
LearnedQuery Optimizer: What is New and What is Next
Rong Zhu

red.zr@alibaba-inc.com
Alibaba Group

Hangzhou, China

Lianggui Weng
Alibaba Group

Hangzhou, China
lianggui.wlg@alibaba-

inc.com

Bolin Ding
bolin.ding@alibaba-

inc.com
Alibaba Group

Hangzhou, China

Jingren Zhou∗
jingren.zhou@alibaba-

inc.com
Alibaba Group

Hangzhou, China

ABSTRACT
In recent times, learned query optimizer has becoming a hot re-
search topic in learned databases. It serves as the most suitable
experimental plots for utilizing numerous machine-learning tech-
niques and exhibits its superiority with enough evidence. In this
tutorial, we aim to provide a wide and deep review and analysis
on this field, ranging from theory to practice. At first, we would
categorize and introduce representative methods for each learned
component in the query optimizer, as well as for the end-to-end
learned query optimizer. Then, we describe some benchmark eval-
uations and prototype applications. Their results have exhibited
the bright future of applying learned query optimizers in practice.
Based on them, we describe a cutting edge system with step-by-
step guidelines. It is a middleware proposed recently to reduce
the difficulties of developing and deploying learned algorithms in
databases. It would help researchers to iterate their work and make
learned query optimizers truly applicable in production. Finally,
we summarize and point out several future directions. We hope
this tutorial could inspire and guide both researchers and engineers
working on learned query optimizers, as well as other contexts in
learned databases.

CCS CONCEPTS
• Information systems → Data management systems.

KEYWORDS
query optimizer, machine learning, AI4DB
ACM Reference Format:
Rong Zhu, Lianggui Weng, Bolin Ding, and Jingren Zhou. 2024. Learned
Query Optimizer: What is New and What is Next. In Companion of the 2024
International Conference on Management of Data (SIGMOD-Companion ’24),
June 9–15, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3626246.3654692

1 INTRODUCTION
Query optimizer, the core part of DBMS and big data processing plat-
form, directly determines the plan quality and system performance.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0422-2/24/06
https://doi.org/10.1145/3626246.3654692

Although it has been extensively studied and refined, the intrinsic
nature of varied data and query workload pose great challenges.
Until now, it is a consensus that the performance of query optimizer
is not fully favorable, especially on complex and/or tail cases [37].

Recently, the development of machine learning (ML), especially
deep learning, exhibits great superiority in the data processing
area. This cross-filed, called “AI4DB”, has become a hot spot in the
database research field. In AI4DB, a learned query optimizer serve as
a pioneer. It provides suitable experimental plots for various kinds of
ML techniques, including supervised, unsupervised, reinforcement
learning and etc. By some surveys [54, 77], more than 100+ papers
have been published on this topic in the last decade. Meanwhile, it
is still growing fast and exhibits bright futures in some prototype
applications. Therefore, we propose this tutorial to summarize the
advances, analyze the status and guide the development on the
learned query optimizer. Our tutorial contains the following content
in terms of both theoretical and practical perspectives:

1) A comprehensive review and deep analysis on the
learned methods for query optimizer. In the last decade, nu-
merous ML-based approaches have been proposed to optimize each
component in query optimizer, as well as the end-to-end query
performance. Their scope, technical routines and properties are
very different. We try to categorize and introduce the representative
methods in each class, together with some benchmark evaluation
results and prototype applications, to exhibit the advantages and
disadvantages of each method. This would give the audience a deep
and holistic understanding to the field of learned query optimizers.

2) An in-depth introduction on the cutting edge system to
deploy learned query optimizers in actual databases. Deploy-
ing learned query optimizers to benefit the real-world DBMS is the
ultimate goal, but it is a very difficult task. We summarize the chal-
lenges for the actual deployment of learned query optimizers. Then,
we introduce an cutting edge system called PilotScope [80], which is
a middleware that largely reduces the difficulties of developing and
deploying AI4DB algorithms in databases. We describe its system
architecture, workflow, programming APIs and step-by-step guide-
lines on sample applications. This would help researchers to iterate
their work and make learned query optimizers truly applicable in
production.

3) A summary on the promising future works of learned
query optimizers. Based on 1) and 2), we point out a series of
important directions, including but not limited to the model and
system design, evaluation, application and deployment. We hope
this could inspire and guide the following researchers and engineers
to do more work to make learned query optimizer more powerful
and applicable.

561

https://doi.org/10.1145/3626246.3654692
https://doi.org/10.1145/3626246.3654692
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626246.3654692&domain=pdf&date_stamp=2024-06-09


SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Rong Zhu, Lianggui Weng, Bolin Ding, & Jingren Zhou

2 ALGORITHMS, BENCHMARKS AND
PROTOTYPE APPLICATIONS

In this tutorial, we focus on the seminar structure of query opti-
mizer, e.g., PostgreSQL and Calcite, following the volcano frame-
work [11]. On a high level, the query optimizer module is composed
of three components, namely cardinality estimator, cost model and
plan enumerator. For any input SQL query Q , the plan enumerator
first explores the plan space with some algorithms, e.g., dynamic
programming or greedy search, to generate a number of candidate
plans with different join orders. Then, the cost model, together with
the cardinality estimator, is applied for plan selection. Specifically,
for each sub-query Q ′ of the input query Q , the cardinality esti-
mator could estimate the cardinality of Q ′ without executing Q ′.
Based on the estimated cardinality, the cost model could predict
the cost of each candidate plan. Finally, the plan with the minimum
estimated cost is returned for execution.

Within the query optimizer, there exists ample room to apply
ML techniques to improve its performance. This work covers multi-
ple different aspects: from model design, benchmark evaluation to
prototype applications; from individually learned components to
end-to-end learned query optimizers; from unsupervised or super-
vised models to reinforcement learning policies; and from statistical
models to deep models. In the following content, we try to carefully
organize them and provide some in-depth insights.

2.1 Learned Methods for Each Component
In this subsection, we focus on the ML techniques designed for
each component in the query optimizer, namely learned cardinality
estimators, learned cost models and learned join order search methods
in the plan enumerator.

2.1.1 Learned Cardinality Estimators. Given the data D and query
Q , the cardinality estimator aims at building a sketch-based syn-
opses using their information to estimate the number of tuples in D
satisfyingQ . Traditional methods mainly utilize very simple statisti-
cal models, such as one or multi-dimensional histogram, or various
sampling techniques. ML-based methods build more complex mod-
els. We list these methods in Table 1. They could be categorized
into three main classes as follows:
Query-Driven Methods. They learn supervised models directly
mapping featurized query to its cardinality. Some works directly ap-
ply the traditional statistical models. At the very early stage, [36] fea-
turizes each query into a number of parameters and builds a linear
regression model to map parameters to the cardinality. Later, [10]
and [9] propose to use tree-based ensembles and XGBoost to model
the mapping functions. After that, QuickSel [47] uses a mixture
model with overlapping to approximate the probability density
function. It could be refined significantly faster to yield increas-
ingly more accurate selectivity estimates over time.

Some other works apply DNNs to model the mapping func-
tions. [32] applies fully connected neural networks to learn the
cardinality of range queries for the first time. [23] designs the more
complex multi-set convolutional network (MSCN) to extract fea-
tures from tables, range predicates and join conditions and combine
them together to learn the cardinality.

Table 1: A list of learned cardinality estimators.

Category Method Applied ML Techniques

Query-Driven
(Statistical Model)

[36] Linear Model
[10] Tree-based Ensembles
[9] XGBoost

QuickSel [47] Mixture Model

Query-Driven
(DNN-Based Model)

[32] Fully Connected Neural Network
MSCN [23] Multi-Set Convolutional Network

[22] Adding Pooling Layers
CRN [13] Learning Containment Rate

Robust-MSCN [45] Query Masking
GL+[52] Segmentation Technique
Fauce [33] Ensemble of Deep Models
NNGP [75] Bayesian Deep Learning
LPCE [59] Query Re-Optimization

Data-Driven
(Kernel-Based)

[14] Kernel Density Function
[21] Kernel Density Function

Data-Driven
(Auto-Regression Model)

Naru [71] Single Table
NeuroCard [70] Multi-Tables

IAM [40] Adding Gaussian Mixture Model

Data-Driven
(Probabilistic

Graphical Model)

BayesNet [57] Bayesian Networks
BayesCard [65] Revitalized Bayesian networks
DeepDB [17] Sum-Product Network
FLAT [81] FSPN

FactorJoin [64] Factor Graph and Join Histogram

Data-Driven FACE [60] Normalizing Flow
Iris [35] Summarization Models

Hybrid
UAE [63] Deep Auto-Regression Model
GLUE [82] Merging Single Table Results
ALECE [30] Attention on Transformer Model

Based on them, [22] proposes to add pooling layers with the
fully connected neural networks to only capture strong intra-table
correlations. CRN [13] improves over MSCN by learning the con-
tainment rate between pair of queries (Q1,Q2), i.e., the percentage
of result tuples in Q1 that are also result tuples of Q2. The trained
network could also be generally applied to learn cardinality of
any query. [45] proposes Robust-MSCN using the query masking
technique to adapt to workload changes.

Recent works make further extensions. GL+ [52] integrates
DNNs with segmentation techniques to resolve the data hungry
problem. To resolve the uncertainty of the predicted results, Fauce [33]
uses an ensemble of deep models to estimate the cardinality and
the corresponding uncertainty. Later, NNGP [75] employs Bayesian
deep learning (BDL) to bridge between Bayesian inference and deep
learning. This algorithm inherits the advantages of the Bayesian
approach while keeping a universal approximation of neural net-
works. LPCE [59] adopts a query re-optimization methodology. It
consists of an initial model to estimate cardinality before query
execution, and a refinement model to progressively refine the car-
dinality estimations using the actual cardinalities of the executed
operators.
Data-Driven Methods. They learn unsupervised models of the
joint data distribution so the probability (cardinality) of any query
could be computed. The main modeling tools and the corresponding
methods are listed as follows:

1) [14] and [21] use different kernel density functions centered
around sampled points to estimate the cardinality.

2) Naru [71] and NeuroCard [70] use deep auto-regression mod-
els to decompose and represent the joint data distribution. Later,
IAM [40] integrates Gaussian mixture model with auto-regression
model to fit the distribution of continuous attributes and reduce
their domain size.

562



LearnedQuery Optimizer: What is New and What is Next SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

3) BayesNet [57] and BayesCard [65] apply traditional or re-
vitalized Bayesian networks to model the joint data distribution,
respectively.

4) DeepDB [17] applies sum-product networks (SPNs) to repre-
sent the joint distribution. FLAT [81] further extends this method
by replacing SPN to FSPN, a new kind of PGM proposed in [67].

5) FactorJoin [64] combines the factor graph with join histogram
together to efficiently handle joins and accurately capture attribute
correlation.

6) FACE [60] leverages the normalizing flow based models to
learn a continuous joint distribution for relational data.

7) Iris [35] uses different summarization models for different
set of columns and maintains them together to answer cardinality
estimation queries.

Besides these works, Astrid [48] applies natural language pro-
cessing techniques with deep models to learn cardinality of queries
with string predicates. DREAM [26] builds deep models to learn
cardinality of approximate substring queries. LMKG [8] considers
cardinality estimation on knowledge graphs.
Hybrid Methods. They extract information from both queries and
data to estimate the cardinality, including:

1) The UAE method [63] proposes a unified deep autoregres-
sive model to learn the joint data distribution from both the data
and query workload. It applies differentiable progressive sampling
technique to inject the supervised query information into the deep
autoregressive model of data.

2) The GLUE method [82] proposes a general framework merg-
ing single table estimation results produced by any cardinality
estimation method to predict join query size.

3) The ALECE method [30] tries to discover the hidden relation-
ships between queries and underlying data using attention mecha-
nisms and transformer models. It applies a data-encoder module to
learn data aggregations representing implicit correlations among
attributes and a query-analyzer module to map featuized queries
and data aggregations to predict the cardinality of queries. ALECE
can be applied to both static and dynamic data settings in the same
manner and is shown to attain nearly optimal performance.
Extensions. Besides these, some works are proposed to enhance
their performance in other perspectives. [74] proposes a model
advisor, called AutoCE, which uses deep metric learning to learn
a recommendation model to adaptively select the best model for
each dataset. [44] introduces a new loss function, Flow-Loss, to
approximate the optimizer’s cost model and enforces the learned
cardinality estimators to pay more attention to queries that matter
to the final plan quality. [28] generates additional queries when
limited examples are available from the new workload and carefully
picks which queries to use to update the cardinality estimation
model. [42] proposes techniques to featurize queries with mixed
combinations of conjunctive and disjunctive predicates.

There also exist some theoretical works on learned cardinality
estimators. [19] proves that the selectivity function of a range space
with bounded VC-dimension is learnable, using classic learning
theory for real-valued functions based on shattering dimension. [55]
investigates how to quantify the uncertainty associated with the
cardinality estimate of a learned model through prediction intervals.

2.1.2 Learned CostModels. Let P be a physical plan for the queryQ .
Based on Q ’s cardinality and P ’s operators, the cost model returns
a cost value to predict its execution time. Traditional cost models
are rule based and driven by experience. Learned cost models can
be categorized into two classes as follows:
Cost Models for Single Query. In fact, we can directly leverage
learned cardinality for cost estimation, but this leads to accumu-
lative errors. To resolve this problem, existing approaches often
apply deep models to capture the plan structure for cost estima-
tion. [39] proposes to use the tree convolutional network to predict
the plan cost. [51] proposes the Tree-LSTM model to learn an end-
to-end cost model. The work Saturn [34] encodes each query plan
tree into a compressed vector using a traversal-based query plan
auto-encoder to cope with diverse plan structures. The compressed
vectors can be leveraged to distinguish different query types, which
is highly useful for downstream tasks. Later, [76] uses the trans-
former to learn the embeddings of plans. The learned embeddings
could be applied to cost estimation, as well as other tasks in query
optimization.

Besides these works purely on cost models, other works make
some extensions. [16] introduces zero-shot cost models, which en-
able learned cost estimation that generalizes to unseen databases. [68]
proposes a cost model for graph databases. [49] investigates two
key questions: 1) can we learn accurate cost models for big data
systems, and 2) can we integrate the learned models within the
query optimizer.
Cost Models for Concurrent Queries. Cost models over concur-
rent queries are non-trivial as it is rather difficult to characterize
the correlations between different queries. GPredictor [78] utilizes
the graph neural network to capture the query relationships and
estimate the query performance accurately. Prestroid [20] lever-
ages the tree convolution based approach to estimate the concur-
rent query performance in a cloud environment. [31] proposes a
resource-aware deep learning model. It embeds the query plans
with features extracted from the allocated resources. Then, a deep
learning model with an adaptive attention mechanism is trained to
predict the execution time of query plans.

2.1.3 Learned Join Order Search Methods. The join order search
method enumerates all candidate plans in the plan search space to
find a near-optimal plan with the minimum estimated cost. Tradi-
tional approaches typically explore the search space using some
pruning rules, which are efficient but may miss good plans. ML-
based methods could learn from history and overcome the bias
in the estimated cost. They could be mainly categorized into two
classes as follows:
Offline Learning Methods. This class of methods learns from
the previous queries to improve the performance of future ones.
DQ [15] and ReJoin [24] are proposed to use neural network and
reinforcement learning to optimize the join orders, but the simple
neural architecture limits their learning ability. Hence, RTOS [73]
proposes a model that utilizes the TreeLSTM to represent the join
state. Later, JOGGER [2] proposes a novel framework with graph-
based representation to better capture the join tree structure. Fur-
ther, the framework MLMTF [66] proposes a pre-trained model to
represent shared knowledge across data and tasks, which would

563



SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Rong Zhu, Lianggui Weng, Bolin Ding, & Jingren Zhou

be fine-tuned for a specific data. Upon it, several small models are
learned together using multi-task learning for each task, i.e., cardi-
nality estimation, cost model and join order search, respectively.
Online Learning Methods. This class of methods learns a join
order through adaptive query processing, which can change the
order even during the execution of queries. Eddy-RL [58] models
the query execution as a reinforcement learning problem and au-
tomatically learns how to adjust the join order during execution
using Q-learning. SkinnerDB [56] optimizes the join order on the fly
with the help of a Monte-Carlo tree search based approach, where
different join orders are tried in each time slice.

2.2 End-to-End Learned Query Optimizers
Besides learned techniques for each individual component, there
also proposed a number of methods to learn end-to-end query
optimizers. Their procedures can be generalized into a unified
framework with two main steps. For the input query Q , a learned
query optimizer first generates a set of candidate plans PQ =

{P0, P1, . . . , Pk } using some plan exploration strategies. The explo-
ration strategies are different from the plan enumeration methods
in traditional query optimizer. Then, a learned risk modelMr , i.e.,
a complex ML-based model, is applied for plan selection. Mr can
predict the goodness of each plan in PQ in terms of its cost. The
best plan Pr ∈ PQ minimizing the predicted cost is selected for
execution. Different learned query optimizers apply different plan
exploration strategies and risk models, but they can all be subsumed
under this framework. We describe the details as follows.

2.2.1 Different Learned Query Optimizes. One class of learned
query optimizers explores all plans from scratch by themselves.
Neo [38] and Balsa [69] generate the candidate plans PQ by best-
first and beam search strategy, respectively. Then, their risk models
apply the tree convolution network [41] to predict the execution
time of each plan P ∈ PQ . LOGER [3] applies the ϵ-beam search
strategy for candidate plan generation. It models each plan by the
graph transformer to capture relationships between tables and pred-
icates to predict its latency. BASE [5] explores all plans using the
same method as Neo. However, it learns a calibrated cost model to
approach the latency.

Another class of learned query optimizers tries to steer or aid
the native query optimizer for plan generation. Bao [37] steers the
native traditional query optimizer with different hints to enable or
prohibit certain physical operators to generate different candidate
plans. Its risk model is also based on a tree convolution network
with simpler features. HyperQO [72] uses different leading hints
to control the join order of tables to collect candidate plans. Its
risk model relies on the multi-head LSTM structure for predicting
execution time. Lero [79] applies the estimated cardinality as the
tuning knob for generating candidate plans. It scales the estimated
cardinality by some factors to produce different (possibly better)
plans. Unlike other works, Lero trains a pairwise classification
model. For each pair of plans P, P ′ ∈ PQ , the model learns to predict
which plan is better in terms of cost. The plan surpassing the most
number of other plans is then selected to execute. LEON [4] applies
the same method, i.e., dynamic programming, in traditional query
optimizer for plan generation. However, it also applies a pairwise
comparison model for plan selection.

Besides them, the framework PerfGuard [18] could support any
method to generate candidate plans. It also applies the pairwise
model, which incorporates graph convolution networks, for plan
selection. AutoSteer [1] extends Bao with the new capabilities, e.g.,
automated hint-set discovery, to minimize integration effort and
facilitate usability in more database systems.

2.2.2 Performance Regression Elimination Techniques. Despite such
learned query optimizers have shown superiority in some bench-
marks, its performance regression seems inevitable for some queries
due to model under-fitting and difficulty in generalization to un-
seen data. In recent times, there has been a significant shift towards
enhancing the robustness of such learned models to eliminate per-
formance regression.

For instance, Warper [29] enhances the cardinality estimation
model by generating additional queries to update it when data or
workload drift is detected. DDUp [25] uses a two-stage sampling
procedure to test whether the model should be updated w.r.t. dy-
namic data. These methods are post-processing techniques used
for model updating. Another routine is to detect and eliminate
regression before query execution.

The HyperQO work [72] tries to apply the ensemble method.
It deploys a multi-head LSTM model to learn multiple prediction
results for each plan P ∈ PQ . All candidate plans P with a large
variance are filtered and the remaining plan with the best average
estimated cost is selected to execute. A very recent work Eraser [62]
aims at eliminating performance regressions while still attaining
considerable overall performance improvement. It applies a two-
stage strategy, including: 1) a coarse-grained filter that selects to
remove all highly risky plans with unseen feature values; and 2) a
more fine-grained plan cluster method to group plans according to
the prediction quality for selecting the final execution plan. Eraser
can be deployed as a plugin on top of any learned query optimizer
to select more reliable plans.

2.3 Benchmark Evaluations
Except for these algorithmic works, the research community also
proposes some benchmarks to comprehensively evaluate learned
methods on query optimizers.

[61] explores several learned cardinality estimators on a single ta-
ble to investigate whether they are ready for system deployment in
both static and dynamic environments. It further analyzes different
properties of learned cardinality estimators that affect deployment.
Then, [53] performs a design space exploration of learned cardi-
nality estimators to have a comprehensive comparison of these
approaches. The results could provide a guidance for practitioners
to decide what method to use under various practical scenarios.

For traditional query optimizers, the synthetic benchmarks such
as TPC-H [7], TPC-DS [6] and Star Schema benchmarks (SSB) [46]
and the real-world IMDB dataset with its JOB workload [27] are of-
ten applied for benchmark evaluation. However, these benchmarks
either make oversimplified assumptions on the joint distribution
of attributes (TPC-H, TPC-DS and SSB) or contain very simple
forms of joins (IMDB with JOB), which cannot reflect the actual
performance of learned methods on complex real-world data and
varied join settings. To resolve this problem, [12] proposes a new
benchmark, called STATS, which is more complex and close to the

564



LearnedQuery Optimizer: What is New and What is Next SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

real-world settings. Based on this, it integrates multiple learned
query optimizers into the real-world DBMS, i.e., PostgreSQL, to
conduct an end-to-end performance evaluation. The results are
very convincing to exhibit the pros and cons of each method.

2.4 Prototype Applications
Due to the superiority of learned query optimizers, we gradually
move from designing to applying and deploying learned query
optimizers in real-world scenarios. In this part, we introduce some
prototype applications on deploying learned query optimizers in
the industry production environments. We find two representative
works on applying the learned cost model and Bao in SCOPE, the
distributed data processing platform in Microsoft:

1) [50] tries to learn accurate cost models for big data systems
and integrate them within the original query optimizer. It analyzes
the workload patterns to learn a large number of individual cost
models and combine them together to achieve high accuracy and
coverage over a long period. Meanwhile, the models are integrated
into the Cascade-style query optimizer of SCOPE and exhibit the
superiority.

2) [43] applies BAO’s idea proposed in [37] to steer SCOPE’s
query optimizer. It tries to bridge the gaps between the research
assumptions and industry scenarios. Specifically, a rule signature
method is proposed to collect a small number of configuration hints
that could be tuned to optimize per-query performance.

3 PILOTSCOPE: A SYSTEM FOR
DEPLOYMENT

Although learned query optimizers, as well as the AI4DB field, have
rapidly developed in the last decade. Deploying ML algorithms into
actual databases is still prohibitively difficult due to the complexity
of database systems, the difference between ML and DB program-
ming paradigms, and the diversity of ML models. Even for each
specific database engine, deploying specificML algorithms andmod-
els still requires close cooperation between ML and DB developers
and heavy engineering costs, such as the previous prototype appli-
cations in [43, 50]. To this end, a very recent work [80] designs and
develops the PilotScope system. It is an AI4DB middleware with a
programming model that largely reduces the difficulties of develop-
ing and deploying AI4DB algorithms in databases. The PilotScope
is already open-source at https://github.com/alibaba/pilotscope. By
applying PilotScope, we could attain the following benefits:
• PilotScope is easy-to-use for database users. The database user
could access PilotScope to start any AI4DB task as needed and
operate the database as usual. The execution of any AI4DB algo-
rithm is totally transparent to the database user.

• PilotScope enablesML andDB developers to work independently
to play their own strengths in developing ML and DB programs.
They do not need to know the details on the other side.

• PilotScope attains high generality. It could support deploying a
variety of AI4DB tasks on different database systems. Moreover,
it could be easily extended to new tasks and new systems.
In this section, we present the PilotScope system architecture

and workflow. After that, we present a step-by-step demonstration
to guide users to apply PilotScope on sample applications.

3.1 Architecture and Workflow
System Architecture. PilotScope provides a console to operate
the whole system and manages multiple AI4DB drivers and the
DB interactor. The DB interactor contains an interface connecting
AI4DB drivers with databases. Each database steered by the AI4DB
drivers is attached with its specific implementations of DB interactor.

Specifically, in PilotScope, each task, which targets to replace a
database component, is packaged as a driver. Each driver contains
the algorithm describing the algorithmic workflow, e.g., how to learn
to generate the execution plan in a learned query optimizer, and one
or moreMLmodels to be consulted in the algorithm. The algorithms
and models in the driver are all written in an AI-friendly language,
e.g., Python. The PilotScope integrates a runtime environment with
third-party dependencies and libraries to support their execution.

The interface of DB interactor shields the underlying details of
different databases and serves as a unified bridge for drivers to
interact with the databases. It abstracts two operators, namely push
and pull, to allow drivers to enforce actions and exchange data
with the databases. The DB interactor, as well as the operators, is
implemented in different ways on different databases. However,
all of them satisfy the same interface of DB interactor and fulfill
the required functions. In such a way, each driver could apply the
interface to steer different databases with minimum modifications.
In practice, the implementations are often developed as lightweight
patches to the database codebase so that the changes incurred to
the database kennel are minimal.
Workflow. After the database user establishes the connection and
starts a driver through PilotScope console, the driver starts to col-
lect the pre-defined training data from databases. For example,
the query execution time would be collected for training the time
prediction model in the learned query optimizer. After collecting
enough data, the driver would start to train each model using the
provided training function. After that, the algorithm in the driver
would wait to be executed. When needed, it would be invoked by
PilotScope to replace the original database component, e.g., the
learned query optimizer is called whenever the database user exe-
cutes a SQL query. It obtains the inputs from the injection interface
(e.g., the query), executes its algorithm in PilotScope, consults the
ML models using the provided model inference functions and inter-
acts with the database through push/pull operators to fulfill its job.
After it finishes executing, the injection interface sends its result
(e.g., the selected execution plan) to the database. For some drivers,
the ML models are updated in the background to keep track of
database changes.

3.2 Demonstration on Sample Applications
In this section, we provide a thorough description to guide devel-
opers and researchers to apply PilotScope to develop and deploy
their ML methods onto actual databases. The audience could try to
apply PilotScope together with our interpretation.

At first, we show users how to install and configure PilotScope
system. The PilotScope could support any database. Here we demon-
strate its functions on the well-known database PostgreSQL. The
PilotScope repository has already provided a docker image with a
PostgreSQL database pre-configured with PilotScope patches. The
users could download this docker image to get started quickly.

565

https://github.com/alibaba/pilotscope


SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Rong Zhu, Lianggui Weng, Bolin Ding, & Jingren Zhou

Besides, we would also explain how to configure PilotScope to inte-
grate with PostgreSQL from scratch. Users could experience more
customized installation through this process.

Second, we introduce the programmingAPIs applied in PilotScope
to develop a driver. The APIs in PilotScope are very simple. For each
new driver, we only need to override: 1) an init() function to make
some preparations and specify its injection type, e.g., a learned
cardinality estimator or a learned end-to-end query optimizer, and
2) an algo() function to describe the AI4DB algorithm that applies
ML models and DB interactor operators to accomplish the task.
Then, the driver would be called by PilotScope when needed.

For the interaction in PilotScope, we use the concept of session to
define each interaction process betweenML algorithm and database.
For each session, the PilotScope creates a new connection e.g., a
database session, to the database. In this session, we could enforce
the actions to databases, e.g., updating its configurations, sending
or acquiring data, using multiple push() and pull() operators.

Third, we present the details on applying PilotScope in two
representative applications, namely learned cardinality estimator
and learned end-to-end query optimizer.

For the learned cardinality estimator, we could apply the same
driver to support any cardinality estimation method. The injection
interface could support replacing the cardinality of all sub-queries
generated by the learned cardinality estimator methods in a batch
manner.

For the learned end-to-end query optimizer, we present the dri-
vers of Bao [37] and Lero [79]. They apply the same injection in-
terface to obtain the input SQL query and return the generated
plan for execution. In the driver, Bao and Lero apply the push/pull
interaction operators to tune the hints and cardinality and obtain
the candidate plans, respectively.

Fourth, we execute PostgreSQL with different learned cardinality
estimators and end-to-end query optimizers on benchmarks in
PilotScope. We report the evaluation results to exhibit the pros and
cons of all learned methods. This would provide valuable insights
to researchers to iterate the following research works.

4 TUTORIAL INFORMATION
Length of Time. Our tutorial prefers a duration of 3 hours, but
could also be compressed to 1.5 hours. In the option of 3 hours, we
would spend 50 minutes on introducing the learned techniques for
individual components, 40 minutes on end-to-end learned query
optimizer, 20 minutes on benchmarks and prototype applications,
20 minutes on the PilotScope system architecture and workflow,
40 minutes on the demonstration and the final 10 minutes on the
conclusion and future work. In the option of 1.5 hours, we would
omit some details to spend 70 minutes on introducing the learned
techniques, 10 minutes for the benchmarks and prototype applica-
tions and only reserve 10 minutes on briefly introducing PilotScope
without the demonstration.
Intended Audience. Learned query optimizer, as well as AI4DB,
is a crossing field between ML, DB and system. Meanwhile, it is a
hot topic in both academic and industry areas. We target to attract
the audience from three fields:

1) ML and DB researchers who are interested in designing AI-
driven techniques for databases, especially for query optimizer.

This tutorial would give them a comprehensive picture and provide
guidelines for their future work.

2) System researchers who are interested in developing AI4DB
systems. This tutorial would provide the scenarios and requirements
for deploying ML techniques in databases and guide them to design
and optimize such systems.

3) System providers and engineers who are now using or eager
to apply ML techniques in real-world industry data processing
systems. This tutorial would help them to know about the current
advances of learned query optimizers and guide them to apply
PilotScope to resolve the practical deployment issues.
Difference with Previous Tutorials. Our tutorial has overlaps
with two of our previous tutorials:

1) AutoML: From Methodology to Application in CIKM 2021. The
CIKM tutorial focuses on AutoML techniques. ML-based cardinality
estimation is discussed as an application. The main topics are totally
different from our SIGMOD tutorial.

2) Learned Query Optimizer: At the Forefront of AI-Driven Databases
in EDBT 2022. This SIGMOD tutorial has made substantial ex-
tensions in comparison to the one in EDBT. First, we add a suf-
ficient number of new works proposed in recent years, includ-
ing [1, 3–5, 8, 13, 16, 18, 19, 22, 25, 26, 28–31, 33–35, 40, 44, 45, 47–
49, 52, 55, 59, 60, 62, 64, 68, 69, 72, 74–76, 79], which occupies
more than 45% of the works reviewed in this tutorial. Second, we
pay more attention on practically deploying learned techniques in
databases. We add the new content to introduce and demonstrate
the PilotScope system in this tutorial.

5 BIOGRAPHY
Rong Zhu is a research scientist in the Institute for Intelligent

Computing, Alibaba Group. He obtained his PhD degree in De-
partment of Computer Science and Technology, Harbin Insitute of
Technology in 2019. His research interests lie in AI4DB and data
mining.

Lianggui Weng is an engineer in the Institute for Intelligent
Computing, Alibaba Group. He obtained his Master degree in De-
partment of Computer Science and Technology, Huazhong Univer-
sity of Science and Technology in 2021. His research interests lie in
AI4DB and database system.

Bolin Ding is a senior research scientist in the Institute for
Intelligent Computing, Alibaba Group. He completed his PhD in
Computer Science at University of Illinois at Urbana-Champaign
in 2012. His research centers on large-scale data management and
analytics, with focuses on data privacy for databases, AI for systems,
and query optimization.

Jingren Zhou is Senior Vice President at Alibaba and CTO of
Alibaba Cloud. He has managed several core technical divisions at
Alibaba to drive data intelligent infrastructure and applications in
e-commerce and cloud business, including big data and AI infras-
tructure, search and recommendation, and advertising platform. His
research interests include cloud-computing, databases, and large-
scale machine learning. He received his PhD in Computer Science
from Columbia University. He is a Fellow of IEEE.

566



LearnedQuery Optimizer: What is New and What is Next SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

REFERENCES
[1] Christoph Anneser, Nesime Tatbul, David E. Cohen, Zhenggang Xu, Prithviraj

Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query
Optimization for Any SQL Database. Proc. VLDB Endow. 16, 12 (2023), 3515–3527.
https://doi.org/10.14778/3611540.3611544

[2] Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou,
and Kai Zheng. 2022. Efficient Join Order Selection Learning with Graph-based
Representation. In KDD ’22: The 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, Aidong
Zhang and Huzefa Rangwala (Eds.). ACM, 97–107. https://doi.org/10.1145/
3534678.3539303

[3] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned
Optimizer towards Generating Efficient and Robust Query Execution Plans. Proc.
VLDB Endow. 16, 7 (2023), 1777–1789. https://www.vldb.org/pvldb/vol16/p1777-
gao.pdf

[4] Xu Chen, Haitian Chen, Zibo Liang, Shuncheng Liu, Jianhong Wang, Kai Zeng,
Han Su, and Kai Zheng. 2023. LEON:: A New Framework for ML-Aided Query
Optimization. Proc. VLDB Endow. 16, 9 (2023), 2261–2273. https://www.vldb.org/
pvldb/vol16/p2261-chen.pdf

[5] Xu Chen, Zhen Wang, Shuncheng Liu, Yaliang Li, Kai Zeng, Bolin Ding, Jingren
Zhou, Han Su, and Kai Zheng. 2023. BASE: Bridging the Gap between Cost and
Latency for Query Optimization. Proc. VLDB Endow. 16, 8 (2023), 1958–1966.
https://www.vldb.org/pvldb/vol16/p1958-chen.pdf

[6] Transaction Processing Performance Council(TPC). 2023. TPC-DS Vesion 2 and
Version 3. http://www.tpc.org/tpcds/ (2023).

[7] Transaction Processing Performance Council(TPC). 2023. TPC-H Vesion 2 and
Version 3. http://www.tpc.org/tpch/ (2023).

[8] Angjela Davitkova, Damjan Gjurovski, and Sebastian Michel. 2022. LMKG:
Learned Models for Cardinality Estimation in Knowledge Graphs. In Proceedings
of the 25th International Conference on Extending Database Technology, EDBT
2022, Edinburgh, UK, March 29 - April 1, 2022. OpenProceedings.org, 2:169–2:182.
https://doi.org/10.48786/edbt.2022.07

[9] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.
Efficiently Approximating Selectivity Functions using Low Overhead Regression
Models. Proc. VLDB Endow. 13, 11 (2020), 2215–2228. http://www.vldb.org/pvldb/
vol13/p2215-dutt.pdf

[10] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057. https://doi.org/
10.14778/3329772.3329780

[11] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29. http://sites.computer.org/debull/95SEP-CD.pdf

[12] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai
Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Zhou,
Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A Com-
prehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–765.
https://doi.org/10.14778/3503585.3503586

[13] Rojeh Hayek and Oded Shmueli. 2020. Improved Cardinality Estimation by
Learning Queries Containment Rates. In Proceedings of the 23rd International
Conference on Extending Database Technology, EDBT 2020, Copenhagen, Denmark,
March 30 - April 02, 2020. OpenProceedings.org, 157–168. https://doi.org/10.5441/
002/edbt.2020.15

[14] MaxHeimel, Martin Kiefer, and VolkerMarkl. 2015. Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 1477–1492.
https://doi.org/10.1145/2723372.2749438

[15] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,
John P. Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-learning
From Demonstrations. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3223–3230.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976

[16] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-
of-the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361–2374.
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf

[17] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/3384345.
3384349

[18] H. M. Sajjad Hossain, Marc T. Friedman, Hiren Patel, Shi Qiao, Soundar Srini-
vasan, Markus Weimer, Remmelt Ammerlaan, Lucas Rosenblatt, Gilbert Anto-
nius, Peter Orenberg, Vijay Ramani, Abhishek Roy, Irene Shaffer, and Alekh
Jindal. 2021. PerfGuard: Deploying ML-for-Systems without Performance
Regressions, Almost! Proc. VLDB Endow. 14, 13 (2021), 3362–3375. http:

//www.vldb.org/pvldb/vol14/p3362-hossain.pdf
[19] Xiao Hu, Yuxi Liu, Haibo Xiu, Pankaj K. Agarwal, Debmalya Panigrahi, Sudeepa

Roy, and Jun Yang. 2022. Selectivity Functions of Range Queries are Learnable. In
SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022. ACM, 959–972. https://doi.org/10.1145/3514221.3517896

[20] Johan Kok Zhi Kang, Gaurav, Sien Yi Tan, Feng Cheng, Shixuan Sun, and Bing-
sheng He. 2021. Efficient Deep Learning Pipelines for Accurate Cost Estima-
tions Over Large Scale Query Workload. In SIGMOD ’21: International Confer-
ence on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang
Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1014–1022.
https://doi.org/10.1145/3448016.3457546

[21] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities using Bandwidth-Optimized Kernel Density Models. Proc. VLDB
Endow. 10, 13 (2017), 2085–2096. https://doi.org/10.14778/3151106.3151112

[22] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study. In
SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022. ACM, 1214–1227. https://doi.org/10.1145/3514221.3526154

[23] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Al-
fons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. In 9th Biennial Conference on Innovative Data Systems Research, CIDR
2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[24] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. CoRR abs/1808.03196 (2018). arXiv:1808.03196 http://arxiv.org/abs/
1808.03196

[25] Meghdad Kurmanji and Peter Triantafillou. 2023. Detect, Distill and Update:
Learned DB Systems Facing Out of Distribution Data. Proc. ACM Manag. Data 1,
1 (2023), 33:1–33:27. https://doi.org/10.1145/3588713

[26] Suyong Kwon, Woohwan Jung, and Kyuseok Shim. 2022. Cardinality Estimation
of Approximate Substring Queries using Deep Learning. Proc. VLDB Endow. 15,
11 (2022), 3145–3157. https://www.vldb.org/pvldb/vol15/p3145-jung.pdf

[27] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. http://www.vldb.org/pvldb/vol9/p204-leis.pdf

[28] Beibin Li, Yao Lu, and Srikanth Kandula. 2022. Warper: Efficiently Adapting
Learned Cardinality Estimators to Data and Workload Drifts. In SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June 12 -
17, 2022. ACM, 1920–1933. https://doi.org/10.1145/3514221.3526179

[29] Beibin Li, Yao Lu, and Srikanth Kandula. 2022. Warper: Efficiently Adapting
Learned Cardinality Estimators to Data and Workload Drifts. In SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM,
1920–1933. https://doi.org/10.1145/3514221.3526179

[30] Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.
ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on
Dynamic Workloads. Proc. VLDB Endow. 17, 2 (2023), 197–210. https://www.
vldb.org/pvldb/vol17/p197-li.pdf

[31] Yan Li, Liwei Wang, ShengWang, Yuan Sun, and Zhiyong Peng. 2022. A Resource-
Aware Deep Cost Model for Big Data Query Processing. In 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12,
2022. IEEE, 885–897. https://doi.org/10.1109/ICDE53745.2022.00071

[32] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte. 2015.
Cardinality estimation using neural networks. In Proceedings of 25th Annual
International Conference on Computer Science and Software Engineering, CASCON
2015, Markham, Ontario, Canada, 2-4 November, 2015. IBM / ACM, 53–59. http:
//dl.acm.org/citation.cfm?id=2886453

[33] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and
Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. 14, 11 (2021), 1950–1963. https://doi.org/10.14778/3476249.3476254

[34] Shuncheng Liu, Xu Chen, Yan Zhao, Jin Chen, Rui Zhou, and Kai Zheng. 2022.
Efficient Learningwith Pseudo Labels for Query Cost Estimation. In Proceedings of
the 31st ACM International Conference on Information & Knowledge Management,
Atlanta, GA, USA, October 17-21, 2022, Mohammad Al Hasan and Li Xiong (Eds.).
ACM, 1309–1318. https://doi.org/10.1145/3511808.3557305

[35] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit Chaudhuri. 2021.
Pre-training Summarization Models of Structured Datasets for Cardinality Es-
timation. Proc. VLDB Endow. 15, 3 (2021), 414–426. https://doi.org/10.14778/
3494124.3494127

[36] Tanu Malik, Randal C. Burns, and Nitesh V. Chawla. 2007. A Black-Box Approach
to Query Cardinality Estimation. In Third Biennial Conference on Innovative
Data Systems Research, CIDR 2007, Asilomar, CA, USA, January 7-10, 2007, Online
Proceedings. www.cidrdb.org, 56–67. http://cidrdb.org/cidr2007/papers/cidr07p06.
pdf

[37] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Prac-
tical. In SIGMOD ’21: International Conference on Management of Data, Virtual

567

https://doi.org/10.14778/3611540.3611544
https://doi.org/10.1145/3534678.3539303
https://doi.org/10.1145/3534678.3539303
https://www.vldb.org/pvldb/vol16/p1777-gao.pdf
https://www.vldb.org/pvldb/vol16/p1777-gao.pdf
https://www.vldb.org/pvldb/vol16/p2261-chen.pdf
https://www.vldb.org/pvldb/vol16/p2261-chen.pdf
https://www.vldb.org/pvldb/vol16/p1958-chen.pdf
https://doi.org/10.48786/edbt.2022.07
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
http://sites.computer.org/debull/95SEP-CD.pdf
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.5441/002/edbt.2020.15
https://doi.org/10.5441/002/edbt.2020.15
https://doi.org/10.1145/2723372.2749438
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
http://www.vldb.org/pvldb/vol14/p3362-hossain.pdf
http://www.vldb.org/pvldb/vol14/p3362-hossain.pdf
https://doi.org/10.1145/3514221.3517896
https://doi.org/10.1145/3448016.3457546
https://doi.org/10.14778/3151106.3151112
https://doi.org/10.1145/3514221.3526154
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
https://doi.org/10.1145/3588713
https://www.vldb.org/pvldb/vol15/p3145-jung.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.1145/3514221.3526179
https://doi.org/10.1145/3514221.3526179
https://www.vldb.org/pvldb/vol17/p197-li.pdf
https://www.vldb.org/pvldb/vol17/p197-li.pdf
https://doi.org/10.1109/ICDE53745.2022.00071
http://dl.acm.org/citation.cfm?id=2886453
http://dl.acm.org/citation.cfm?id=2886453
https://doi.org/10.14778/3476249.3476254
https://doi.org/10.1145/3511808.3557305
https://doi.org/10.14778/3494124.3494127
https://doi.org/10.14778/3494124.3494127
http://cidrdb.org/cidr2007/papers/cidr07p06.pdf
http://cidrdb.org/cidr2007/papers/cidr07p06.pdf


SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Rong Zhu, Lianggui Weng, Bolin Ding, & Jingren Zhou

Event, China, June 20-25, 2021. ACM, 1275–1288. https://doi.org/10.1145/3448016.
3452838

[38] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718. https://doi.org/
10.14778/3342263.3342644

[39] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[40] Zizhong Meng, Peizhi Wu, Gao Cong, Rong Zhu, and Shuai Ma. 2022. Unsu-
pervised Selectivity Estimation by Integrating Gaussian Mixture Models and
an Autoregressive Model. In Proceedings of the 25th International Conference on
Extending Database Technology, EDBT 2022, Edinburgh, UK, March 29 - April 1,
2022. OpenProceedings.org, 2:247–2:259. https://doi.org/10.48786/edbt.2022.13

[41] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional neural net-
works over tree structures for programming language processing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 30.

[42] Magnus Müller, Lucas Woltmann, and Wolfgang Lehner. 2023. Enhanced Featur-
ization of Queries with Mixed Combinations of Predicates for ML-based Cardinal-
ity Estimation. In Proceedings 26th International Conference on Extending Database
Technology, EDBT 2023, Ioannina, Greece, March 28-31, 2023. OpenProceedings.org,
273–284. https://doi.org/10.48786/edbt.2023.22

[43] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim
Kraska, Marc T. Friedman, and Alekh Jindal. 2021. Steering Query Optimizers: A
Practical Take on Big Data Workloads. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2557–2569. https:
//doi.org/10.1145/3448016.3457568

[44] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032. https:
//doi.org/10.14778/3476249.3476259

[45] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533. https://www.vldb.org/pvldb/vol16/p1520-negi.pdf

[46] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak. 2009.
The Star Schema Benchmark and Augmented Fact Table Indexing. In Perfor-
mance Evaluation and Benchmarking, First TPC Technology Conference, TPCTC
2009, Lyon, France, August 24-28, 2009, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 5895), Raghunath Othayoth Nambiar and Meikel Poess
(Eds.). Springer, 237–252. https://doi.org/10.1007/978-3-642-10424-4_17

[47] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick
Selectivity Learning with Mixture Models. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. ACM, 1017–1033. https://doi.org/10.1145/
3318464.3389727

[48] Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and Gautam Das.
2020. Astrid: Accurate Selectivity Estimation for String Predicates using Deep
Learning. Proc. VLDB Endow. 14, 4 (2020), 471–484. https://doi.org/10.14778/
3436905.3436907

[49] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our
Findings. In Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam
Alawini, and Hung Q. Ngo (Eds.). ACM, 99–113. https://doi.org/10.1145/3318464.
3380584

[50] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our
Findings. In Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam
Alawini, and Hung Q. Ngo (Eds.). ACM, 99–113. https://doi.org/10.1145/3318464.
3380584

[51] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[52] Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for
Similarity Queries. In SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021. ACM, 1745–1757. https://doi.org/10.
1145/3448016.3452790

[53] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Car-
dinality Estimation: A Design Space Exploration and A Comparative Evaluation.
Proc. VLDB Endow. 15, 1 (2021), 85–97. https://doi.org/10.14778/3485450.3485459

[54] Luming Sun. 2023. Papers for database systems powered by artificial intelligence
(machine learning for database). https://github.com/LumingSun/ML4DB-paper-list
(2023).

[55] Saravanan Thirumuruganathan, Suraj Shetiya, Nick Koudas, and Gautam Das.
2022. Prediction Intervals for Learned Cardinality Estimation: An Experimental
Evaluation. In 38th IEEE International Conference on Data Engineering, ICDE 2022,
Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 3051–3064. https://doi.org/10.
1109/ICDE53745.2022.00274

[56] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan
Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded Query Evaluation
via Reinforcement Learning. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol
Deshpande, and Tim Kraska (Eds.). ACM, 1153–1170. https://doi.org/10.1145/
3299869.3300088

[57] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2011. Lightweight
Graphical Models for Selectivity Estimation Without Independence Assumptions.
Proc. VLDB Endow. 4, 11 (2011), 852–863. http://www.vldb.org/pvldb/vol4/p852-
tzoumas.pdf

[58] Kostas Tzoumas, Timos Sellis, and Christian S Jensen. 2008. A reinforcement
learning approach for adaptive query processing. History (2008).

[59] Fang Wang, Xiao Yan, Man Lung Yiu, Shuai LI, Zunyao Mao, and Bo Tang.
2023. Speeding Up End-to-end Query Execution via Learning-based Progressive
Cardinality Estimation. Proc. ACM Manag. Data 1, 1 (2023), 28:1–28:25. https:
//doi.org/10.1145/3588708

[60] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Normal-
izing Flow based Cardinality Estimator. Proc. VLDB Endow. 15, 1 (2021), 72–84.
https://doi.org/10.14778/3485450.3485458

[61] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640–1654. https://doi.org/10.14778/3461535.3461552

[62] Lianggui Weng, Rong Zhu, Di Wu, Bolin Ding, Bolong Zheng, and Jingren Zhou.
2024. Eraser: Eliminating Performance Regression on Learned Query Optimizer.
Proc. VLDB Endow. (2024).

[63] PeizhiWu and Gao Cong. 2021. A Unified DeepModel of Learning from both Data
and Queries for Cardinality Estimation. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021. ACM, 2009–2022.
https://doi.org/10.1145/3448016.3452830

[64] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. Proc. ACM Manag. Data 1, 1 (2023), 41:1–41:27. https://doi.org/10.1145/
3588721

[65] Ziniu Wu and Amir Shaikhha. 2020. BayesCard: A Unified Bayesian Framework
for Cardinality Estimation. CoRR abs/2012.14743 (2020). arXiv:2012.14743 https:
//arxiv.org/abs/2012.14743

[66] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai
Zeng, and Jingren Zhou. 2022. A Unified Transferable Model for ML-Enhanced
DBMS. In 12th Conference on Innovative Data Systems Research, CIDR 2022, Cham-
inade, CA, USA, January 9-12, 2022. www.cidrdb.org. https://www.cidrdb.org/
cidr2022/papers/p6-wu.pdf

[67] Ziniu Wu, Rong Zhu, Andreas Pfadler, Yuxing Han, Jiangneng Li, Zhengping
Qian, Kai Zeng, and Jingren Zhou. 2020. FSPN: A New Class of Probabilistic
Graphical Model. CoRR abs/2011.09020 (2020). https://arxiv.org/abs/2011.09020

[68] Linglin Yang, Lei Yang, Yue Pang, and Lei Zou. 2022. gCBO: A Cost-based
Optimizer for Graph Databases. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, Atlanta, GA, USA, October
17-21, 2022, Mohammad Al Hasan and Li Xiong (Eds.). ACM, 5054–5058. https:
//doi.org/10.1145/3511808.3557197

[69] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
In SIGMOD ’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi
(Eds.). ACM, 931–944. https://doi.org/10.1145/3514221.3517885

[70] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[71] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019), 279–292.
https://doi.org/10.14778/3368289.3368294

[72] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or
Learning-based? A Hybrid Query Optimizer for Query Plan Selection. Proc. VLDB
Endow. 15, 13 (2022), 3924–3936. https://www.vldb.org/pvldb/vol15/p3924-li.pdf

[73] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learning with Tree-LSTM for Join Order Selection. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 1297–1308. https://doi.org/10.1109/ICDE48307.2020.00116

[74] Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai. 2023. AutoCE:
An Accurate and Efficient Model Advisor for Learned Cardinality Estimation.
In 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim,
California, USA, April 3-7, 2023. IEEE.

568

https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.48786/edbt.2022.13
https://doi.org/10.48786/edbt.2023.22
https://doi.org/10.1145/3448016.3457568
https://doi.org/10.1145/3448016.3457568
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://www.vldb.org/pvldb/vol16/p1520-negi.pdf
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1145/3318464.3389727
https://doi.org/10.1145/3318464.3389727
https://doi.org/10.14778/3436905.3436907
https://doi.org/10.14778/3436905.3436907
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.1145/3448016.3452790
https://doi.org/10.1145/3448016.3452790
https://doi.org/10.14778/3485450.3485459
https://doi.org/10.1109/ICDE53745.2022.00274
https://doi.org/10.1109/ICDE53745.2022.00274
https://doi.org/10.1145/3299869.3300088
https://doi.org/10.1145/3299869.3300088
http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
https://doi.org/10.1145/3588708
https://doi.org/10.1145/3588708
https://doi.org/10.14778/3485450.3485458
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.1145/3448016.3452830
https://doi.org/10.1145/3588721
https://doi.org/10.1145/3588721
https://arxiv.org/abs/2012.14743
https://arxiv.org/abs/2012.14743
https://arxiv.org/abs/2012.14743
https://www.cidrdb.org/cidr2022/papers/p6-wu.pdf
https://www.cidrdb.org/cidr2022/papers/p6-wu.pdf
https://arxiv.org/abs/2011.09020
https://doi.org/10.1145/3511808.3557197
https://doi.org/10.1145/3511808.3557197
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://www.vldb.org/pvldb/vol15/p3924-li.pdf
https://doi.org/10.1109/ICDE48307.2020.00116


LearnedQuery Optimizer: What is New and What is Next SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

[75] Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, Rui Li, and Hao Zhang. 2022. Light-
weight and Accurate Cardinality Estimation by Neural Network Gaussian Process.
In SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022. ACM, 973–987. https://doi.org/10.1145/3514221.3526156

[76] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670. https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf

[77] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2022. Database Meets
Artificial Intelligence: A Survey. IEEE Trans. Knowl. Data Eng. 34, 3 (2022), 1096–
1116. https://doi.org/10.1109/TKDE.2020.2994641

[78] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance
Prediction for Concurrent Queries using Graph Embedding. Proc. VLDB Endow.
13, 9 (2020), 1416–1428. https://doi.org/10.14778/3397230.3397238

[79] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proc. VLDB
Endow. 16, 6 (2023), 1466–1479. https://www.vldb.org/pvldb/vol16/p1466-zhu.pdf

[80] Rong Zhu, LiangguiWeng,WenqingWei, DiWu, Jiazhen Peng, YifanWang, Bolin
Ding, Defu Lian, Bolong Zheng, and Jingren Zhou. 2024. PilotScope: Steering
Databases with Machine Learning Drivers. Proc. VLDB Endow. (2024).

[81] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502. https:
//doi.org/10.14778/3461535.3461539

[82] Rong Zhu, Tianjing Zeng, Andreas Pfadler, Wei Chen, Bolin Ding, and Jingren
Zhou. 2021. Glue: Adaptively Merging Single Table Cardinality to Estimate Join
Query Size. CoRR abs/2112.03458 (2021). https://arxiv.org/abs/2112.03458

569

https://doi.org/10.1145/3514221.3526156
https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf
https://doi.org/10.1109/TKDE.2020.2994641
https://doi.org/10.14778/3397230.3397238
https://www.vldb.org/pvldb/vol16/p1466-zhu.pdf
https://doi.org/10.14778/3461535.3461539
https://doi.org/10.14778/3461535.3461539
https://arxiv.org/abs/2112.03458

	Abstract
	1 Introduction
	2 Algorithms, Benchmarks and Prototype Applications
	2.1 Learned Methods for Each Component
	2.2 End-to-End Learned Query Optimizers
	2.3 Benchmark Evaluations
	2.4 Prototype Applications

	3 PilotScope: A System for Deployment
	3.1 Architecture and Workflow
	3.2 Demonstration on Sample Applications

	4 Tutorial Information
	5 Biography
	References



