
One Size Does Not Fit All: A Bandit-Based Sampler Combination
Framework with Theoretical Guarantees

Jinglin Peng
†

Bolin Ding
♦

Jiannan Wang
†

Kai Zeng
♦

Jingren Zhou
♦

Simon Fraser University
†

Alibaba Group
♦

{jinglin_peng, jnwang}@sfu.ca
†

{bolin.ding, zengkai.zk, jingren.zhou}@alibaba-inc.com
♦

ABSTRACT
Sample-based estimation, which uses a sample to estimate popula-

tion parameters (e.g., SUM, COUNT, and AVG), has various applications
in database systems. A sampler defines how samples are drawn

from a population. Various samplers have been proposed (e.g., uni-

form sampler, stratified sampler, andmeasure-biased sampler), since

there is no single sampler that works well in all cases. To overcome

the “one size does not fit all” challenge, we study how to combine

multiple samplers to estimate population parameters, and propose

SamComb, a novel bandit-based sampler combination framework.

Given a set of samplers, a budget, and a population parameter,

SamComb can automatically decide how much budget should be

allocated to each sampler so that the combined estimation achieves

the highest accuracy. We model this sampler combination prob-

lem as a multi-armed bandit (MAB) problem and propose effective

approaches to balance the exploration and exploitation trade-off

in a principled way. We provide theoretical guarantees for our ap-

proaches and conduct extensive experiments on both synthetic and

real datasets. The results show that there is a strong need to combine

multiple samplers, in order to obtain accurate estimations without

the knowledge about population predicates and distributions, and

SamComb is an effective framework to achieve this goal.

CCS CONCEPTS
• Information systems→Database query processing;Online
analytical processing engines.

KEYWORDS
approximate query processing, sample combination, bandit

ACM Reference Format:
Jinglin Peng, Bolin Ding, Jiannan Wang, Kai Zeng, and Jingren Zhou. 2022.

One Size Does Not Fit All: A Bandit-Based Sampler Combination Frame-

work with Theoretical Guarantees. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD ’22), June 12–17, 2022, Philadel-
phia, PA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3514221.3517900

Acknowledgements. This work was supported in part by Mitacs through an Accel-

erate Grant, NSERC through a discovery grant and a CRD grant. All opinions, findings,

conclusions and recommendations in this paper are those of the authors and do not

necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517900

1 INTRODUCTION
Sample-based estimation is a fundamental tool in statistics [38, 39].

It uses a (randomly-drawn) sample to estimate population param-

eters (e.g., SUM, COUNT, and AVG). Since the estimation is derived

from a sample whose size is usually small, it is much faster than

computing the exact parameters over the entire data. Due to this

reason, sample-based estimation has various applications, such

as online aggregation [12, 17, 32], approximate query process-

ing [3, 13–15, 23, 28, 29, 31, 34–36, 44, 45], cardinality estima-

tion [11, 18, 24, 27], and exploratory data analysis [33, 43].

One size does not fit all. The estimation accuracy is highly de-

pendent on two important factors simultaneously (which will be

elaborated in Section 2.1): i) how data is sampled, i.e., a sampling dis-
tributionwhich specifies how likely a tuple is drawn into the sample,

and ii) the underlying data distribution in the population where we

want to calculate parameters. Various samplers are proposed in the

literature [6, 13, 20, 21] with different sampling distributions. For

example, a uniform sampler draws a sample from the population

where each tuple has the same probability to be selected [17], a

stratified sampler draws a sample so that the tuples in each group

have the same probability to appear in the sample [6, 21], and a

measure-biased sampler draws a sample so that the tuples with large

measure values have a higher probability to be selected [13]. While

the sampling distribution has to be specified before the sample is

drawn, ii) is decided at the “estimation time”.

SELECT SUM(A) FROM table WHERE B > 10

For example, the above query specifies that we want to focus on the

population with B > 10 and estimate SUM(A). Thus, the distribution
of A in that particular population and how well it matches the

sampling distribution decide the estimation accuracy. Therefore,

there is no single sampler that works well in all cases.

In this paper, we investigate how to combine multiple samplers

of the same population to estimate population parameters. Given

k different samplers, a sample budget, an aggregation function (i.e.,

COUNT, SUM, AVG), and a predicate specifying the population to be

focused on (e.g., B > 10), we study how to allocate the budget to each

sampler, so that the combined estimation using k samplers achieves

the highest accuracy. For ease of presentation, we use SQL queries

(e.g., in the example above) to represent population parameters

to be estimated. Similar to existing work [4, 13], we assume each

sampler pre-computes a large sample, thus they can efficiently draw

a sample with given budget by sequentially scanning the data.

Exploitation vs Exploration.We prove that the optimal budget

allocation strategy is to allocate all the budget to the best sampler.

The next questions is how to identify the best sampler. One may

design some heuristic rules by leveraging the query information.

Unfortunately, it is insufficient to identify the best sampler by only

looking into the query, due the following two reasons.

https://doi.org/10.1145/3514221.3517900
https://doi.org/10.1145/3514221.3517900
https://doi.org/10.1145/3514221.3517900

Firstly, a query could satisfy multiples rules, and resulting in

multiple samplers chosen by different rules. For example, consider

the following two rules: 1) Rule 1: If a query contains A in the

aggregate function, then choose the measure-biased sampler over A
column. 2) Rule 2: If a query contains B = b in the predicate, where

b is a constant, then choose a stratified sampler over B column.

Consider a query:

SELECT SUM(price * (1 - tax)) WHERE country = 'USA'

The measure-biased sampler over price and tax column, and the

stratified sampler over country both satisfy the rules. Hence it is

still unknown which sampler should be chosen.

Secondly, even we have a rule-based approach that returns a

single sampler, the best sampler still can be different for different

data. For example, consider a query:

SELECT SUM(price) FROM table WHERE itemid < 100

If all tuples satisfy itemid < 100, then the measure-biased sampler

over price column is known as the best sampler. However, if all

the tuples whose itemid < 100 have a very small price, then

the measure-biased sampler could perform worse than a uniform

sampler, since the tuples that contributes to the answer most are

those with small price, and are assigned with a small probability

by the sampler.

The above two reasons suggests that it is unknown which sam-

pler is the best w.r.t. a given query before scanning the whole data.

To address this issue, we allocate a certain amount of sampling bud-

get to each sampler (i.e., draw samples of certain size using each

sampler) in an adaptive way, and assess which sampler is the best

using their samples. The identified one is called the empirically best
sampler, which may or may not be the truly best sampler. During
this process, we need to balance the exploitation vs exploration trade-
off, that is, to exploit the the empirically best sampler or explore a

different sampler which could be the truly best sampler.

SamComb Framework. To solve this challenge, we propose Sam-
Comb, a bandit-based sampler combination framework. It models

sampler combination problem as multi-armed bandit (MAB) prob-

lem [5, 26, 40], which is a principled way to balance the exploitation
vs exploration trade-off. SamComb is an iterative framework. At

each iteration, it assesses which sampler is the best, then uses an

MAB-based approach to decide which sampler to select, and finally

allocates a small budget to the sampler. The iteration will continue

until the budget is exhausted. Finally, SamComb uses the budget

allocated to each sampler to estimate the answer to the query, re-

spectively, and computes a weighted average of these estimated

answers as the final answer. Comparing to approaches that select

one best sample, the select-then-combine framework of SamComb
can fully leverage all the samples and does not waste any budget

used for exploration.

The approaches developed for MAB have a guarantee that most

budget will be allocated to the best arm. However, it is not clear

whether they are still applicable to our problem, since the two prob-

lems have different optimization objectives. MAB aims to maximize

a linear sum of the reward from each arm and it only involves

sample size (i.e., pull times) as variable, while our problem aims to

minimize a complex function of the variance from each sampler: it

is not linearly additive as MAB, and it involves both sample size

Id Price Country

1 150 USA

2 10 CA

3 0.1 USA

4 350 USA

5 50 CA

6 3 USA

7 650 CA

8 0.5 USA

9 900 USA

10 85 USA

… … …

1M 0.2 CA

Full Table
Id Price Country Probability

1 150 USA 1e-6

3 0.1 USA 1e-6

… … … …

Id Price Country Probability

9 900 USA 0.018

7 650 CA 0.013

… … … …

Id Price Country Probability

2 10 CA 2.5e-6

4 350 USA 6.25e-7

… … … …

A sample drawn by uniform sampler

A sample drawn by measured-biased
sampler

A sample drawn by stratified sampler

Figure 1: An illustration of different samplers.

and weight. We propose effective solutions and justify our solutions

both analytically and empirically.

Firstly, we discuss how tomodel our problem as anMAB problem

and then justify this modeling by showing that their objective

functions share some common properties.

Secondly, to solve our budget allocation problem, we extend two

well-known MAB approaches [5], ϵt -greedy and Upper Confidence
Bound (UCB). We prove that both approaches can guarantee that

the allocated budget to each sub-optimal sampler is at mostO(lnn),

where n is the total budget.

Thirdly, we discuss how to combine the estimation from each

sampler into the final estimation. We propose two approaches and

prove the optimality of both approaches.

Finally, we conduct extensive experiments to evaluate SamComb
using both synthetic and real-world datasets. The results validate

the effectiveness of our approaches empirically. We also apply Sam-
Comb to applications like selectivity estimation, and demonstrate

the advantages of combining multiple samplers. We see this work

as an initial step towards building a principled federated framework

to address the one-size-does-not-fit-all challenge in online aggrega-

tion, approximate query processing, and cardinality estimation.

In summary, we make the following contributions:

(1) We propose a novel idea that combines different samplers to

enhance sample-based estimation. We formally define the sam-

pler combination problem. To the best of our knowledge, we

are the first to study this problem.

(2) We model our problem as a multi-armed bandit problem, and

propose SamComb, a bandit-based sampler combination frame-

work to solve the problem.

(3) We propose two budget allocation approaches based on existing

MAB strategies, and two weight allocation approaches to com-

bine the estimated answers frommultiple samplers into the final

answer. We prove theoretical guarantees for these approaches.

(4) We evaluate SamComb on both synthetic and real-world datasets.
The results show that SamComb can effectively combinemultiple

samplers and achieve a higher estimation accuracy compared

to baselines.

2 PROBLEM FORMALIZATION
In this section, we first define the concept of sampler and then

formalize the sampler combination problem.

We focus on the population parameters that can be expressed in

the following form of SQL queries:

SELECT f(A) FROM table
WHERE Predicate (B1, B2, ...)

where f is SUM, COUNT, or AVG. For ease of presentation, we mainly

consider f = SUM, since COUNT is a special case of SUM and AVG is
the ratio of SUM to COUNT. We also discuss how to support other

aggregate functions such as PERCENTILE in Section 6.

2.1 Sampler
There are different sampling methods (uniform, measure-biased,

and stratified sampling). We find that each of them can be seen as

a special case of weighted sampling. Thus, we define sampler as

weighted sampling. Given a tableT with N tuples, a sampler draws

a weighted sample from T such that the probability of each tuple

being selected is proportional to its weight. Definition 1 presents a

formal definition.

Definition 1 (Sampler). Given a table T with N tuples, each
tuple ti ∈ T is associated with a probability pi , where 0 < pi ≤ 1

and
∑N
i=1

pi = 1. A sampler S can draw a weighted sample S with
replacement of any given sample size fromT , where each tuple ti ∈ T
has a probability of pi to be sampled.

If the context is clear, we represent a sampler by its probability

of selecting each tuple, i.e., {p1,p2, · · · ,pN }. The only difference

among different sampling methods is how to compute pi (for all
i ∈ [1,N]). Note that one can certainly obtain other samplers by

computing pi differently. Our system supports them as well.

• Uniform Sampler: A uniform sampler selects each tuple with the

same probability, i.e., pi =
1

N .

• Measure-biased Sampler: Given a measure column, a measure-

biased sampler selects each tuple with probability proportional

to the measure value, i.e., pi =
mi∑N
i=1

mi
, wheremi is the measure

value for tuple i .

• Stratified Sampler:Given a stratified columnG , the table is divided
into |dom(G)| groups, where |dom(G)| is the domain size ofG (i.e.,

the number of distinct values in G). A stratified sampler selects

each group with equal probability. For each tuple i , let Gi be the

group that contains tuple i , then we have pi =
1

|dom(G) | |Gi |
.

Example 1 illustrates how each sampler computes pi .

Example 1. Consider the example in Figure 1. The full table has
1M tuples. A uniform sampler selects each tuple with equal probability

1

1M = 1e-6. Now, consider a measure-biased sampler on Price column.
Suppose the total measure of price is 150 + 10 + ... + 0.2 = 50000, then
the probability of selecting tuple t is computed as t .pr ice

50000
. E.g., the

probability of selecting tuple 9 is 900

50000
= 0.018. Finally we consider a

stratified sampler on Country column. It has 2 strata: USA and CA,
where USA has 0.8M tuples and CA has 0.2M tuples. Hence, for the
tuples whose country is USA we have pi =

1

2∗0.8M = 6.25e-7, and for
the tuples whose country is CA we have pi =

1

2∗0.2M = 2.5e-6.

Answer Estimation. Given a query q and a weighted sample S ,
let q(S) denote the estimated answer based on S . Hansen-Hurwitz
(HH) estimator [16] can be directly applied to estimate the answer

to an SUM query when the query has no predicate (e.g., q:SELECT
SUM(Price) FROM table). See Equation (1) below.

q(S) =

1

|S |

|S |∑
i=1

yi
pi
, (1)

where yi is the aggregate value (e.g., ti [Price]) of tuple i .
The HH estimator can be easily extended to support predi-

cates through query rewriting. The main idea is to rewrite a with-

predicate query as an equivalent without-predicate query. E.g.,

query SELECT SUM(Price) From table WHERE Predicate can

be rewritten as: SELECT SUM(CASE WHEN Predicate THEN Price
ELSE 0 END) FROM table. Then, we generalize the

yi
pi to di : di = 0

if the tuple does not satisfy the predicate, otherwise di =
yi
pi .

Estimation Quality. A common approach to measure the estima-

tion quality are confidence intervals, which bound the real result

with high probability. To compute the confidence interval, we first

define sampler quality.

Definition 2 (SamplerQuality). Given a sampler {p1,p2, · · · ,pN }

and a SUM query, we define a discrete distribution Dq w.r.t. query
q (abbreviated as D if the context is clear) that takes value di with
probability pi for each i ∈ [1,N]. Define sampler quality by var(D),
which is computed as

var(D) =

N∑
i=1

pi ·
(
di −mean(D)

)
2

, (2)

where mean(D) =

∑N
i=1

pi · di .

Intuitively, the sampler quality measures how good a sampler is

for answering a given query. It is the variance of the HH estimator

with a sample of 1 tuple drawn from the sampler. Hence, after

drawing the same size of samples, the sampler with a higher quality

(lower variance) will result in a better estimator.

As each tuple is drawn independently, the variance of the estima-

tor over a sample of size S can be expressed as
var(D)

|S | . Based on the

central limit theorem (CLT), the confidence interval is computed as

CI = q(S) ± λ

√
var(D)

|S |
(3)

where λ is a constant number related to the confidence level. For

example, λ = 1.96 means the true value lies in the confidence

interval with the probability of 95%.

The larger the width of the confidence interval (i.e., λ
√
var(D)

|S |),

the lower quality the estimated answer. Given a query, we prefer a

sampler with var(D) as small as possible. Thus, var(D) is named

sampler quality in Definition 2.

For simplicity, let var(q(S)) =
var(D)

|S | be the variance of q(S).

Then, the confidence interval can also be denoted by

CI = q(S) ± λ
√
var(q(S)) (4)

Sampler Implementation. Each sampler exposes an interface

that takes a sample budget ni as input and returns a sample of

size ni . To save sampling time, we assume that each sampler has

precomputed a large sample stored on disk in the offline stage. This

is achieved by applying the approach in Appendix B of Sample +

Seek [13]. During query time, it sequentially scans ni tuples from
the precomputed sample to get a sample of size ni , or directly
computes the aggregate on a sample by issuing a range query with

predicate row_id BETWEEN a AND b.

2.2 Sampler Combination Problem
Problem Definition. Suppose the total sample budget is n. The
sampler combination problem is to study how to allocate the total

budget to each sampler such that the combined estimator performs

the best. Specifically, given a query q, we draw a sample Si with

size ni from sampler Si , such that

∑k
i=1

ni = n. For each sample

Si , we can get an unbiased estimator of the query result, i.e., q(Si).
Then we combine k estimators into the final estimator. Let ψ be

the set of drawn samples, i.e.,ψ = {S1, S2, ..., Sk }. We denote their

combined estimator as q(ψ), which is computed as follows:

q(ψ) =

k∑
i=1

wi · q(Si), (5)

wherewi is the weight for each estimator q(Si) and is constrained

by

∑k
i=1

wi = 1. Note that we may allocate no budget to a sampler.

In this case we remove its sample fromψ .
The variance of the combined estimator is computed as

1
:

var
(
q(ψ)

)
=

k∑
i=1

w2

i · var(q(Si)) =

k∑
i=1

w2

i ·
var(Di)

ni
(6)

Recall that our goal is to minimize the estimation error (confi-

dence interval) using the combined estimator. Since the confidence

interval can be computed from variance (see Section 2.1), our goal

is equivalent to minimize the variance of the combined estimator.

We call this problem the sampler combination problem, as for-

malized in Problem 1.

Problem 1 (Sampler Combination). Given a set of k samplers,
a query q, and a total budget n, the goal of the sampler combination
problem is to decide the sample size ni for each sampler such that the
combined estimator has the minimized variance:

arдmin
n1, ...,nk ,w1, ...,wk

k∑
i=1

w2

i ·
var(Di)

ni

subject to
k∑
i=1

ni = n

ni ≥ 0, for all i ∈ [1,k]

k∑
i=1

wi = 1

(7)

3 SAMPLER COMBINATION FRAMEWORK
In this section, we discuss how to solve the sampler combination

problem and present the sampler combination framework.

1
Note that each sampler draws sample independently.

3.1 Optimal Weight Allocation
The sampler combination problem consists of two sub-problems:

(1) Budget Allocation. How should we decide the sample size ni
for each sampler?

(2) Weight Allocation. How should we decide the weight wi for

each estimator?

Let us first consider the second problem by assuming

n1,n2, · · · ,nk have been decided. The problem can be formalized

as follows:

arдmin
w1,w2, ...,wk

k∑
i=1

w2

i
var(Di)

ni

subject to

k∑
i=1

wi = 1,

where n1,n2, · · · ,nk are constant values.

By applying Lagrange’s method of multipliers[7], we can get the

optimal weight allocation:wi =

ni
var(Di)∑k
j=1

nj
var(Dj)

. By incorporating the

optimal weight into Equation (7), the sampler combination problem

is reduced as follows:

arдmin
n1, ...,nk

1∑k
i=1

ni
var(Di)

subject to

k∑
i=1

ni = n

ni ≥ 0, for all i ∈ [1,k]

(8)

Thus, the key to solve the sampler combination problem is how to

solve the budget allocation problem.

3.2 Exploration and Exploitation Trade-off
We first propose the optimal solution to the budget allocation prob-

lem and prove its optimality. However, please note that this solution

cannot be achieved in practice, hence we call it ideal solution. We

then explain the reason and find an interesting trade-off between

the exploration and exploitation to develop a practical solution.

Ideal Solution. Given a query, different samplers produce estima-

tors with different qualities. Intuitively, allocating more budget to

a ‘good’ sampler will lead to a more accurate combined estima-

tor. This intuition inspires us to consider an extreme case which

allocates all the budget to the ‘best’ sampler.

Specifically, we use var(Di) (see Definition 2) to measure how

‘good’ a sampler is. The smaller var(Di) is, the better the sampler

is. Let Si∗ denote the best sampler, i.e., i∗ = arg mini ∈[1,k]
var(Di).

The ideal solution allocates all the budget to Si∗ and allocates

zero budget to Si (for i ̸= i∗). That is, for each i ∈ [1,n], we have:

ni =

{
n, if i = i∗

0, otherwise

Optimality.We then prove that the ideal solution is the optimal so-

lution of the budget allocation problem (formalized in Equation (8)),

as shown in Lemma 1.

Lemma 1. Given a set of k samplers, a query q, and a total budget
n, the optimal budget allocation is to allocate all the budget n to the
best sampler Si∗ .

Proof. Due to the space constraint, we omit all the proofs in

this paper and put them in our technical report [19]. □

Exploration vs. Exploitation. Although we get the optimal solu-

tion of the budget allocation problem, this solution is impractical.

The reason is that it requires the knowledge of the best sampler in

advance, while computing each sampler quality var(Di) requires

scanning the full data and against the purpose the sampling. To

solve this problem, we develop a framework to approach the ideal

solution, and it can allocate most of the budget to the best sampler

without knowing which sampler is the best. More specifically, we

use a sample to estimate var(Di) and define empirical best sampler as
the sampler with the highest estimated sampler quality. In this way,

the sample budget can be allocated with two different purposes:

i) Exploration: it is allocated to estimate each sampler quality in

order to find the best sampler; ii) Exploitation: it is allocated to the

empirical best sampler in order to enhance the combined estimator.

There is an interesting trade-off between exploration and ex-

ploitation. When allocating more budget to explore sampler quality,

it is more likely to find the true best sampler. However, there will

be less budget left for the empirical best sampler to enhance the

combined estimator. On the other hand, when allocating less budget

to explore sampler quality, it is more likely to estimate sampler

quality incorrectly and regard a bad sampler as the best sampler. As

a result, most of the budget could be allocated to this bad sampler.

3.3 Model as Multi-Armed Bandit
The well-known Multi-Armed Bandit (MAB) problem also faces the

exploration and exploitation trade-off [40]. One natural question is

that can we borrow some ideas from MAB to solve our problem?

In this subsection, we first introduce some background about MAB

and then present how to model our problem as MAB. Finally, we

justify why this modeling makes sense.

Background.MAB is a classical reinforcement learning problem

that studies the exploration and exploitation trade-off. Consider a

slot machine with k arms. A player needs to decide which arm to

pull at each round. If arm i is pulled, it will return a random reward,

usually in [0, 1], from an unknown reward distribution Di specific

to arm i . The goal of the player is to maximize the total reward, or

minimize the regret (will be defined later), in n rounds.

Let µi = E[Di] and µ
∗

= maxi ∈1...k {µi }. Clearly, the optimal

strategy is to always pull the arm with the highest expected reward.

However, since we do not know the best arm in advance, there exists

a ‘regret’ of the actual pulling strategy compared to the optimal

strategy. The regret over n rounds, denoted by Rn , is defined as

the difference of the total rewards achieved by the optimal pulling

strategy and by the actual pulling strategy, i.e.,

Rn = µ∗ · n −
n∑
t=1

µIt , (9)

where It is the chosen arm in round t . The expected regret is

E[Rn] = µ∗ · n −
∑n
t=1
E[µIt]. We denote ∆i = µ∗ − µi by the

reward gap between an arm i and the best arm, and rewrite E[Rn]

in terms of ∆i :

E[Rn] =

k∑
i=1

(
∆i · E[Ti (n)]

)
, (10)

where Ti (n) is the number of times that an arm i is pulled over n

rounds, and clearly, they satisfy

∑k
i=1

Ti (n) = n.
The goal is to find a pulling strategy to minimize E[Rn]. For a

given arm i , if it is an optimal arm, i.e., µ∗ = µi , then we have ∆i = 0,

thus no matter how many times the optimal arm is pulled, there is

no impact on E[Rn]. Thus, only the number of times that each sub-

optimal arm is pulled will affect E(Rn). There are several pulling

strategies proposed in the MAB literature [40]. They provide good

theoretical guarantees. When using these strategies, the number of

times that each sub-optimal arm is pulled can be upper-bounded

by O(lnn).

Modeling.We next discuss how to model the sampler combination

problem as MAB. Each sampler can be regarded as an arm in MAB.

At each round, we need to pick up one sampler and draw a small

sample from it. This can be thought of as picking up an arm and

pulling it to get a random reward.

The key difference between the two problems is the definition

of the regret (i.e., the objective function). For MAB, as shown in

Equation (9), the regret is a linear combination of the observed

random reward of each round. For our problem, the regret measures

the difference of the estimator variances between an allocation

strategy and the optimal strategy (i.e., allocating all the budget to

the best sampler), which is defined as

Rn =

1∑k
i=1

ni
var(Di)

−
var(Di∗)

n
, (11)

where i∗ is the index of the best sampler, ni is the size allocated to

sampler Si , and n is the total sample size.

Justification. Although our problem has a different objective func-

tion than the MAB problem (Equation (9) vs. Equation (11)), the

two objective functions share two common properties, which make

it possible to apply MAB-based approaches to solve our problem.

First, their optimal solutions are the same, i.e., allocating all the

budget to the best sampler (or arm), which lead to zero regret.

Property 1. The optimal solution to the sampler combination (or
MAB) problem is to allocate all the sampling (pulling) budget to the
best sampler (or arm).

In reality, however, the optimal solution of sampler combination

problem cannot be achieved since the best sampler is unknown.

This is similar to MAB setting where the arm quality is unknown

and needs to be estimated from each pull. It inspires us to solve

the problem in an iterative framework similar to MAB: explore the

sampler quality and exploit budgets to the empirically best sampler.

We also interestingly observe that for both objective functions,

the optimal action is independent of what actions have been taken

in the previous iterations. That is, it is always optimal to choose

the best sampler (or arm) at every individual iteration, regardless

of which samplers were chosen in the previous iterations.

Property 2. At each iteration, the optimal action for the sampler
combination (or MAB) problem is to choose the best sampler (or arm),
which is independent of historical actions.

This property implies that MAB and SamComb follows the same

principal to take action in each iteration: choose the best one in

each iteration. Therefore, if we apply an MAB-like strategy, the

initial initial initial

𝑆!
Initialization

Phase

Allocation
Phase

selected

Combination
Phase

𝑆" 𝑆#

𝑞 𝑆 =	𝑤! ⋅ 𝑞 𝑆! + 𝑤" ⋅ 𝑞 𝑆" …+ 𝑤# ⋅ 𝑞 𝑆#

selected

…

…

unselected unselected

unselected unselected

selectedunselectedunselected

… …

selected unselected unselected

Figure 2: The SamComb Framework

action it takes may also lead us to its guarantee: most budgets are

allocated to the best sampler, which can help achieve our goal.

3.4 Framework
Since our problem and MAB shares the same goal, i.e., choose the

best sampler (arm) as many times as possible. Thus, it makes sense

to model our problem as MAB. To this end, we propose SamComb,
an MAB-based sampler combination framework.

We first introduce the existing MAB framework. Initially, the

framework pulls each arm once, to get an initial estimation of

the arm quality. After that, it decides which arm to pull in an

iterative scheme. The fundamental challenge is how to balance

the exploration and exploitation trade-off. Well-known strategies,

such as ϵ-greedy and UCB [5], are proposed to handle the trade-off

systematically, and guarantee that the best arm is pulled as many

times as possible.

The framework of SamComb is shown in Figure 2. It is an iterative
framework based on MAB, and consists of three phases:

(1) Initialization Phase: In the initialization phase, SamComb draws
an initial batch of tuples from each sampler, to get an initial

estimation of sampler quality.

(2) Allocation Phase: In the allocation phase, at each iteration, Sam-
Comb decides which sampler to select in order to achieve the

best trade-off between exploration and exploitation and then

draws a small batch of tuples from it. We extend the ϵ-greedy
and UCB strategies from MAB and prove their theoretical guar-

antees in Section 4. The allocation phase stops once the budget

is exhausted.

(3) Combination Phase: After the allocation phase, suppose each

sampler is allocated a sample of ni tuples such that

∑k
i=1

ni = n.
In the combination phase, SamComb computes an estimator

q(Si) from each sampler and combines them (by computing

a weighted average) into the final estimator. We propose two

weight allocation approaches in Section 5.

4 ALLOCATION PHASE
We first present the ϵt -greedy strategy in Section 4.1 and then the

Lower Confidence Bound (LCB) strategy in Section 4.2. We prove

that both strategies can guarantee that the allocated sample size

to any sub-optimal sampler is at most O(lnn), where n is the total

sampling budget.

4.1 ϵt -greedy
ϵt -greedy [5] is a simple but powerful approach in MAB. It controls

the exploration and exploitation trade-off through a parameter ϵt :
at each iteration t , it pulls a random arm with a probability of ϵt
(exploration), and pulls the empirical best arm with a probability of

1 − ϵt (exploitation).
A simple approach is to set ϵt to a fixed value, i.e., keeping

the same trade-off at every iteration. However, it contradicts the

intuition that we should explore more in early iterations to look

for the best arm and then exploit more in later iterations once the

empirical best arm is more likely to be the true best arm.

A more sophisticated approach is proposed to address this is-

sue [5]. It progressively decreases ϵt as iteration t increases. I.e.,

ϵt = min{1, ckd2t }, where t refers to the t-th iteration, k is the num-

ber of arms, and c and d are user-specified parameters. It is proved

that when c > 5, andd is upper-bounded by the reward gap between

the best arm and the second best arm (i.e., 0 < d ≤ mini :µi<µ∗ {∆i },

where ∆i is the reward gap between the best arm and arm i), ϵt -
greedy achieves a logarithmic regret [5]. It is much better than the

strategy of using a fixed ϵ .
We extend the ϵt -greedy strategy to solve our problem. Algo-

rithm 1 shows the pseudo-code. The main challenges are i) how

to identify the empirical best sampler, and ii) how to prove the

theoretical guarantee of our ϵt -greedy strategy.

Empirical Best Sampler.We start with the first challenge. At each

iteration, we need to identify the empirical best sampler, which

requires estimating the sampler quality. In MAB, the arm quality

is estimated by averaging the random reward for each pull of the

arm. However, directly applying this approach does not work. This

is because MAB only pulls the arm once in each iteration to get

an estimation (i.e., the random reward), but the sampler quality

is a variance and cannot be estimated using a single tuple. To get

multiple tuples, one may consider reusing tuples from previous iter-

ations. Unfortunately, this approach loses the independence of the

estimations between different iterations, which makes Hoeffding’s

inequality fail and lose the guarantee provided by MAB. To solve

the above issue, we propose a batch-based approach: for each itera-

tion, we pull a batch of tuples to estimate the sampler quality, then

we average the estimations of different iterations to get the final

estimation. In this way, we can estimate the sampler quality in each

iteration, and also preserve the independence between iterations.

Let ∆S denote a batch of tuples randomly drawn from sampler

S. The estimated sampler quality using ∆S is computed as
2
:

S.batchEst =

1

|∆S |−1

·

|∆S |∑
i=1

(

yi
pi

− q(∆S))
2

(12)

Note that ∆S could be empty if the current budget is not allocated

to the sampler. In this case, S.batchEst is set to 0.

After getting an estimation of the sampler quality from each

batch, we then average them to get the final estimation. The sampler

2
See Theorem 4.2.3 in [39]. Note that it needs to be multiplied by n to get

our estimator.

Algorithm 1: ϵt -greedy strategy

Input :A set of samplers Ψ = {S1, S2, · · · , Sk }, budget n, batch size

b , parameters c and d
Output :A set of samples ψ = {S1, S2, · · · , Sk }

1 # Initialization Phase
2 for each sampler S in Ψ do
3 ∆S : Draw a batch of b tuples from S ;

4 S.batchEst = 1

|∆S |−1
·
∑|∆S |
i=1

(
yi
pi

− q(∆S))
2
;

5 S.batchEstSum = S.batchEst ;
6 S.batchNum = 1;

7 S.sample = ∆S
8 end
9 # Allocation Phase

10 for t = 1 to n/b do
11 ϵt = min{1, ck

d2t
} ;

12 if rand () > ϵt then
13 S∗ = arg minS∈Ψ

S.batchEstSum
S.batchNum ;

14 end
15 else
16 S∗ = a random sampler from Ψ;

17 end
18 ∆S : Draw a batch of b tuples from S∗ ;

19 S∗ .batchEst = 1

|∆S |−1
·
∑|∆S |
i=1

(
yi
pi

− q(∆S))
2
;

20 S∗.batchEstSum + = S∗ .batchEst ;
21 S∗.batchNum += 1;

22 S∗.sample + = ∆S ;

23 end
24 ψ = {S.sample | for each S ∈ Ψ} ;

25 return ψ

with the minimal average value is identified as the empirical best

sampler at the t-th iteration, i.e.,

S∗ = arg min

S∈Ψ

∑t
i=0
S.batchEsti

S.batchNum
,

where batchNum is the total number of batches that have been

allocated to this sampler after t iterations.
Theoretical Guarantee.We theoretically analyze howwell our ϵt -
greedy strategy works compared to the optimal allocation strategy,

which allocates all the budget to the best sampler. InMAB, ϵt -greedy
is proved to have a logarithmic regret bound, and a sub-optimal

arm is pulled at most O(lnn), given a total pulling times of n. We

find that a similar theoretical guarantee also holds in our problem.

Similar to MAB, the theoretical guarantee requires the estimation

from each batch bounded. We use ui to denote the bound, which is

computed as ui = maxj ∈1...N {(
yj
pi j)

2} − minj ∈1...N {(
yj
pi j)

2}. I.e.,

0 ≤ S.batchEst ≤ ui

In Lemma 2, we prove that the budget allocated to a sub-optimal

sampler is bounded by O(lnn), given a total budget n, when c > 5

and 0 < d ≤ mini ̸=i∗
∆i
ui , where ∆i is the quality gap between the

best sampler and sampler i .

Lemma 2. Given a total budget n, if ϵt -greedy is running with
parameters c > 5 and 0 < d ≤ mini ̸=i∗

∆i
ui , then the budget allocated

to any sub-optimal sampler is at most O(lnn).

Algorithm 2: LCB strategy

Input :A set of samplers Ψ = {S1, S2, · · · , Sk }, budget n, batch size

b , bound ui
Output :A set of samples ψ = {S1, S2, · · · , Sk }

1 # Initialization Phase is the same as Algorithm 1
2 # Allocation Phase
3 for t = 1 to n/b do

4 S∗ = arg minSi
Si .batchEstSum
Si .batchNum

− ui
√

ln t
Si .batchNum

5 ∆S : Draw a batch of b tuples from S∗ ;

6 S∗ .batchEst = 1

|∆S |−1
·
∑|∆S |
i=1

(
yi
pi

− q(∆S))
2
;

7 S∗.batchEstSum + = S∗ .batchEst ;
8 S∗.batchNum += 1;

9 S∗.sample + = ∆S ;

10 end
11 ψ = {S.sample | for each S ∈ Ψ} ;

12 return ψ

4.2 LCB
We propose the Lower Confidence Bound (LCB) strategy in this

section. It is inspired by the Upper Confidence Bound (UCB) [5]

strategy in MAB.

UCB does not only estimate arm quality but also its confidence

bound, where the confidence bound represents the uncertainty of

the estimation. The key idea of UCB is to be optimistic about the

uncertainty of the estimation. More specifically, it pulls the arm

with the highest upper confidence bound of the estimation of arm

quality, i.e., the arm with the highest quality in the optimistic case.

For the selected arm, there exists two cases: 1) if it is the best arm,

then this is exactly what we want; 2) if it is not the best sampler,

then pulling it will increase our confidence on its sampler-quality

estimation (i.e., decreasing the size of the confidence bound). As a

result, it is less likely to be selected in future. Hence, UCB decreases

the probability of pulling a sub-optimal arm, and exploits more and

more on the best arm as iteration increases. It has been proved that

UCB achieves a logarithmic bound on regret [5].

We extend UCB to our problem. Since the smaller the var(D),

the better the sampler quality, we propose a strategy named Lower

Confidence Bound (LCB). Similar to the reason described in Sec-

tion 4.1, we cannot directly apply UCB and we need to preserve

the independence between estimations of each iteration, hence we

also adopt a batch-based approach rather than drawing a single

tuple in each iteration. The pseudo code is shown in Algorithm 2.

LCB shares a similar idea with UCB: at each iteration, it estimates

the sampler quality and computes the confidence bound of the

estimation. Then, it allocates the budget to the sampler with the

lowest lower confidence bound, i.e., the sampler with the highest

quality in the optimistic case. LCB faces two new challenges: 1)

how to compute the lower confidence bound of the estimation of

sampler quality? 2) can we derive a similar theoretical guarantee

like Lemma 2 for LCB?

Lower Confidence Bound.We start with the first challenge. Es-

sentially, the confidence interval measures how far a random vari-

able is from its expectation, which could be computed from con-

centration inequalities. For UCB, it regards each random reward

as a random variable and applies Hoeffding inequality, as stated in

Lemma 3, to compute the confidence interval.

Lemma 3 (Hoeffding Ineqality). Let X1, . . . ,Xn be indepen-
dent random variables bounded by the interval [ai ,bi]: ai ≤ Xi ≤ bi .
Let X =

1

n
∑n
i=1

Xi , then Hoeffding Bound states that:

Pr (|X − E[X] | ≥ λ) ≤ 2exp(−
2n2λ2∑n

i=1
(bi − ai)2

) (13)

In Lemma 3, (X − λ,X + λ) represents the confidence interval,

and 2exp(− 2n2λ2∑n
i=1

(bi−ai)2
) refers to the confidence level. To extend

UCB to LCB, we also adapt the Hoeffding inequality. Note that

Hoeffding inequality requires the random variables to be bounded

and independent from each other. Hence, we estimate the sampler

quality for each batch, as described in Section 4.1, and regard that

estimation (i.e., S.batchEst) as a random variable. Each random vari-

able is bounded by the interval of [0,ui]. We then use the average of

all random variables as the final estimation of the sampler quality,

and denote it by ˆvar(D)t , i.e.,

ˆvar(D)t =

∑t
i=1
S.batchEsti

S.batchNum

Next we compute the confidence interval of ˆvar(D)t by applying

Hoeffding inequality. The variable numbern in Hoeffding inequality
(Equation (13)) is our batch number, i.e., S.batchNum. We use σt to rep-
resent the confidence level at iteration t , and replace λt with σt in

Equation (13). Then the confidence interval is λt = ui

√
ln

2

σt
2S.batchNumt

.

I.e.
3
,

Pr ©­« | ˆvar(D)t − var(D) | ≥ ui

√
ln

2

σt
2S.batchNumt

ª®¬ ≤ σt (14)

We set σt to
2

t 2
to make

∑
σt converged. Hence we compute the

lower confidence bound of each sampler S at iteration t as follows:

lcbt = ˆvar(D)t − ui

√
ln t

S.batchNumt
(15)

It satisfies:

Pr (lcbt ≥ var(D)) ≤ σt (16)

That is, with high probability, the lower confidence bound is no

larger than the real sampler quality.

Theoretical Guarantee. We discuss how to address the second

challenge, i.e., what theoretical guarantee can we get for LCB? In

MAB problem, UCB strategy is proved to pull a sub-optimal sampler

at mostO(lnn) times, and achieve a logarithmic regret. We find that

a similar bound also holds for LCB. In Lemma 4, we show that the

budget allocated to a sub-optimal sampler is bounded by O(lnn).

Lemma 4. Given a total budget n, if applying the LCB strategy,
the budget allocated to any sub-optimal sampler is at most O(lnn).

AdaptiveLCB. In LCB, we need ui , which is the bound of the

sampler-quality estimation from each batch, such that the Hoeffd-

ing inequality can be applied and the theoretical analysis holds.

However, ui could be very large. When the budget is limited, a

large ui may make LCB spend too much budget on exploration,

thus decreasing the overall performance.

3
Note that ˆvar(D)t is an unbiased estimator and we have E[ˆvar(D)t] = var(D).

Algorithm 3: AdaptiveLCB strategy

Input :Sampler set Ψ = {S1, S2, · · · , Sk }, budget n, batch size b
Output :A set of samples ψ = {S1, S2, · · · , Sk }

1 Insert “ui = Si .batchEst” between Line 1 and 2 in Algorithm 2

2 Insert “ui∗ = max (ui∗, S∗ .batchEst)” between Line 9 and Line 10 in

Algorithm 2

To solve this issue, we propose a variation of LCB named Adap-
tiveLCB. Instead of using a large ui that can bound all possible

estimations from each batch (both historical and future estimation),

we set ui adaptively such that it can bound all the historical esti-

mations. More specifically, we record the current maximal value

of the sampler-quality estimation in each iteration, and set it to ui .
Algorithm 3 shows the pseudo code of AdaptiveLCB. We only need

to add two lines of code into Algorithm 2.

Example 2 illustrates how AdaptiveLCB works.

Example 2. Suppose we have two samplers S1 and S2, and the
batch size is 100. We first draw a batch of 100 tuples from each sampler,
and use it to estimate the sampler quality. Suppose the estimated
quality for S1 and S2 are 10000 and 20000, respectively. Since ui is
the adaptive bound of the sampler-quality estimation, u1 and u2 are
initialized as 10000 and 20000, respectively.

In the first iteration, the lower confidence bound for S1 and S2

are 10000 − 10000

√
ln 1

1
= 10000 and 20000 − 20000

√
ln 1

1
= 20000,

respectively (see Equation (15)). Hence, S1 is the current empirical best
sampler. We draw a batch of 100 tuples from S1 and use it to compute
a sampler-quality estimation. Suppose it is 50000. Then the average
sampler-quality estimation of S1 is updated as 10000+50000

2
= 30000

and u1 is updated as max{u1, 50000} = 50000.
In the second iteration, the lower confidence bound for S1 and S2

are 30000 − 50000

√
ln 2

2
= 565 and 20000 − 20000

√
ln 2

1
= 3349,

respectively. S1 is still the empirical best sampler, thus we allocate a
batch to S1.

Repeat the iterative process until the budget is exhausted.

5 COMBINATION PHASE
Once the budget is exhausted, the allocation phase is finished. Now

SamComb enters the combination phase. Let ψ = {S1, S2, · · · , Sk }
denote the sample set derived from our allocation strategy (ϵ-greedy
or LCB). The goal of the combination phase is to assign a weight

to each sampler such that the variance, var(q(ψ)), of the combined

estimator is minimized.

Section 3.1 presents the optimal solution to this weight allo-

cation problem. However, the optimal weight requires knowing

var(Di) (for each i ∈ [1,k]), which is not available in reality. One

straightforward solution is to estimate var(Di) using the allocated

sample and then apply this optimal weight allocation. We call such

approach pseudo-optimal allocation, where the weight is computed

as follows:

wi =

ni / ˆvar(Di)∑k
j=1

nj / ˆvar(Dj)
, (17)

where ˆvar(Di) is an estimation of var(Di) based on Si .

Let ψ∗ denote the sample set derived from the optimal budget

allocation strategy, i.e., allocating all the budget to the best sam-

pler. Let var(q(ψ∗)) denote the corresponding variance. We use the

following formula to measure the gap of SamComb to the optimal

strategy:

дap(q(ψ)) =

var(q(ψ)) − var(q(ψ∗))

var(q(ψ∗))

(18)

Lemma 5 proves that SamComb is asymptotically optimal under

the pseudo-optimal allocation, when ˆvar(Di) = var(Di) for each

i ∈ [1,k].

Lemma 5. Under the assumption that ˆvar(Di) = var(Di) for each
i ∈ [1,k], our framework SamComb, which uses ϵ-greedy or LCB for
budget allocation and uses the pseudo-optimal allocation strategy for
weight allocation, is asymptotically optimal.

We next explore an alternative weight allocation strategy to relax

the assumption in Lemma 5. Obviously, a good sampler should

receive a higher weight than a bad one. Thus, the key challenge is

how to find an alternative way to assess sampler quality.We observe

that after the budget allocation phase , the better the sampler, the

larger sample size it tends to receive, since this is what our budget

allocation strategy tries to optimize for. Thus, the received sample

size is an indirect way to assess sampler quality. Based on this idea,

we propose proportional-to-size allocation,

wi =

ni∑k
i=1

ni
, (19)

where ni is the sample size received by the sampler i after the
budget allocation phase.

Lemma 6 proves that SamComb is asymptotically optimal under

the proportional-to-size allocation.

Lemma 6. Our framework SamComb, which uses ϵ-greedy or LCB
for budget allocation and uses the proportional-to-size allocation
strategy for weight allocation, is asymptotically optimal.

We experimentally compare the two weight allocation strategies

and find that they have similar performance. Since the proportional-

to-size allocation provides a nice theoretical guarantee, SamComb
uses it by default.

6 EXTENSIONS
In this section, we discuss how to extend our framework to support

other aggregate functions, group-by queries, and data updates.

OtherAggregate Functions. Previously wemainly discussed SUM-
like query. Actually SamComb can be extended to support more

aggregate functions, such as MIN, MAX and PERCENTILE query.
We first introduce how to estimate the answer using a single

sampler. Suppose a tuple is sampled with a probability of 0.1, then

it approximately represents 10 such tuples in the population. In this

way, we can “reconstructed” the population and issue the original

query over the “reconstructed” population to get an estimation.

This idea is similar to the plug-in approach in [29]. Note that the

“reconstructed” usually happened virtually. For many aggregation

functions we do not need to actually rebuild the population. Take q-
percentile (e.g., q = 0.9 represents the 90-th percentile) query as an

example. As each tuple t in the sample represents 1/pt tuples in the

“reconstructed” population, where pt is drawn probability of tuple

t , we denote its weight as 1/pt . Then we sort the sampled tuples

by their values, and accumulating the weights. The q-percentile
query can be estimated as the largest value when the accumulated

weights is no larger than q multiply by the total weights.

Now we discuss the case of multiple samplers. To be supported

by SamComb, the aggregate function needs to specify: 1) how to

allocate the budget in each iteration and 2) how to combine the

results from multiple samplers.

For the first question, since most aggregate functions can not

compute the confidence bound easily or efficiently, we adopt the

ϵ -greedy strategy by default. To compare samplers’ qualities, by

default we compare the selectivity in their sample. One may also

use different approaches for different functions. E.g., for MAX query,

we can simply compare the max value in the sample (exclude the

tuples which do not satisfy the predicate), since the sampler with a

larger max value definitely makes a better estimation.

For the second question, since linear combination (bywi) does

not work for all the aggregate functions, a similar idea of recon-

structing the population can be applied to the general case. For

example, to process a median query, we can reconstruct multiple

populations from different samplers, and then merge them and

choose the median value of the merged reconstructed population.

Group-by Queries. To process group-by query, we will maintain

the related information for each group and apply previously dis-

cussed approaches to estimate each group. Then, the left question is

how to select the sampler in each iteration. To answer this question,

we consider minimizing the max error among groups. For SUM-like

queries, we use the estimator variance to measure the group error

and select the sampler that has the highest quality for the group

with the max error. For other aggregate queries (e.g., percentile),

we use # of tuples to measure the group error. Let д be the group
with the minimal tuples, we then select the sampler that are more

likely to contain tuples in д.
Data Update. In this work we focused on insert-only update, like

many existing works [34]. When data is updated, SamComb will

maintain the pre-computed samples. Let DΘ be the stale data, SΘ

be the stale sample created by a sampler S, and D∆ be inserted

data, respectively. Now, the goal is to maintain SΘ such that it

is equivalent to a sample with the same size drawn by S from

DΘ ∪ D∆. To make the maintenance efficient, the high level idea is

to replace some tuples in SΘ with a sample drawn from D∆. I.e., the

new sample consists of two parts: the kept tuples in SΘ, denoted

as S ′
Θ
; and the drawn sample from D∆, denoted as S∆. For example,

a uniform sampler draws each tuple with probability pi =
1

N . In

sample SΘ, each tuple is drawn with probability
1

NΘ

. After data

is updated, each tuple should be drawn with probability
1

NΘ+N∆

.

Hence, we keep each tuple in SΘ with probability
NΘ

NΘ+N∆

to get

S ′
Θ
, and draw each tuple in D∆ with probability

1

NΘ+N∆

to get S∆.

Finally, the updated sample is S ′
Θ
∪ S∆.

7 EXPERIMENT
We evaluate SamComb using both synthetic and real datasets. The

experiments aim to answer the following questions:

• What should be the best setting for SamComb?
• Is it necessary to combine multiple samplers?

• Is bandit-based better than heuristic-based?

• How does SamComb perform in various settings?

7.1 Experimental Setup
Datasets. 1) TPCH-Skew is a synthetic dataset generated from a

variation of the TPC-H benchmark [9]. We set parameters skewness

z = 2 and scale s = 1, and focused on the lineitem table, which

contains 6 million rows and 16 columns. We also generated a larger

dataset using scale s = 10 to test the end-to-end performance. 2)

Loan [1] is a real-world peer-to-peer loan dataset. It concatenated

historical loans from Prosper and Lending Club from 2013 to 2018.

The dataset contains 3 million rows and 18 columns with a wide

variety of data distributions.

Samplers. We created a uniform sampler, a stratified sam-

pler on l_returnflag, and a measure-biased sampler on

l_extendedprice for TPCH-Skew dataset, and created a uniform

sampler, a stratified sampler on grade, and a measure-biased sam-

pler on principal_balance for Loan dataset. Note that a few tuples

may have a very large value and thus be selected too many times by

the measure-biased sampler, hence we will binnizate the measure

column before computing the sampling probability.

Queries. The population parameters that we aim to estimate are in

the form of SELECT SUM(A) FROM table WHERE Condition(B1)
and Condition(B2), ..., Condition(Bk). The query selectiv-

ity is between 0.1% and 1% of the population. For each query, the

aggregation column A and each condition column Bi are randomly

selected, and the number of condition columns is a random number

between 1 and 5. Condition(Bi) is in the form of x ≤ Bi ≤ y and
Bi = x for numerical column and categorical column, respectively.

Obviously, if there is no difference between sampler qualities, then

there is no need to decide which sampler to select. Thus, we gener-

ated two groups of queries based on the quality gap, named Small
GapQuery and Large GapQuery, where each group has 50 queries.

For Small GapQuery and Large GapQuery, the ratio of the quality
of the second best sampler and the best sampler are smaller than

1.5, and larger than 1.5, respectively.

ErrorMetric.We used relative error to measure estimation quality.

Suppose the true query result is q and the estimated result is q̂,

then the error is computed as |
q̂−q
q |. To reduce the randomness of

estimation, we run each query over 5 different samples and compute

the average error. Given a set of queries, we reported their 90th

percentile average error. If the error is 2%, it means that 90% of

queries have an average error (of 5 runs) smaller than 2%.

Implementation and Settings. We implemented SamComb in

Java. The budget was set to 144,000 by default, which was 5% of

Loan and 2.5% of TPCH-Skew, respectively. The experiments were

conducted on a MacBook Pro with an Intel Core i5 2.3GHz, 16GB

RAM, and 250GB SSD.

7.2 Evaluation of Our Approach
In this section, we evaluate SamComb under different settings. The
goal is to find the best setting for SamComb. Note that ϵ -greedy
has a parameter C but LCB does not. Thus, we first find the best

parameter for ϵ -greedy, and then compare ϵ -greedy with two LCB-

based approaches.

Parameter Selection for ϵ-greedy. Recall that ϵt = min{1, ckd2t },

where c and d are user given parameters [5]. For simplicity, let

C =
ck
d2

. AsC increases, ϵ-greedy does more and more explorations.

We vary the parameter C to see how it affects the performance.

The result is shown in Figure 5. We can observe that a small C
usually works well. There are two reasons. First, if the sampler

quality is very different from each other, then it is easy to distinguish

them using a few explorations, thus a small C is preferred. Second,

if the sampler quality is close to each other, choosing any sampler

will not affect the performance much, thus a small C is also good.

Based on this observation, we chooseC = 10 for ϵ -greedy by default.
Comparing ϵ-greedy, LCB, and AdaptiveLCB. We compare ϵ -
greedy, LCB, and AdaptiveLCB, aiming to find the best budget allo-

cation strategy for SamComb. For a fair comparison, we randomly

set the parameter for ϵ -greedy. The comparison results on the two

datasets are shown in Figure 3. We have three observations. Firstly,

LCB performed much worse than ϵ -greedy and AdaptiveLCB. This is
because that LCB had a large bound and needed more sample to

reduce the bound. It also shows that AdaptiveLCB got a good bound

to automatically balance the exploration and exploitation trade-off.

Secondly, there is a larger gap between different strategies when

handling Large Gap queries than Small Gap queries. The underlying

reason is that when samplers have similar qualities, the difference

of selecting a different sampler is not big. Thirdly, AdaptiveLCB and

ϵ -greedy had a similar performance and there is no clear winner. In

TPCH-Skew, ϵ -greedy performs better in the beginning then Adap-
tiveLCB outperforms as budget increases. In Loan, AdaptiveLCB is

slightly better.

In summary, AdaptiveLCB and ϵ -greedy outperformed LCB. Since

AdaptiveLCB does not need to tune the parameter, AdaptiveLCB is

chosen as the default strategy.

Varying Batch Size. SamComb draws a batch of tuples from a

sampler in each iteration. In this experiment, we vary the batch

size from 10 to 10000, and evaluate its impact on error and latency.

The result is shown in Figure 6.

From Figure 6a, we can observe that the error is relative stable

when the batch size is not very big. Although a small batch may be

less accurate for estimating the sampler quality in each iteration,

it also leads to more iterations, which is good for allocating more

budgets to the best sampler. As a result, the error is relative stable.

Figure 6b shows that the latency could be very high for a small

batch size, but it will keep stable when the batch size is above a

threshold. This is because SamComb issues a query for each batch,

and a small batch size will lead to many batches, causing a big

overhead. When the number of bathes is small, the overhead is

negligible comparing to the query processing time, thus the latency

becomes stable.

From this experiment, we can conclude that a poor setting of

batch size could affects the latency a lot, while the impact on error

happened slowly. Hence, we could choose the smallest batch size

when increasing batch size does not further decrease the latency.

7.3 Comparison of Combination Approaches
In this section, we first justify the need for sampler combination

and then compare different combination approaches.

One Size Does Not Fit All. We test the performance of the 100

queries with each individual sampler, and split the queries into

0% 40% 80%
Budget

0%

10%

20%

30%

40%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(a) TPCH-Skew, Small Gap

0% 40% 80%
Budget

0%

10%

20%

30%

40%

50%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(b) TPCH-Skew, Large Gap

0% 40% 80%
Budget

0%
10%
20%
30%
40%
50%
60%
70%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(c) Loan, Small Gap

0% 40% 80%
Budget

0%

10%

20%

30%

40%

50%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(d) Loan, Large Gap

Figure 3: ϵ -greedy vs LCB vs AdaptiveLCB (TPCH-Skew)

Sampler
0%

2%

4%

6%

8%

E
rr
o
r

MB SF UF

(a) TPCH-Skew, U

Sampler
0%

2%

4%

6%

8%

10%

E
rr
o
r

MB SF UF

(b) TPCH-Skew, S

Sampler
0%

4%

8%

12%

16%

20%

E
rr
o
r

MB SF UF

(c) TPCH-Skew, M

Sampler
0%

2%

4%

6%

8%

E
rr
o
r

MB SF UF

(d) Loan, U

Sampler
0%

2%

4%

6%

8%

E
rr
o
r

MB SF UF

(e) Loan, S

Sampler
0%

4%

8%

12%

16%

E
rr
o
r

MB SF UF

(f) Loan, M

Figure 4: Justification for Sampler Combination

0 100 200 300
Parameter C

0%
1%
2%
3%
4%
5%
6%

E
rr
o
r

Eps

(a) TPCH-Skew

0 100 200 300
Parameter C

0%
1%
2%
3%
4%
5%
6%

E
rr
o
r

Eps

(b) Loan

Figure 5: Parameter Selection for ϵ -greedy

10 100 1k 3k
Batch Size (Log Scale)

0%

2%

4%

6%

8%

E
rr
o
r

AdaptiveLcb
Eps

(a) Error

10 100 1k 3k
Batch Size (Log Scale)

0

1

2

3

4

5

T
im

e
(S
e
c
o
n
d
s
)

AdaptiveLcb
Eps

(b) Latency

Figure 6: Varying Batch Size

three groups, named U, S and M group. In the U, S, and M group,

the uniform sampler, the stratified sampler, and the measure-biased

sampler performed worse than the other two samplers, respec-

tively. We plot the performance for different samplers over the

three groups of queries, as shown in Figure 4.

We can see that there is no single sampler that performs well in

all cases. For example, on the Loan dataset, the stratified sampler

performs much better than the other two samplers in the U group.

However, it is much worse than the others in the S group. A simi-

lar observation can also be derived from the TPCH-Skew dataset.

These results validate that one size does not fit all for sample-based

estimation, and there is a strong need to combine multiple samplers.

Comparing with Best Sampler & Worst Sampler. For each

query, there is a best sampler and a worst sampler, which is un-

known unless scanning the full data. In this experiment, we compar-

ing SamComb with two approaches: i) BestAlways: always choosing

the best sampler. ii) WorstAlways: always choosing the worst sam-

pler. The purpose of this experiment is to understand how far the

estimation of SamComb is close to BestAlways and WorstAlways. The
result is shown in Figure 8d.

Figure 8d shows that the error of SamComb is close to BestAlways
and is much more accurate than WorstAlways. This is because Sam-
Comb combines multiple samplers and allocates more budgets to

the best sampler. We further justify this point by investigating the

allocated tuples of SamComb to the best sampler and the worst sam-

pler for each query. It turns out that there are 73% queries where the

best sampler is allocated more than 90% of the budgets, while 95%

queries where the worst sampler is allocated less than 10% budget.

This result further proves that SamComb successfully allocates most

budgets to the best sampler.

Bandit-based vs Heuristic-based.We compare our bandit-based

approach with two heuristic approaches.

TwoStepComb allocates the budget in two step: it first allocates an

initial budget to each sampler and estimates their qualities, and

then it allocates all the remaining budget to the empirical best

sampler, which is similar to the explore-first approach [40]. Finally,

it combines the estimation from multiple samples.

BlinkSelection is the sample selection technique used in BlinkDB [4].

It builds the error-latency profile for each sample and chooses the

one satisfying the error or latency threshold. In our scenario, the

latency is proportional to sample size (since we sequentially scan

the data) and the relationship of error and sample size is clear. That

is, we only need to estimate the sampler quality, then the error-

budget profile can be built. Hence, BlinkSelection is actually the same

as TwoStepComb without the sample combination phase.

The performance of TwoStepComb and BlinkSelection depends on
the initial budget size.We varied this parameter in TwoStepComb and
BlinkSelection, and compared them with SamComb. Figure 7 shows
the result. We see that SamComb outperformed TwoStepComb and
BlinkSelection. This is because that SamComb allocated the budget

adaptively, while TwoStepComb and BlinkSelection only used the

initial estimation to decide the allocation of the remaining budget.

One major issue of TwoStepComb and BlinkSelection is that their
performance is sensitive to the initial size. As shown in Figure 7, the

0% 40% 80%
InitSize

0%

2%

4%

6%

8%

10%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(a) TPCH-Skew, Small Gap

0% 40% 80%
InitSize

0%

2%

4%

6%

8%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(b) TPCH-Skew, Large Gap

0% 40% 80%
InitSize

0%

2%

4%

6%

8%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(c) Loan, Small Gap

0% 40% 80%
InitSize

0%

1%

2%

3%

4%

5%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(d) Loan, Large Gap

Figure 7: Comparing SamComb, TwoStepComb and BlinkSelection

0k 80k 160k
Budget

0%

10%

20%

30%

40%

E
rr
o
r

UF
UF + SF
UF + SF + MB

(a) Max Query

Sampler
0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%

E
rr
o
r

SelEst(UF)
SelEst(UF+SF)
SelEst(UF+SF+MB)

(b) Selectivity Estimation

0k 200k 400k 600k
Budget

0.0
0.1
0.2
0.3
0.4
0.5
0.6

T
im

e
(S
e
c
o
n
d
s
)

(c) Tuning Budget

Strategy
0%

4%

8%

12%

16%

E
rr
o
r

AdaptiveLCB
BestAlways
WorstAlways

(d) Comparing with BestAlways
andWorstAlways

Figure 8: Evaluation in various settings (TPCH-Skew)

performance of TwoStepComb and BlinkSelection first increased then

decreased. This is because that at the beginning, TwoStepComb and
BlinkSelection did not estimate the sampler quality accurately and

chose a bad sampler as the empirical best sampler. With a larger

initial budget, the quality estimation became more accurate and

the probability of choosing the best sampler became larger. Hence,

the performance was improved. However, as the initial size became

larger and larger, the remaining budget became smaller and smaller.

As a result, the performance of TwoStepComb and BlinkSelection
decreased and it is more like equal allocation.

The result also indicates that the initial size is hard to tune. A

good setting of initial size varies from query to query, and data to

data. For example, a good initial size is around 40% and 20% of the

total budget in Figure 7c and Figure 7d, respectively.

7.4 Evaluation in Various Settings
Support Other Aggregation Functions. We evaluate the per-

formance of SamComb in supporting other aggregate functions.

We pick up MAX because it is a challenging one for sample-based

estimation. We used the same query workload but replaced the ag-

gregate function with MAX. We calculated the rank of the estimated

max value and get its relative rank error based on rank_error =

1 −
rank (est imate)

N , where N is the population size. The result is

shown in Figure 8a. We can see that SamComb can successfully

combine multiple samplers and return a much more accurate an-

swer to MAX queries compared to using a uniform sampler only.

This is a promising result since it shows that combining multiple

Table 1: Evaluation of maintenance cost (10% new data)

Sample Creation Sample Maintenance
Uniform 29.33 secs 2.64 secs

Measure-biased 29.81 secs 2.92 secs

Stratified 29.09 secs 2.63 secs

samplers enables sample-based estimation to handle difficult aggre-

gation functions more accurately. We defer an extensive study of

this direction to future work.

Selectivity Estimation. Selectivity estimation aims to estimate

the percentage of the tuples that satisfy a predicate. It is an essential

step in query optimization. Sampling is a common approach for

solving this problem in existing database systems [37].

We evaluate selectivity estimation when multiple samplers are

available. Selectivity estimation can be expressed using COUNT queries.
Thus we replace the aggregation function in our queries from SUM
to COUNT. The result is shown in Figure 8b. We can see that adding

more samplers improves estimation accuracy. For example, adding

the stratified sampler reduces the estimation error of the uniform

sampler by 22%. We also notice that adding the measure-biased

sampler improve less. This is because the measure-biased sampler

is designed to sample more from the tuples with large measure

values. However, in the selectivity estimation scenario, the queries

are COUNT rather than SUM. Our SamComb framework automati-

cally figured this out without wrongly selecting the measure-biased

sampler to hurt the performance.

Tuning Budget. The budget size is a parameter used by AQP sys-

tem to make the trade-off between the latency and error. Sometimes

users may have a error or latency requirement, and want to tune

the budget. This can be achieved by modeling the relationship of

budget-error or budget-latency (e.g., the Error Latency Profiles in

BlinkDB). We varied the budget and measured the latency of each

query. Figure 8c shows the latency distribution of all queries under

different budgets. We can find a linear relationship between budget

and latency among different queries. This is because the query time

is dominated by IO and the sample is scanned sequentially, thus

the time is (approximately) proportional to the number of scanned

tuples. It demonstrates that we can build a budget-latency profile

to tune the budget based on the latency requirement.

Data Update.We tested the overhead of SamComb for data update
(insert). We used the TPCH-Skew 1G as the original data, and took

its 10% sample as the data to be inserted. The sample size is 1% of

the original data for each sampler. We tested the time of creating

an initial sample and the time of incrementally maintaining it. The

result is shown in Table 1. We can see that the maintenance cost is

relatively small. For example, the cost of maintaining a stratified

sample is only
2.63

29.09
= 9% of the total sample creation time. This is

0k 40k 80k 120k
Budget

0%

2%

4%

6%

8%

10%

R
a
n
k
E
rr
o
r

(a) Relative Rank Error

0k 40k 80k 120k
Budget

0

20

40

60

80

T
im

e
(S
e
c
o
n
d
s
)

PostgreSQL
SamComb

(b) Time (Seconds)

Figure 9: Performance of 90-Percentile Queries

Table 2: End-to-end performance comparison (Budget = 1%)

Query Error Response Time
VerdictDB 2.67% 0.36 secs

SamComb 1.89% 0.44 secs

PostgreSQL 0 32.93 secs

because that incremental maintenance only needs to scan the stale

sample and the delta table rather than the whole data.

7.5 End-to-end Performance
In this section, we conducted experiments on a TPCH-Skew data

with scale 10 to show the end-to-end performance of SamComb.
Compare with VerdictDB and PostgreSQL. We compare the

performance of SamCombwith VerdictDB and PostgreSQL. The budget
was set as 1% of the full data for SamComb and VerdictDB. The
PostgreSQL is the approach that directly issue the query in PostgreSQL
over the full data. The SamComb is built on top of PostgreSQL and
each sampler is stored as a table in PostgreSQL. In each iteration,

a query with predicate row_id BETWEEN a AND b is issued to get

the statistics in the batch whose tuple id is between a and b. Then,
the statistics are used to compute the estimated sampler quality.

The result is shown in Table 2. From Table 2, we can see that

under the same budget, the latency of SamComb is close to VerdictDB
(but slightly slower). This is because they both scan samples sequen-

tially at query time. It also shows that the overhead of SamComb is
small. The reason is that the statistics used by SamComb to select a

sampler can be computed incrementally. Furthermore, comparing

to regular execution in PostgreSQL, SamComb can be round 80 times

faster, since it only scans a small sample rather than the full data.

Percentile Query. In this experiment, we test the performance of

SamComb for answering percentile queries. We choose 90th per-

centile, since the median percentile can handle by uniform sample

well and extreme percentile is more challenging for AQP system.

We vary the budget from 10k to 120k, and evaluate the relative

rank error and time of SamComb. The result is shown in Figure 9.

Figure 9a shows that the estimation quality of SamComb for extreme

percentile is improved asmore budgets are allocated. This is because

SamComb combines multiple samplers, and some samplers could

draw tuples that are important to the extreme percentile with a

higher probability. From Figure 9b, we can observe that the latency

of SamComb scaled approximately linearly when the budget is not

very big. This is because the main cost came from the IO scan of

samples, rather than sorting the elements. Comparing to PostgreSQL
whose latency is 80 seconds, SamComb can be 80 times faster within

an error 2%.

8 RELATEDWORK
We review the related work on sample-based estimation, which can

be divided into single-sample based and multiple-sample based.

Single Sample. Sample-based estimation has been extensively

studied in both statistics [39] and databases [25, 30]. To estimate

a population parameter, a simple approach is to draw a uniform

sample and then use it to estimate the parameter. To improve the

performance, various sampling techniques have been proposed. E.g.,

Sample+Seek [13] applies measure-biased sampling to improve uni-

form sampling. START [8] constructs an optimal stratified sample

based on a given query workload. Congressional sampling [2] con-

structs a biased sample optimized for a set of group-by queries.

Correlated sampling [42] constructs correlated samples based on

the join key column. Themain idea of these techniques is to increase

the sampling probability for the tuples that are important to the

result. There is another work also leverages MAB for sampling [10].

Different from us, it focuses on efficiently drawing a sample from a

discrete random variable with a high degree of dependency.

Multiple Samples. There are some efforts that leverage multiple

samples to improve estimation accuracy. E.g., BlinkDB [4] pre-

computes multiple stratified samples and selects the best one using

error-latency profile. Small group sampling [6] constructs multi-

ple small group samples and selects samples based on group-by

columns. VerdictDB [34] constructs different types of samples, and

selects a sample using a heuristic cost model. Quickr [20, 21] ap-

plies heuristic rules to select various samplers in the sample plan

and creates samples on the fly. SPEAr [22] targets at approximate

stream processing scenario and selects uniform/stratified sample

using heuristic rules. Bao [27] applies MAB to pick the appropriate

hint for cardinality estimation. There is other related work [41]

that combines samples from different distributions for Monte Carlo

rendering. To the best of our knowledge, we are the first to study

how to dynamically select and combine samplers. We show that this

novel problem can be modeled as a MAB problem, and our solution

balances the trade-off between exploration and exploitation in a

principal way with theoretical guarantee.

9 CONCLUSION
In this paper, we proposed a novel bandit-based framework, named

SamComb, which combines multiple samplers to improve the qual-

ity of sample-based estimation. We formally defined the sampler

combination problem and justified why it can be modeled as a multi-

armed bandit problem. Our framework consists of three phases: (i)

initialization phase, (ii) allocation phase, and (iii) combination phase.

For the allocation phase, we proposed two strategies based on the

well-known approaches in MAB, i.e., LCB and ϵ-greedy. We proved

that they both allocates at most O(lnn) budget to each sub-optimal

sampler. For the combination phase, we proposed two weight allo-

cation strategies to combine estimators, and proved that SamComb
under the proportional-to-size allocation is asymptotically opti-

mal. We extensively evaluated our approaches on both synthetic

and real world datasets. The results showed that i) SamComb using
the bandit-based approach (AdaptiveLCB) achieved higher perfor-

mance than heuristic-based approaches (Random, TwoStepComb
and BlinkSelection); ii) SamComb helped the reduce estimation error

at the same sample budget (query latency).

REFERENCES
[1] Loan dataset. https://www.kaggle.com/skihikingkevin/online-p2p-lending.

[2] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for approx-

imate answering of group-by queries. In W. Chen, J. F. Naughton, and P. A.

Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pages 487–498. ACM,

2000.

[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan, S. Madden, B. Moza-

fari, and I. Stoica. Knowing when you’re wrong: building fast and reliable

approximate query processing systems. In International Conference on Manage-
ment of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 481–492,
2014.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:

queries with bounded errors and bounded response times on very large data. In

Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-17,
2013, pages 29–42, 2013.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47(2-3):235–256, 2002.
[6] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approxi-

mate query processing. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, California, USA, June 9-12, 2003,
pages 539–550, 2003.

[7] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

[8] S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling for

approximate query processing. ACM Transactions on Database Systems (TODS),
32(2):9, 2007.

[9] S. Chaudhuri and V. Narasayya. TPC-D data generation with skew. ftp.research.

microsoft.com/users/viveknar/tpcdskew.

[10] Y. Chen and Z. Ghahramani. Scalable discrete sampling as a multi-armed bandit

problem. In International Conference on Machine Learning, pages 2492–2501.
PMLR, 2016.

[11] Y. Chen and K. Yi. Two-level sampling for join size estimation. In S. Salihoglu,

W. Zhou, R. Chirkova, J. Yang, and D. Suciu, editors, Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 759–774. ACM, 2017.

[12] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy,

and R. Sears. Online aggregation and continuous query support in mapreduce.

In A. K. Elmagarmid and D. Agrawal, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, pages 1115–1118. ACM, 2010.

[13] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample + seek:

Approximating aggregates with distribution precision guarantee. In Proceedings
of the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 679–694, 2016.

[14] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisiting reuse

for approximate query processing. PVLDB, 10(10):1142–1153, 2017.
[15] S. Han, H. Wang, J. Wan, and J. Li. An iterative scheme for leverage-based approx-

imate aggregation. In 35th IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019, pages 494–505, 2019.

[16] M. H. Hansen and W. N. Hurwitz. On the theory of sampling from finite popula-

tions. The Annals of Mathematical Statistics, 14(4):333–362, 1943.
[17] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In J. Peckham,

editor, SIGMOD 1997, Proceedings ACM SIGMOD International Conference on
Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 171–182. ACM
Press, 1997.

[18] D. Huang, D. Y. Yoon, S. Pettie, and B. Mozafari. Join on samples: A theoretical

guide for practitioners. Proc. VLDB Endow., 13(4):547–560, 2019.
[19] J. Peng, B. Ding, J. Wang, K. Zeng, and J. Zhou. One Size Does Not Fit All: A

Bandit-Based Sampler Combination Framework with Theoretical Guarantees

(Technical Report), 2022.

[20] S. Kandula, K. Lee, S. Chaudhuri, and M. Friedman. Experiences with approxi-

mating queries in microsoft’s production big-data clusters. Proc. VLDB Endow.,
12(12):2131–2142, 2019.

[21] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri, and

B. Ding. Quickr: Lazily approximating complex adhoc queries in bigdata clus-

ters. In F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 631–646. ACM, 2016.

[22] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Spear: Expediting stream

processing with accuracy guarantees. In 36th IEEE International Conference on
Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1105–1116.

IEEE, 2020.

[23] T. Kraska. Northstar: An interactive data science system. PVLDB, 11(12):2150–
2164, 2018.

[24] P. Larson, W. Lehner, J. Zhou, and P. Zabback. Cardinality estimation using

sample views with quality assurance. In C. Y. Chan, B. C. Ooi, and A. Zhou,

editors, Proceedings of the ACM SIGMOD International Conference on Management
of Data, Beijing, China, June 12-14, 2007, pages 175–186. ACM, 2007.

[25] K. Li and G. Li. Approximate query processing: what is new and where to go?

Data Science and Engineering, 3(4):379–397, 2018.
[26] A. Mahajan and D. Teneketzis. Multi-armed bandit problems. In Foundations and

Applications of Sensor Management, pages 121–151. Springer, 2008.
[27] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making

learned query optimization practical. In G. Li, Z. Li, S. Idreos, and D. Srivastava,

editors, SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, pages 1275–1288. ACM, 2021.

[28] B. Mozafari. Approximate query engines: Commercial challenges and research

opportunities. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 521–524, 2017.

[29] B. Mozafari and N. Niu. A handbook for building an approximate query engine.

IEEE Data Eng. Bull., 38(3):3–29, 2015.
[30] F. Olken. Random Sampling from Databases. PhD thesis, University of California

at Berkeley, 1993.

[31] M. Olma, O. Papapetrou, R. Appuswamy, and A. Ailamaki. Taster: Self-tuning,

elastic and online approximate query processing. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages
482–493, 2019.

[32] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large

mapreduce jobs. Proc. VLDB Endow., 4(11):1135–1145, 2011.
[33] Y. Park, M. J. Cafarella, and B. Mozafari. Visualization-aware sampling for very

large databases. In 32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16-20, 2016, pages 755–766. IEEE Computer Society,

2016.

[34] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing approx-

imate query processing. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, pages 1461–1476, 2018.

[35] Y. Park, A. S. Tajik, M. J. Cafarella, and B. Mozafari. Database learning: Toward a

database that becomes smarter every time. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017, pages 587–602, 2017.

[36] J. Peng, D. Zhang, J. Wang, and J. Pei. AQP++: connecting approximate query pro-

cessing with aggregate precomputation for interactive analytics. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 1477–1492, 2018.

[37] C. Proteau. Guide to performance and tuning: Query performance and sampled

selectivity, 2004.

[38] R. Singh and N. S. Mangat. Elements of survey sampling, volume 15. Springer

Science & Business Media, 2013.

[39] S. Singh. Advanced Sampling Theory With Applications: How Michael"" Selected""
Amy, volume 2. Springer Science & Business Media, 2003.

[40] A. Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends®
in Machine Learning, 12(1-2):1–286, 2019.

[41] E. Veach and L. J. Guibas. Optimally combining sampling techniques for monte

carlo rendering. In S. G. Mair and R. Cook, editors, Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, Los
Angeles, CA, USA, August 6-11, 1995, pages 419–428. ACM, 1995.

[42] D. Vengerov, A. C. Menck, M. Zaït, and S. Chakkappen. Join size estimation

subject to filter conditions. Proc. VLDB Endow., 8(12):1530–1541, 2015.
[43] J. N. Yan, Z. Gu, and J. M. Rzeszotarski. Tessera: Discretizing data analysis

workflows on a task level. In Y. Kitamura, A. Quigley, K. Isbister, T. Igarashi,

P. Bjørn, and S. M. Drucker, editors, CHI ’21: CHI Conference on Human Factors
in Computing Systems, Virtual Event / Yokohama, Japan, May 8-13, 2021, pages
20:1–20:15. ACM, 2021.

[44] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical bootstrap: a new

method for fast error estimation in approximate query processing. In International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014, pages 277–288, 2014.

[45] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi. Random sampling over joins

revisited. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages
1525–1539, 2018.

https://www.kaggle.com/skihikingkevin/online-p2p-lending
ftp.research.microsoft.com/users/viveknar/tpcdskew
ftp.research.microsoft.com/users/viveknar/tpcdskew

	Abstract
	1 Introduction
	2 Problem Formalization
	2.1 Sampler
	2.2 Sampler Combination Problem

	3 Sampler Combination Framework
	3.1 Optimal Weight Allocation
	3.2 Exploration and Exploitation Trade-off
	3.3 Model as Multi-Armed Bandit
	3.4 Framework

	4 Allocation Phase
	4.1 _t-greedy
	4.2 LCB

	5 Combination Phase
	6 Extensions
	7 Experiment
	7.1 Experimental Setup
	7.2 Evaluation of Our Approach
	7.3 Comparison of Combination Approaches
	7.4 Evaluation in Various Settings
	7.5 End-to-end Performance

	8 Related Work
	9 Conclusion
	References

