noise [14] can be injected to marginal tables to

ensure DP. There are two ways to boost the accuracy of

released marginal following this line. One is to inject noise

to transformations of the data, e.g., Fourier transform [3] or

wavelet [40], and then reverse the transformations. Consis-

tency across marginals is automatically enforced in this way.

Another one is to carefully select a subset of marginals to in-

ject Laplace noise and compute the rest marginals from them,

with the goal of minimizing the max error in a workload

[10]. There are also approaches based on, e.g., multiplicative

weights [19–21], Chebyshev polynomials [33], maximum

entropy estimation [27], and sampling [7].

There have been several works on releasing marginals

under LDP [8, 30, 41]. [30] generalizes the Expectation Max-

imization algorithm for estimating joint distribution of two

attributes [18] to handle multiple attributes in a marginal.

[8] refines and analyzes how to release marginals via trans-

formations under LDP. [41] adapts the ideas of consistency

enforcement and maximum entropy estimation from mar-

ginal release in the centralized setting [27] to LDP.

Answering range queries. Range counting queries are sup-
ported in the centralized setting of DP via, e.g., hierarchical
intervals [22] (one-dim range queries) or via wavelet [40]

(multi-dimensional range queries). [28] optimizes the hier-

archical intervals in [22] by choosing a proper branching

factor. McKenna et al. [25] propose a method to collectively

optimize errors in high-dimensional queries of a given work-

load under the centralized setting of DP. It will be interesting

to design such workload-dependent techniques under LDP.

In both marginal release and range queries, it has been

noticed that constrained inference could boost the accuracy

while enforcing the consistency across different marginal

tables and intervals (e.g., [3, 10, 22, 28]). Since it is a post-

processing step, all the consistency enforcement techniques

in the centralized setting of DP can be potentially used in

the LDP setting. We leave exploration on how to adapt such

techniques for MDA under LDP to future work.

9 CONCLUSIONS
We study the problem of answering multi-dimensional ana-

lytical (MDA) queries under local differential privacy. Our

approaches do not require a trusted data collector. Sensitive

dimensions are encoded locally to preserve LDP. With LDP

encoders and estimation algorithms, our approaches can an-

swer a class of MDA queries with tight error bounds and

scale well with a large number of dimensions.

Acknowledgments. We thank the anonymous reviewers

for their helpful comments that improved the quality of the

paper. Somesh Jha was partially supported by NSF grants

CCF-FMitF-1836978 and SaTC-Frontiers-1804648 and CCF-

1652140 and ARO grant numberW911NF-17-1-0405. Ninghui

Li was partially supported by NSF grant SaTC-1640374. Any

opinions, findings, conclusions, and recommendations ex-

pressed herein are those of the authors and do not necessarily

reflect the views of the funding agencies.

REFERENCES
[1] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. 2018. Hadamard

Response: Estimating Distributions Privately, Efficiently, and with

Little Communication. CoRR abs/1802.04705 (2018).

[2] Shipra Agrawal and Jayant R. Haritsa. 2005. A Framework for High-

Accuracy Privacy-Preserving Mining. In ICDE.
[3] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank

McSherry, and Kunal Talwar. 2007. Privacy, accuracy, and consistency

too: a holistic solution to contingency table release. In PODS.
[4] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha

Thakurta. 2017. Practical Locally Private Heavy Hitters. In NIPS.
[5] Raef Bassily and Adam D. Smith. 2015. Local, Private, Efficient Proto-

cols for Succinct Histograms. In STOC.
[6] Mark Bun, Jelani Nelson, and Uri Stemmer. 2018. Heavy hitters and

the structure of local privacy. In PODS.
[7] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. 2015. Differen-

tially private high-dimensional data publication via sampling-based

inference. In KDD.
[8] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2018. Mar-

ginal Release Under Local Differential Privacy. In SIGMOD.
[9] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting

Telemetry Data Privately. In NIPS.
[10] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. 2011.

Differentially private data cubes: optimizing noise sources and consis-

tency. In SIGMOD.
[11] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml

[12] John C. Duchi, Michael I. Jordan, andMartin J. Wainwright. 2013. Local

Privacy and Statistical Minimax Rates. In FOCS.
[13] John C. Duchi, Martin J. Wainwright, andMichael I. Jordan. 2013. Local

Privacy and Minimax Bounds: Sharp Rates for Probability Estimation.

In NIPS.
[14] Cynthia Dwork, FrankMcSherry, Kobbi Nissim, and Adam Smith. 2006.

Calibrating noise to sensitivity in private data analysis. In TCC.
[15] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations

of Differential Privacy. Foundations and Trends in Theoretical Computer
Science 9, 3-4 (2014). https://doi.org/10.1561/0400000042

[16] Úlfar Erlingsson, Vasyl Pihur, andAleksandra Korolova. 2014. RAPPOR:

Randomized Aggregatable Privacy-Preserving Ordinal Response. In

CCS.
[17] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant.

2003. Limiting privacy breaches in privacy preserving data mining. In

PODS.
[18] Giulia C. Fanti, Vasyl Pihur, and Úlfar Erlingsson. 2016. Building a RAP-

POR with the Unknown: Privacy-Preserving Learning of Associations

and Data Dictionaries. PoPETs 2016, 3 (2016).
[19] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. 2013.

Privately Releasing Conjunctions and the Statistical Query Barrier.

SIAM J. Comput. 42, 4 (2013).
[20] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A Simple and

Practical Algorithm for Differentially Private Data Release. In NIPS.
[21] Moritz Hardt and Guy N. Rothblum. 2010. A Multiplicative Weights

Mechanism for Privacy-Preserving Data Analysis. In FOCS.
[22] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010.

Boosting the Accuracy of Differentially Private Histograms Through

Consistency. PVLDB 3, 1 (2010).

[23] Noah M. Johnson, Joseph P. Near, and Dawn Song. 2018. Towards

Practical Differential Privacy for SQL Queries. PVLDB 11, 5 (2018).

[24] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. 2016. Discrete

Distribution Estimation under Local Privacy. In ICML.

[25] RyanMcKenna, GeromeMiklau, Michael Hay, and AshwinMachanava-

jjhala. 2018. Optimizing error of high-dimensional statistical queries

under differential privacy. PVLDB 11, 10 (2018).

[26] Frank McSherry. 2009. Privacy integrated queries: an extensible plat-

form for privacy-preserving data analysis. In SIGMOD.
[27] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2014. Priview: prac-

tical differentially private release of marginal contingency tables. In

SIGMOD.
[28] Wahbeh H. Qardaji, Weining Yang, and Ninghui Li. 2013. Understand-

ing Hierarchical Methods for Differentially Private Histograms. PVLDB
6, 14 (2013).

[29] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren.

2016. Heavy hitter estimation over set-valued data with local differen-

tial privacy. In CCS.
[30] Xuebin Ren, Chia-Mu Yu,Weiren Yu, Shusen Yang, Xinyu Yang, Julie A.

McCann, and Philip S. Yu. 2018. LoPub: High-Dimensional Crowd-

sourced Data Publication With Local Differential Privacy. IEEE Trans.
Information Forensics and Security 13, 9 (2018).

[31] Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin

Meyer, Jose Pacas, and Matthew Sobek. 2019. IPUMS USA: Version 9.0

[dataset].

[32] Apple Differential Privacy Team. 2017. Learning with Privacy at Scale.

[33] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. 2012. Faster

Algorithms for Privately Releasing Marginals. In ICALP.
[34] Shaowei Wang, Liusheng Huang, Pengzhan Wang, Yiwen Nie, Hongli

Xu, Wei Yang, Xiang-Yang Li, and Chunming Qiao. 2016. Mutual

Information Optimally Local Private Discrete Distribution Estimation.

CoRR abs/1607.08025 (2016).

[35] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017.

Locally Differentially Private Protocols for Frequency Estimation. In

USENIX Security.
[36] Tianhao Wang, Ninghui Li, and Somesh Jha. 2017. Locally Differen-

tially Private Heavy Hitter Identification. CoRR abs/1708.06674 (2017).

[37] Tianhao Wang, Ninghui Li, and Somesh Jha. 2018. Locally Differen-

tially Private Frequent Itemset Mining. In SP.
[38] Yue Wang, Xintao Wu, and Donghui Hu. 2016. Using Random-

ized Response for Differential Privacy Preserving Data Collection.

In EDBT/ICDT Workshops.
[39] Stanley L. Warner. 1965. Randomized response: A survey technique

for eliminating evasive answer bias. J. Amer. Statist. Assoc. 60, 309
(1965).

[40] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2010. Differen-

tial privacy via wavelet transforms. In ICDE.
[41] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen.

2018. CALM: Consistent Adaptive Local Marginal for Marginal Release

under Local Differential Privacy. In CCS.

A UNWEIGHTED FREQUENCY ORACLE
Details of (AFO, f̄), i.e., OLH from [35], are in Algorithm 3.

Transition probabilities. Consider the input and output

states defined in (27)-(28). From (36), we have

P1→1 , Pr [Ai (t) = 1 | Bi (t) = 1] =
eϵ

eϵ + д − 1

.

From universal hashing and (36), we have

P0→1 , Pr [Ai (t) = 1 | Bi (t) = 0]

= Pr [H (vi) = H (t[Di]) ∧ stay | t[Di] , vi]

+ Pr [H (vi) , H (t[Di]) ∧ flip | t[Di] , vi] ,

http://archive.ics.uci.edu/ml
https://doi.org/10.1561/0400000042

Client side: Encode private dimension t[D].
Parameters: Privacy budget ϵ and hashing parameter д.

1: A user chooses a hash function H ∈ H uniformly at

readom, where H is a universal hash function family

such that every H outputs a value in [д] = {1, 2, . . . ,д}.
2: (Hashing) Let x ← H (t[D]).
3: (Perturbing) Draw y ∈ [д] from the distribution:

Pr [y = i] =

{
eϵ

eϵ+д−1
, for i = x (stay)

1

eϵ+д−1
, for i , x (flip)

. (36)

4: Send AFO(t[D]) ← ⟨H ,y⟩.

Server side: Collect {AFO(t[D])}t ∈S from S .
Answer frequency query fS (v).

1: θ ← 0.

2: For each t ∈ S : suppose AFO(t[D]) = ⟨H ,y⟩
3: If H (v) = y then θ ← θ + 1;

4: Output an estimation to fS (v) as

f̄S (v) =
(
θ −
|S |

д

)
·
(eϵ + д − 1)д

eϵд − eϵ − д + 1

(37)

=
2(eϵ + 1)θ

(eϵ − 1)
−

2|S |

eϵ − 1

when д = eϵ + 1. (38)

Algorithm 3: Unweighted frequency oracle OLH [35]

where “stay” and “flip” are the two events in (36), and thus,

P0→1 =
1

д
·

eϵ

eϵ + д − 1

+
д − 1

д
·

1

eϵ + д − 1

=
1

д
.

Indeed, we have P1→0 = 1 − P1→1 and P0→0 = 1 − P0→1.

B MORE DETAILS OF HI MECHANISM
Our hierarchical-interval (HI) mechanism is in Algorithm 4.

C HI WITH CATEGORICAL DIMENSIONS
For an MDA query with “D = vi ” in the predicate, we would

refer to multi-dim intervals with [vi] from L
1

D ; if D is not in

the predicate, we refer to those with ∗ from L0

D .

Example C.1. Figure 13 shows a 2-dim hierarchy with an
ordinal dimension D1 and a categorical one D3 (State). There
are 4 × 2 2-dim levels. Each 2-dim interval is a pair of an
interval on D1 and a value (or ∗) on D3. Two 2-dim levels,
L2

D1

× L0

D2

and L2

D1

× L1

D2

, are depicted on the right, with
4 × 1 and 4 × 4 2-dim intervals, respectively. Tuple t with
t[D1] = 3 and t[D3] =WA has t[L2

D1

× L0

D2

] = ([3, 4]∗) and
t[L2

D1

×L1

D2

] = ([3, 4]WA) on the two augmented dimensions.
Consider the following MDA query to be processed:

q3 :SELECT SUM(M1) FROM T

WHERE D1 ∈ [2, 7] AND D3 =WA

Client side: Encode dimensions t[D1], . . . , t[Dd].

1: For each (j1, . . . , jd) ∈ {0, 1, . . . ,h}
d
do:

2: Suppose t[Di] is in interval I jii ∈ L
ji
Di

(i = 1, . . . ,d):

let t[L j1
D1

× . . . × L
jd
Dd
] ← I j1

1
I j2
2
. . . I jdd ;

3: Create LDP report with (h + 1)d instances ofAϵ ′
FO where

ϵ ′ = ϵ/(h + 1)d , one for each d-dim level:

AHI(t) ←
〈
Aϵ ′

FO(t[L
j1
D1

× . . . × L
jd
Dd
])

〉
(j1, j2, ..., jd)∈
{0,1, ...,h }d

(39)

Server side: MDA query q = QT (SUM(M),
D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd]).

1: For i = 1 to d do:

2: Decompose [li , ri] intopi disjoint intervals [li , ri] →
I 1

i ∪ I
2

i ∪ . . . ∪ I
pi
i in the hierarchy IDi ;

3: For each (i1, . . . , id) ∈ {1, . . . ,p1} × . . . × {1, . . . ,pd }:

4: Estimate fMT (I
i1
1
I i2
2
. . . I idd) as f̄MT (I

i1
1
I i2
2
. . . I idd);

5: Output an estimation to q as:

P̄HI(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̄MT (I
i1
1
I i2
2
. . . I idd). (40)

Algorithm 4: d-dim HI Mechanism (AHI, P̄HI)

which can be decomposed into 4 sub-queries. On the levelL2

D1

×

L1

D2

there are two, with “D1 ∈ [3, 4] AND D3 = WA” and
“D1 ∈ [5, 6] AND D3 = WA”, respectively. Again, we can
use LDP weighted frequency oracles to encode the augmented
dimensions and approximate these sub-queries.

When analyzing error bounds, we only need to note that

categorical hierarchies have only two levels (h = 1).

Corollary 12. Suppose there are d1 categorical dimensions
and d2 (dq) ordinal ones (in the query q), when ϵ is small,

Err(P̄HI(q)) = O

(
n∆2

2
2d1

log
dq+2d2 m

ϵ2

)
and

Err(P̄HIO(q)) = O

(
n∆2

2
d1

log
dq+d2 m

ϵ2

)
.

D MORE DETAILS OF SC MECHANISM
Our split-and-conjunction (SC) mechanism is in Algorithm 5.

On the client side, each one-dim level of all the dimensions is
encoded using an independent weighted frequency oracle

(lines 3 and 4), with equal privacy budget ϵ/(dh). On the

server side, under the same query decomposition scheme, its

estimation process is almost identical to that of HI, except

that conjunctive estimators f̂M on query dimensions (instead
of estimated weighted frequencies f̄M as in Algorithm 4) are

assembled as the estimated answer to q (lines 4 and 5).

L0
D1

L1
D1

L2
D1

L3
D1

t[D1] = 3

L0
D3

L1
D3

⊗ID1
ID3

t[D3] = WA

. . . }= {. . . ,

NY WA CA FL

*

L2
D1

× L0
D3
, L2

D1
× L1

D3
,

...

t[L2
D1

×L0
D3
] t[L2

D1
×L1

D3
]1 2 3 4 5 6 7 8

*

*

*

*

*

NY

NY

NY

NY

WA

WA

WA

WA

Figure 13: 2D hierarchy on ordinal+categorical dimensions, query decomposition, and HI mechanism

Client side: Encode dimensions t[D1], . . . , t[Dd].

1: For each i = 1 to d do:

2: For each j = 1 to h do:

3: Suppose t[Di] is in interval I ji ∈ L
j
Di
:

let t[L j
Di
] ← I ji ;

4: Create LDP report with dh instances of A
ϵ/(dh)
FO :

ASC(t) ←
〈
A

ϵ/(dh)
FO (t[L j

Di
])

〉
i=1, ...,d
j=1, ...,h

(41)

Server side: MDA query q = QT (SUM(M),
D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd]).

1: For i = 1 to d do:

2: Decompose [li , ri] intopi disjoint intervals [li , ri] →
I 1

i ∪ I
2

i ∪ . . . ∪ I
pi
i in the hierarchy IDi ;

3: For each (i1, . . . , id) ∈ {1, . . . ,p1} × . . . × {1, . . . ,pd }:

4: Estimate fMT (I
i1
1
I i2
2
. . . I idd) as f̂MT (I

i1
1
I i2
2
. . . I idd);

5: Output an estimation to q as:

P̄SC(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̂MT (I
i1
1
I i2
2
. . . I idd). (42)

Algorithm 5: d-dim SC Mechanism (ASC, P̄SC)

E PROOFS
Proof of Proposition 4:
From (7) and the linearity of expectation,

E
[
f̄MS (v)

]
=

∑
x

x · E
[
f̄Sx (v)

]
=

∑
x

x · fSx (v) = fS (v),

as f̄Sx is unbiased from Lemma 3. The squared error is:

Var
[
f̄MS (v)

]
=

∑
distinct x

x2 · Var
[
f̄Sx (v)

]
=

∑
x

x2 ·

(
4|Sx |e

ϵ

(eϵ − 1)2
+ fSx (v)

)
=

4M2

Se
ϵ

(eϵ − 1)2
+M2

S (v), (43)

where (43) is from the fact that AFO is used by each user

independently, and the error bound of f̄S in Lemma 3.

Var[f̄MS (u) + f̄MS (v)] = Var[f̄MS (u)] + Var[f̄MS (v)] is from
Var[f̄S (u)+ f̄S (v)] = Var[f̄S (u)]+Var[f̄S (v)] (f̄S (u) and f̄S (v)

are not independent but their covariance is 0, which can be

verified though careful calculations) and (43).

Proof of Proposition 5:
The unbiasedness has been proved. We can decompose the

error Err(f̃MS ,1/k (v)) = Var
[
f̃MS ,1/k (v)

]
into three parts:

Var
[
f̃MS ,1/k (v)

]
= E

[(
k f̄MS1

(v) − fMS (v)
)

2

]
=E

[(
(k f̄MS1

(v) − kfMS1

(v)) + (kfMS1

(v) − fMS (v))
)

2

]
=k2E

[(
f̄MS1

(v) − fMS1

(v)
)

2

]
+ E

[(
kfMS1

(v) − fMS (v)
)

2

]
+

2kE
[
(f̄MS1

(v) − fMS1

(v)) · (kfMS1

(v) − fMS (v))
]
. (44)

Using conditional expectation and Proposition 4, we have

E
[(

f̄MS1

(v) − fMS1

(v)
)

2

]
= E

[
E
[(

f̄MS1

(v) − fMS1

(v)
)

2

���� S1

]]
=E

[
M2

S1

·
4eϵ

(eϵ − 1)2
+M2

S1

(v)

]
=

4M2

Se
ϵ

k(eϵ − 1)2
+
M2

S (v)

k
. (45)

And from the standard analysis on sampling process,

E
[(
kfMS1

(v) − fMS (v)
)

2

]
= (k − 1)M2

S (v). (46)

For the rest term, we can show

E
[
(f̄MS1

(v) − fMS1

(v)) · (kfMS1

(v) − fMS (v))
]

=E
[
(f̄MS1

(v) − fMS1

(v)) · kfMS1

(v)
]

(as E[f̄MS1

(v)] = E[fMS1

(v)] and fMS (v) is a constant)

=kE
[
E
[
(f̄MS1

(v) − fMS1

(v)) · fMS1

(v)
�� S1

]]
= 0. (47)

(as for a fixed S1, E[f̄MS1

(v)] = E[fMS1

(v)])

Putting (45)-(47) back to (44), we can derive the variance.

Proof of Theorem 6:
The privacy guarantee, ϵ-LDP of AHI, follows directly from

the sequential composability of DP (ϵ is partitioned on h
levels and the change in t[D] can affect all the h levels).

Any interval [l, r] on D can be decomposed into p ≤
2(b − 1) logbm disjoint intervals I 1, . . . , Ip . The unbiased-

ness is from the fact that each sub-query in (12) is equivalent

to fMT (I
i) and f̄MT (I

i) is an unbiased estimator of it. The error

follows from Proposition 4 (about each f̄MT (I
i)’s error).

Proof of Theorem 7:
AHIO is ϵ-LDP because each user applies AFO on one level

with privacy budget ϵ . Unbiasedness is because each esti-

mator f̃MT ,1/h(I
i) in line 6 is an unbiased estimator of fMT (I

i)

from Proposition 5. Again, from Proposition 5, we know

Err(f̃MT ,1/h(I
i)) ≤

2hM2

T (e
2ϵ + 1)

(eϵ − 1)2
.

We have h = logbm in HIO and there are p ≤ 2(b − 1) logbm
sub-queries. Therefore, the error upper bound follows.

Proof of Theorem 8:
The analysis for 1D HI (Theorem 6) naturally extends here.

The privacy budget is partitioned for (h+1)d = (logbm+1)d

instances of AFO. Unbiasedness of P̄HI is from the unbi-

asedness of f̄M . And the query q can be answered from

(2(b − 1) logbm)
dq

or less sub-queries.

Proof of Theorem 9:
Similar to the proof of Theorem 7. The term (2(b−1)(logbm+

1))dq is the upper bound of the number of sub-queries q is

decomposed into. The term (logbm + 1)d is from running

weighted frequency oracles on random samples.

Proof of Proposition 10:
The unbiasedness is from the fact that P · b = E[a], which
we have discussed in Section 5.3.1 for the 2-dim case. The k-
dim case is similar. Error bounds follow from the property of

an inversed transition matrix P−1
and the (co)variance of a.

Proof of Theorem 11:
ϵ-LDP is straightforward from the above discussion. Unbi-

asedness of P̄SC is from unbiasedness of f̂M (Proposition 10).

For the worst-case error, since there are O(log
dq m) sub-

queries, each of which is approximated by a conjunctive

estimator with an error (from Proposition 10)

O

(
n∆2

(ϵ/d logm)2dq

)
.

Putting them together, it concludes the proof.

F COMPLEXITY ANALYSIS
Table 3 is a summary about complexity of mechanisms (A , P̄)
we have introduced. Here, n is the total number of users, d

Mechanism Encoder time/space Worst-case query pro-

per user on client -cessing time on server

(AMG, P̄MG) O(1) O

(
n +md

)
(AHI, P̄HI) O

(
log

d m
)

O

(
n log

dq m
)

(AHIO, P̄HIO) O(1) O

(
n + log

dq m
)

(ASC, P̄SC) O(d logm) O

(
(ndq + 4

dq) log
dq m

)
Table 3: Complexity of different LDP mechanisms

Figure 14: HIO and SC on 2 (ordinal) + 2 (categorical)
dimensions: vary query types (ϵ = 5 andm = 5

2)

is the total number of dimensions, and dq is the number of

dimension in an MDA query. Assume that all dimensions are

ordinal with the max range equal tom.

“Encode space per user” is the size of an LDP report en-

coded byA and sent to the server from each user (in words).

The time taken by A per user is linear in the size, and thus

they are listed in the same column in Table 3. “Query pro-

cessing time” is the time taken by P̄ to estimate the answer of

a query. The proofs are straightforward and thus are omitted

here: we just need to count how many augmented dimen-

sions each user reports in different mechanisms, and how

many sub-queries an MDA query is decomposed into.

G MORE DETAILS OF EXPERIMENTS
Sample queries on IPUMS.
Q1 : SELECT AVG(weekly_work_hour) FROM IPUMS

WHERE marital_status = Married;

Q2 : SELECT AVG(weekly_work_hour) FROM IPUMS

WHERE marital_status = Married AND 40 <= age < 60;

Q3 : SELECT AVG(weekly_work_hour) FROM IPUMS

WHERE marital_status = Single AND 20 <= age < 30.

Queries in the case study.
Q4 : SELECT AVG(Postage) FROM T

WHERE Price <= 50 AND Region = State_X;

Q5 : SELECT AVG(Postage) FROM T

WHERE Price <= 50 AND Category = 52001;

Comparing SC with HIO on four dimensions. Under
the setting of Section 6.2.1, we compare SC with HIO for

different types of queries and report the results in Figure 14.

For the low-dimensional predicates “1+0” and “1+1”, they

have comparable accuracy; otherwise, HIO is much better.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multi Dimensional Model and Analytics
	2.2 Local Differential Privacy (LDP)
	2.3 Private Multi-Dimensional Analytics

	3 Weighted Frequency Oracle
	3.1 Weighed Frequency Queries and MDA
	3.2 An LDP Frequency Oracle (FO)
	3.3 Oracle Running on Random Samples
	3.4 Answering MDA via LDP Marginals

	4 MDA with One Private Dimension
	4.1 Hierarchical-Interval (HI) Mechanism
	4.2 Better Accuracy via Level Partitioning

	5 Multiple Private Dimensions
	5.1 Multiple Ordinal Dimensions
	5.2 Ordinal and Categorical Dimensions
	5.3 Split-and-Conjunction: When the Dimensionality is High
	5.4 Performance Comparison

	6 Evaluation
	6.1 Experimental Comparison
	6.2 Relative Error and Practical Usage

	7 Extensions and Discussion
	8 Related Work
	9 Conclusions
	References
	A Unweighted Frequency Oracle
	B More Details of HI Mechanism
	C HI with Categorical Dimensions
	D More Details of SC Mechanism
	E Proofs
	F Complexity Analysis
	G More Details of Experiments

