
Collecting and Analyzing Data Jointly from Multiple
Services under Local Differential Privacy

Min Xu
˚

University of Chicago
xum@cs.uchicago.edu

Bolin Ding
Alibaba Group

bolin.ding@alibaba-inc.com

Tianhao Wang
Purdue University

tianhaowang@purdue.edu

Jingren Zhou
Alibaba Group

jingren.zhou@alibaba-inc.com

ABSTRACT
Users’ sensitive data can be collected and analyzed under local dif-
ferential privacy (LDP) without the need to trust the data collector.
Most previous work on LDP can be applied when each user’s data
is generated and collected from a single service or data source. In a
more general and practical setting, sensitive data of each user needs
to be collected under LDP from multiple services independently
and can be joined on, e.g., user id. In this paper, we address two
challenges in this setting: first, how to prevent the privacy guar-
antee from being weakened during the joint data collection; sec-
ond, how to analyze perturbed data jointly from different services.
We introduce the notation of user-level LDP to formalize and pro-
tect the privacy of a user when her joined data tuples are released.
We propose mechanisms and estimation methods to process multi-
dimensional analytical queries, each with sensitive attributes (in its
aggregation and predicates) collected and perturbed independently
in multiple services. We also introduce an online utility optimiza-
tion technique for multi-dimensional range predicates, based on
consistency in domain hierarchy. We conduct extensive evaluations
to verify our theoretical results using synthetic and real datasets.

PVLDB Reference Format:
Min Xu, Bolin Ding, Tianhao Wang, Jingren Zhou. Collecting and Analyz-
ing Data Jointly from Multiple Services under Local Differential Privacy.
PVLDB, 13(11): xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/3407790.3407859

1. INTRODUCTION
Sensitive data, or attributes, about users’ profiles and activities

is collected by enterprises and exchanged between different ser-
vices in one organization to help make informed data-driven deci-
sions. The de facto privacy standard, differential privacy (DP) [13],
has been deployed in several scenarios to provide rigorous privacy
guarantees on how attributes are collected, managed, and analyzed.
Informally, differential privacy requires that the output of data pro-
cessing varies little with any change in an individuals’ attributes.

The centralized model of DP assumes that a trusted party col-
lects exact attribute values from users. The trusted party is inside a
physical or logical privacy boundary [21], and injects noise during

˚Min Xu’s work was partly done at Alibaba Group, and was partly
done at University of Chicago supported by NSF CNS 1925288.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407859

the (offline or online) analytical process so that query results trans-
ferred across the firewall ensure DP. Systems along this line [24,
25, 18, 21, 20] extend the class of data schemes and queries sup-
ported with improving utility-privacy trade-off. A use case is that a
data engine managing customers’ sensitive data, e.g., in Uber [18],
provides a query interface satisfying DP for its employees.

In the absence of the central trusted party, the local differential
privacy model (LDP) [12] is adopted. Each user has her attribute
values locally perturbed by a randomized algorithm with LDP guar-
anteed, i.e., the likelihood of any specific output of the algorithm
varies little with input; each user can then have the perturbed values
leave her device, without the need to trust the data collector. An-
alytical queries can be answered approximately upon a collection
of LDP perturbed values. Apple [8], Google [15], and Microsoft
[9] deploy LDP solutions in their applications on users’ device to
estimate statistics about user data, e.g., histograms and means.

In this paper, we investigate how to collect and analyze multi-
dimensional data under LDP in a more general setting: each user’s
attributes are collected by multiple independent services, with LDP
guaranteed; and data tuples from the same user collected across
different services can be joined on, e.g., user id or device id which
is typically known to the service providers. Two natural but open
questions are: what privacy guarantee can be provided on the joined
tuples for each user, and what analytics can be done on the jointly
collected (and independently perturbed) multi-dimensional data.
Data model for joint collection and analytics. Figure 1 illustrates
a target scenario. Two users u and u1 are active on two mobile apps
of service 1 and 2. While using app from service 1, u and u1 gener-
ate attribute tuples Tu1 and Tu

1

1 , respectively, which service 1 wants
to collect; and it is similar for service 2. Each user has the control
over the privacy of the collected data across the two services. In-
deed, each tuple is perturbed by a randomized algorithm R to en-
sure LDP, whose parameter is controlled by the user. Conceptually,
T1 (or T2) is a relational table holding users’ information collected
from service 1 (or service 2); and perturbed versions of T1 and T2

can be joined on user id, which is naturally known to both service
providers. The questions are: whether it is safe to release the joined
tuples inRpT1q ’ RpT2q, and what analytics can be conducted on
it. Here is a motivating example.
Example 1.1 (E-Commerce). A user profiling service and a trans-
action processing service collect separate information about users
in a E-commerce platform. The user profiling service collects at-
tributes, including Age and Income, into table User. The transac-
tion processing service collects the attributes about transactions, in-
cluding Amount and Category, into table Transaction. Each user
has a unique UID, which is randomly generated at sign-up, across
the two services. An analyst wants to know the average amount on
sports products for users in specific age group, e.g.,



Joint 
Analytics

Data 
owners

Analyst

Client 2

Client 1

Client 1
Client 2

Service 1

Service 2

1
Partition-Rounding-Perturb
●If user id is primary key→                  
:          : Sec. 3.3

●Otherwise→           with 
double rounding: Sec. 5.3

●No join→          : Sec. 3.3
●1-to-1 join→               : 
Sec. 4.2

●1-to-many join→          : 
Sec. 5.3

   -truncation: 
Sec. 5.2

user id is primary-key
user id is foreign-key

1 2

1 2

3

1 2
Privacy boundary

3213

Figure 1: Data collection and analytics across multiple services
(top), and an algorithmic pipeline of our solution (bottom).

SELECT AVGpAmountq FROM
Transaction JOIN User ON User.UID “ Transaction.UID
WHERE Category “ Sports AND Age P r20, 40s.

The goal of this paper is to support a class of multi-dimensional
analytical queries against joins of tuples with attributes collected
via multiple services from data owners. A query here aggregates
(COUNT, SUM, or AVG) on attributes of tuples under point and
range predicates on the attributes (in the WHERE clause)—all at-
tributes in the aggregation and predicates could be sensitive and
come from different services. Meanwhile, we want to provide
strengthened privacy guarantee (i.e., user-level local differential
privacy as introduced later) for every single user given that her tu-
ples collected from different services can be linked together with
her user id (known to service providers).
Challenge I (joint aggregation). The setting and the query class
studied in this paper are much broader than previous works in two
important aspects. 1) Fully sensitive analysis. We allow all at-
tributes (except user ids which are naturally known to service provi-
ders) in the multi-dimensional analytical queries to be sensitive,
while existing works on answering range queries [32, 7] and releas-
ing marginals [6, 36, 28] under LDP cannot handle aggregations
on sensitive attributes. Note that it is easy to handle non-sensitive
attributes by simply plugging their true values when evaluating
aggregations or predicates as in [32]. 2) Independent data col-
lection across multiple services. Most previous works on multi-
dimensional analytics, e.g., [32] and [36], collect and analyze data
from a single service only; in our setting, attributes in a query may
come from different services, each of which perturbs its sensitive
attributes independently—existing methods only work when these
attributes are perturbed as a whole, which is impossible if these
attributes are from different services.
Challenge II (frequency-based attack). We want to point out that
it is insufficient (in terms of privacy) to ensure LDP independently
in each service, given the fact that tuples collected in different ser-
vices can be joined on user id which is known to service providers.

A straw-man solution based on ε-LDP works as follows: at data
collection, divide the privacy budget ε among the tuples from dif-
ferent services for each user, and perturb each tuple using an LDP
mechanism with proper budget. The hope is that, based on the se-
quential composition, the overall privacy guarantees for each user
is ε-LDP. However, it turns out that this solution cannot provide any
differential privacy for a user because it releases the sensitive infor-
mation, the numbers of tuples that a user generates while using a
service, after tuples are joined on user id. Such exact frequency
release enables various attacks to users, depending on the prior
knowledge of the adversary. For instance, as shown in Figure 2 (an
instance of Example 1.1), if the adversary has the prior knowledge
that the Income of a user is equal to the number of transactions

UID Income
1 100

2 200
UIDItem

2(Book,$10)
2(CD,$20)

UIDItem
1(Shoe,$50)

UID Income
UIDItem

1(,)
2(,)
2(,)

UID Income
1 100
2 200

Service 1

Service 2

User 1

User 2

Frequency 
Release

(NOT Prior 
knowledge)

Attack

Prior Knowledge

UID # Txn
1 1
2 2

User 1 (2) has 
Income of 100 (200)!

Figure 2: Frequency-based attack (#Txn = no. of transactions).
multiplied by 100, then having access to the exact number of trans-
actions of a user (even though each transaction is perturbed under
LDP) enables the recovery of the sensitive Income of the user.

The above frequency-based attack is particularly feasible in our
target scenario because we assume that the same user id is attached
to tuples collected from a user, and is accessible by the service
providers. User id is not a sensitive attribute, but can function as a
join key and allows the adversary to group tuples of the same user.

Contributions and Solution Overview
Our main contribution is to extend the setting and query class sup-
ported by existing LDP mechanisms from single-service frequency
queries to the more complex ones, including aggregations on sen-
sitive attributes and multi-service joint aggregation; as we point
out in challenges I-II, no existing LDP mechanisms can handle our
target setting and query class with formal privacy and utility guar-
antees. We first give an overview of important algorithmic compo-
nents in our solution and introduce the end-to-end pipeline.
‚ Partition-rounding-perturb framework. We propose a framework
to extend the class of multi-dimensional analytical queries with ag-
gregations on sensitive attributes, which is left as an open problem
in [32]. The main idea is to first randomly round the value of an at-
tribute to the two ends, with rounding probability carefully chosen
so that the aggregation on the rounded variable is an unbiased es-
timation of the true aggregation of the attribute. The rounded vari-
able with two possible values is treated as a new sentitive attribute
of the user and then fed into the local perturbation mechanism for
LDP, e.g., the one in [32]. We note that the rounding may incur
some utility loss, depending on how large attribute domain is, but
overall, the loss is still dominated by the part incurred by the local
perturbation. Moreover, users are randomly partitioned to boost the
utilty when there are multiple attributes to be aggregated.
‚ Independent perturbation and joint analytics (HIO-JOIN). In our
solution, tuples collected from different services are perturbed in-
dependently, and we need new estimation algorithm to estimate ag-
gregations on the joins of these tuples. Our solution HIO-JOIN
generalizes the split-and-conjunction technique and the mechanism
HIO based on hierarchical intervals [32] to estimate the joint dis-
tribution on the vector of perturbed tuples and evaluate how likely
the joint predicate is true. To improve the utility, we show that the
standard trick of randomly partitioning users [7] also works here. In
addition, we propose an utility optimization technique, by enforc-
ing consistency across different levels in the hierarchical intervals.
‚ User-level LDP and τ -truncation. To tackle the frequency-based
vulnerability for rigorous privacy guarantees, we formally define
user-level local differential privacy (uLDP), which gathers all the
information about a user (after the join) and makes it indistinguish-
able as whole just as in the classical LDP notation. For one-to-one
joins, the above innovations suffice to ensure uLDP. However, in
one-to-many joins, a user can generate one or more tuples in a par-
ticular service; these tuples can be joined with tuples generated by
her in other services. How many tuples are joinable for her (i.e.,
frequency) is part of the output of the data collection mechanism,
and thus needs to be hidden (otherwise, uLDP is violated).



We propose the τ -truncation technique to hide such frequency
information. Informally, no matter how many tuples are joinable
for a user, we randomly sample (or copy) τ of them and feed them
into the perturbation step. Each sample tuple is associated with a
weight (which is inversely proportional to the sampling ratio) to
compensate for the contribution to the aggregation from tuples not
in the sample. This weight is a new sensitive attribute (of the user),
as it depends on the true frequency. A technique called double
rounding is proposed to perturb these weights together with other
attributes and to derive unbiased estimation of the aggregation.
Overview of Solution Pipeline. Our solution requires minimum
coordination between different services. The whole pipeline of data
collection and analytics is described in Figure 1 (bottom part).

For each user and each service, 1©: if user id is the primary key
of tuples generated from this service (e.g., user profiling service),
one tuple is to be collected per user; if user id is a foreign key
of tuples from this service (e.g., transaction service), the number
of tuples per user is uncertain. In the latter case, we use our τ -
truncation technique to randomly sample (or create) τ tuples for
each user and collect them, even if zero tuple is generated from this
service (meaning that the user has not used this service), in order
to hide the frequency/existence information about this user in the
service. Then, depending on how many tuples in total are to be col-
lected from all the services after τ -truncation (e.g., in Figure 1, 3
tuples are collected per user in total), our privacy budget is evenly
divided, and 2©: each tuple from each service is perturbed inde-
pendently using our partition-rounding-perturb framework before
collected to enable both frequency and attribute aggregations (if
the tuple contains user id as the primary key, then a single rounding
on an attribute is applied; otherwise, double rounding is needed).

Note that the data collection is query-independent—we do not
have to know in advance which attributes will appear in the query
and where they are. The only information that needs to be coordi-
nated between services is the value of τ (which will be specified
later) and the total number of tuples to be collected for each user.

To process a multi-dimensional aggregation query, tuples (with
attributes in the query) collected from different services are joined
on user id, and 3©: the query is rewritten into frequency queries on
their joint distribution, which are combined into the query result: if
the query only contains attributes in a single table, i.e., no join, we
apply the estimation of partition-rounding-perturb, plugged with
that of HIO; if it contains attributes across multiple tables, all with
user id as primary key, i.e., 1-to-1, we apply the estimation of
partition-rounding-perturb, plugged with that of HIO-JOIN; and
if it contains attributes across multiple tables, with user id as for-
eign key in some table, i.e., 1-to-many, we apply the estimation of
partition-rounding-perturb, plugged with those of HIO-JOIN and
double rounding.
Organization. We introduce the data model of our target setting,
the basic LDP definition and notations in Section 2. We further ex-
tend the basic LDP to the user-level privacy guarantee, i.e., uLDP,
in Section 2.3. Section 3 focuses on aggregations of sensitive at-
tributes. Section 4 focuses on joint aggregation with 1-to-1 relation.
We address the frequency-based attack in joint aggregation with 1-
to-many relation in Section 5. Section 6 introduces our utility opti-
mization technique. Experimental results are reported in Section 7.
Extensions and more related work are discussed in Sections 8-9.

2. PRELIMINARIES
2.1 Data Model and Analysis Tasks

We assume that there are n users and K services. Each service
collects users’ data t, in the form of tuple(s) of attributes, with

a client-side application. Some service collects exactly one tuple
from each user. Other services may collect multiple tuples (e.g.,
transactions). We denote the tuples collected by the i-th service as
a relational table Ti. And we denote all the tuples collected from
user u as Tu, and those from u collected by the i-th service as Tui .
Thus, @u P rns,

ŤK
i“1 T

u
i “ Tu, and @i P rKs,

Ťn
u“1 T

u
i “ Ti.

Besides the attributes about the users, we assume that each tuple
has a pseudo-random user id (UID), which is known to the service
provider and can serve as the non-sensitive join key. An analyst
can jointly analyze the data across multiple services S Ď rKs by
joining their tuples, on the user id, as a fact table ’iPS Ti.

In this paper, we focus on answering multi-dimensional analyt-
ical (MDA) queries against joins of tables. Consider a function F
that takes one of the form COUNT, SUM, or AVG on an attribute
A. A multi-dimensional analytical query takes the format:
SELECT FpAq FROM Ti1 JOIN . . . JOIN Tiq ON UID WHERE C,

where tTi1 , . . . , Tiqu are the tables to be joined on UID; C is
the predicate on attributes of the joined fact table, and it can be
conjunction of either point constraints for categorical attributes, or
range constraints for ordinal attributes, or their combinations. We
focus on conjunctions of constraints in this paper. Disjunctions can
be handled by combinations of conjunctions, as described in [32].

Since user id is known to service providers, other attributes may
leak sensitive information about each user. In the next two sub-
sections, we will introduce the classical model of local differential
privacy, and propose an enhanced version, called user-level local
differential privacy (for the setting with multiple services), to pro-
tect these sensitive attributes during data collection. In the rest part
of this paper, for the ease of description, we assume that all the at-
tributes in a query are sensitive. We can extend our techniques for
queries with non-sensitive attributes by simply plugging their true
values when evaluating aggregations or predicates as in [32].

2.2 Local Differential Privacy
Local differential privacy (LDP) can be used for the setting where

each user possesses one value t from a fixed domain D. We first re-
view this notation, and will extend it for the setting of our paper.

Consider a randomized algorithm Rptq that takes t P D. The
formal definition of privacy ofRptq is defined as follows:
Definition 1 (ε-Local Differential Privacy). A randomized algo-
rithmR over D satisfies ε-local differential privacy (ε-LDP), where
ε ě 0, if and only if for any input t ‰ t1 P D, we have

@y PRpDq : Pr rRptq “ ys ď eε ¨Pr
“

Rpt1q “ y
‰

,

whereRpDq denotes the set of all possible outputs ofR.
In the definition, ε is also called the privacy budget. A smaller

ε implies stronger privacy guarantee for the user, as it is harder for
the adversary to distinguish between t and t1. Since a user never
reveals t to the service but only reports Rptq, the user’s privacy is
still protected even if the service is malicious.
Sequential composability. An important property, sequential com-
posability [24], for LDP bounds the privacy on t when it is per-
turbed multiple times. We state the property in Proposition 2.
Proposition 2 (Directly from [24]). Suppose Ri satisfies εi-LDP,
the algorithm R which releases the result of each Ri on input t,
i.e.,Rptq “ xRiptqyki“1, satisfies

řk
i“1 εi-LDP.

2.3 User-level Privacy across Multiple Services
In our setting, multiple services collect tuples from users and

thus sensitive information comes from separate domains. For in-
stance, in Example 1.1, one service collects users’ profile, while the
other collects users’ online shopping transactions. Definition 1 can-
not quantify the privacy for this setting. Note that [9] studies LDP



in an industrial deployment with multiple services, each of which
collects one telemetry data. Here, we define the privacy guaran-
tee formally in a more general setting, where a user can generate
arbitrary number of tuples when using a service. In addition, we as-
sume tuples of a user are collected only once, which is orthogonal
to the continuous observation model [19].

In this paper, we consider the worst case where different ser-
vices come together to infer the user’s sensitive information, and
we aim to protect the privacy of a user over the joint domain for
all possible tuples across the K services. Suppose the i-th service
collects tuples from the domain Di. A user u may generate zero,
one, or multiple tuples when using the i-th service, denoted by a
multiset Tui Ď Di. Across the K services, the user generates tu-
ples xTu1 , . . . , TuKy in the joint domain. We define the user-level
privacy spanning multiple services below:
Definition 3 (ε-uLDP). A randomized algorithm R over the joint
domain across K services is user-level ε-locally differentially pri-
vate (ε-uLDP), if and only if for any two users u, u1, and their col-
lected tuples Tu “ xTu1 , . . . , TuKy and Tu

1

“ xTu
1

1 , . . . , Tu
1

K y in
the joint domain s.t. Di P rKs: Tui ‰ Tu

1

i , we have:

@y PRpD1,...,Kq : Pr rRpTuq “ ys ď eε ¨Pr
”

RpTu
1

q “ y
ı

,

whereRpD1,...,Kq is the output domain across the K services.

When K ą 1 and @u, u1, |Tui | “ |T
u1

i |, all users have the same
number of tuples collected by each service, and the only privacy
loss is from the joint distribution of values of the user’s tuples,
which we can bound using the basic LDP, plus sequential com-
position. And when K ą 1 and Du, u1, s.t., |Tui | ‰ |T

u1

i |, uLDP
covers the more general setting where a user can generate arbitrary
number of tuples for a service, which is the focus of our work.
ε-uLDP is a general privacy definition for the multi-service data

collection setting, and it covers the frequency-based attacks de-
scribed in Section 1: for users u, u1, with different numbers of
tuples on the i-th service, i.e., |Tui | ‰ |T

u1

i |, the straw-man mecha-
nism, i.e., splitting ε among Tu (Tu

1

), and perturbing each of them
with LDP, provides no uLDP guarantees. That is, for y with |Tui |
perturbed values for the i-th service, where i P rKs, the straw-
man has PrrRpTuq “ ys being non-zero while PrrRpTu

1

q “ ys
being zero, which implies8-uLDP, or no privacy.

In Section 3, 4, we mainly focus on the utility for our target query
class, and assume each service collects exactly one tuple from each
user. In Section 5, we propose mechanism that achieves ε-uLDP
and prevents the frequency-based attacks in the general setting.
Notations. For the convenience of the reader, we summarize im-
portant notations introduced throughout the paper in Figure 3.

3. ATTRIBUTE AGGREGATION
To handle multi-dimensional analytical queries under LDP, exist-

ing works propose multi-dimensional frequency oracles over single
tables. In this section, we first review two such LDP oracles. In or-
der to estimate aggregations on sensitive attributes, we introduce a
new class of sensitive-weight frequency oracles based on stochastic
rounding and a new framework called partition-rounding-perturb,
which allows the same sensitive attribute to appear in both aggre-
gations and predicates of the queries. Two instantiations of this
framework are introduced, with provable error bounds.

3.1 Building Block: Frequency Oracles
A multi-dimensional frequency oracle under LDP is a pair of

algorithms, pR, P̄q: R follows LDP definition (Definition 1); and
P̄C
pyq is a deterministic algorithm that takes y, i.e., the output of

Figure 3: Table of notations.

Symbol Meaning
n, K The number of users and services, respectively
rns The set of integers t1, . . . , nu

t P D A tuple in the domain D
Ti, Tu, Tui Tuples generated in service i P rKs, by user u P

rns and by user u in service i
Q, F, C Query, aggregation function and predicate
d, dq The numbers of attributes in Ti (i P rKs) and C
A Attribute with domain of range rAmin, Amaxs
m The cardinality of the domain of an attribute

y Ð Rptq Perturb t into y using algorithmR under ε-LDP
S,M The attribute partition and rounding function
τ, τmax The truncated and the max numbers of tuples a

user generates in a service
PQ
pP̄Q

q The true (estimated) aggregation for query Q
fC (f 1C) Vector of frequencies of the true (perturbed) tuples

for 2dq true/false combinations of conditions in C
M The state transition matrix
r Truncation weight of a tuple in τ -truncation

B, I , I Hierarchical fan-out, interval, and decomposition

R, and outputs its estimated contribution to the predicate C Ď D.
In addition, we denote the true result of the original tuple as PC

ptq.
For a fact table T of n tuples, we denote P̄C

pRpT qq “
ř

yPRpT q

P̄C
pyq as the estimated frequency aggregation of C against T , and

PC
pT q as the true frequency. And we evaluate the utility using

mean squared error (MSE), over the randomness inR:
MSEpP̄C

pRpT qqq “ ErpP̄C
pRpT qq ´PC

pT qq2s.

3.1.1 Optimal Local Hashing
Optimal local hashing (OLH) [31] uses hash function H : D ÞÑ

rgs to compress the domain D. Here, H is randomly selected from
a pre-defined family of hash functions, whose g is the closest inte-
ger to eε ` 1. Given the tuple t, ROLH randomly selects H from
the family of hash functions, and outputs H , together with either
the hash value of t or any distinct hash value, with the following
probabilities:

ROLHptq “

#

xH,hÐ Hptqy, w/p eε

eε`g´1

xH,h
$
ÐÝ rgsztHptquy, w/p g´1

eε`g´1

, (1)

where $
ÐÝ indicates uniform random sampling from set rgsztHptqu.

On receiving the perturbed value y “ xH,hy, P̄OLH estimates its
contribution to the frequency of v P D as P̄v

OLHpyq “
1tHpvq“hu´q

p´q
,

where p “ eε

eε`g´1
and q “ 1{g. As stated in [31], answer-

ing the frequency for any v P D using OLH has the error bound
MSEpP̄v

OLHpRpT qqq “ O
`

4n
ε2

˘

.
OLH works well for point query, and its error for range query

increases fast as the range volume increases. This motivates opti-
mized multi-dimensional frequency oracles for range query.

3.1.2 Hierarchical-Interval Optimized Mechanism
The hierarchical-interval optimized (HIO) mechanism [32] di-

vides the domain D into hierarchy of nodes with various sizes on
various layers. In particular, the hierarchy of a single ordinal at-
tribute of cardinality m consists of one interval of the entire at-
tribute domain at the root and m finest-grained intervals, e.g., in-
dividual values, at the leaves, with intermediate intervals being
the even split of their parents by the fan-out of B. For d ordi-
nal attributes, the d hierarchies are cross-producted into one multi-
dimensional hierarchy of nodes.

To perturb tuple t, RHIO samples one layer from the hierarchy
and maps t to the node that contain the tuple. The node is then



perturbed by ROLH among nodes on its layer. To estimate the fre-
quency of report y for range predicate C, P̄C

HIO first decomposes C
into the set of hierarchical nodes IC, and estimates the contribu-
tion of y to each of the nodes using P̄OLH, if y and the node are on
the same layer. These frequencies, added together and multiplied
by O

`

logdm
˘

, is the unbiased estimation of the frequency of C.
As stated in [32], answering the range frequency query C on dq
attributes using HIO has the error bound:

MSEpP̄C
HIOpRpT qqq “ O

´

n logd`dq m
ε2

¯

. (2)

[32] also achieves frequency oracles with nonsensitive weights for
aggregation on what they call measures that are not sensitive.

3.2 Sensitive-weight Frequency Oracles
Consider a virtual fact table T that is comprised of n users’ tu-

ples. A query asks for the aggregation on a sensitive attribute A:
SELECT SUMpAq FROM T WHERE C. (3)

This class of query requires the underlying LDP oracles to weight
the frequency contribution of a perturbed value y to C by its at-
tribute value A, and we define the LDP primitive for such query
Q “ pA,Cq as sensitive-weight frequency oracle, denoted as P̄Q

pyq.
Thus, query (3) can be estimated as P̄Q

pRpT qq “
ř

yPRpT q P̄
Q
pyq.

Baseline I: HIO. One baseline to sensitive-weight frequency ora-
cles enumerates all possible values of A and estimates their fre-
quencies using multi-dimensional frequency oracles, e.g., HIO, wh-
ich are summed up, weighted by values ofA, as the aggregation re-
sult. In particular, P̄Q

HIOpyq “
ř

vPA v ¨ P̄
C^pA“vq
HIO pyq. According

to the error bound of HIO (Equation (2)), the error bound of this
baseline is: MSEpP̄Q

HIOpRpT qqq “ O
´

ř

vPA v
2 n logd`dq m

ε2

¯

.

Baseline II: HIO with stochastic rounding (SR-HIO). For im-
proved utility, we can combine stochastic rounding (SR) [12] with
HIO to enumerate only the two extreme domain values at aggrega-
tion. In particular, for each attribute A, RSR-HIO first rounds trAs,
i.e., the value of A in t, to either the min Amin or the max Amax,
using the stochastic rounding functionMA

SR defined as follows:

MA
SRptrAsq “

#

Amin, w/p Amax´trAs
Amax´Amin

Amax, w/p trAs´Amin
Amax´Amin

Then, it perturbs the d original attributes in t, together with the d
rounding values, usingRHIO for ε-LDP. Note that perturbing the d
original attribute values enables arbitrary range aggregation on the
collected tuples while perturbing the d rounding values enables the
attribute aggregation on any of the d attribute, both of which are
necessary to support our target query class.

Given a perturbed value y, we can answer the frequency oracle
for predicate C simply as P̄C

SR-HIOpyq “ P̄C
HIOpyq, and, to answer

query (3), we estimate the result by linearly combining the frequen-
cies of the two extreme values, i.e.,

P̄Q
SR-HIOpyq “ Amin ¨ P̄

C^Amin
HIO pyq `Amax ¨ P̄

C^Amax
HIO pyq.

The error bound of such an estimation for query (3) is

MSEpP̄Q
SR-HIOpRpT qqq “ O

´

pA2
min`A

2
maxq2

dn logd`dq m

ε2

¯

,

because SR-HIO introduces d extra attributes from rounding, each
of which is of cardinality 2, and increases Equation (2) by mul-
tiplicative factor of 2d. Next, we propose the partition-rounding-
perturb framework to eliminate the factor of 2d in the error bound.

3.3 Partition-Rounding-Perturb Framework
To improve the utility of SR-HIO, we leverage the fact that only

one attribute can appear in the aggregation function F: we first
randomly partition the tuples into d groups, one for each of the
d attributes, using a randomized partition function S, i.e., Sptq “

31 100

Age Inc

31 100

Age Inc

125

XInc

y “Inc”

Tuples Partition & 
Rounding

Perturb Q=(Inc, Age ∈ [10,20])

C1: Age ∈ [10,20] ⋀ (XInc=1),
C2: Age ∈ [10,20] ⋀ (XInc=125)

“Inc”?

1
3

2

 18 20 18 20 1

XAgeAge IncAge Inc

y “Age”

Figure 4: Example of running AHIO on tuples with attributes
Age P r1, 125s and Inc P r1, 125s (income), and aggregation
on Inc for users with Age P r10, 20s. 1© partition the tuples
by attribute, round their Inc or Age value, and augment with
attribute XInc or XAge for the rounding value; 2© rewrite the
query into two frequency aggregations for the min and max of
Inc; 3© combine the frequency estimations, weighted by the min
and max of Inc, and scale the result by 2 to compensate for the
attribute partitioning.

trAs, for A $
ÐÝ tA1, ¨ ¨ ¨ , Adu, where $

ÐÝ indicates uniform ran-
dom sampling from the d attributes; then apply rounding function
MA

SR on the attribute from S for each tuple independently; finally,
for each tuple, we perturb its d attribute values, together with the
single rounding value. Now to aggregate on attribute A, we only
use tuples partitioned for A, aggregate their estimated contribu-
tions, and scale the result by d as the final result.

We call the overall framework partition-rounding-perturb (PRP),
and, next, we introduce two instantiations using different ways to
perturb the extra rounding value, with different error bounds.

3.3.1 Augment-then-Perturb (AHIO)
AHIO augments the tuple t with the extra attribute XA for the

rounding value of attribute A, and RAHIO perturbs t, including the
value of XA, using HIO. Overall, we have:

RAHIOptq “ RHIOpxt,XA “MA
SRpSptqqyq.

At aggregation, P̄AHIO estimates the frequencies of tuples that sat-
isfy C and have certain rounding value by patching C with con-
junctive equality condition for the rounding value. For instance, to
estimate the frequency of tuples that satisfy C and have attribute A
rounded to Amin, P̄AHIO answers the multi-dimensional frequency
using P̄HIO on condition C ^ XA “ Amin. Then it adds the fre-
quencies, multiplied by the corresponding rounding values and d,
to answer the sensitive-weight frequency oracles, i.e., :

P̄Q
AHIOpyq “

$

&

%

0, if y is not in the group for A
dpAmin ¨ P̄

C^pXA“Aminq

HIO pyq

`Amax ¨ P̄
C^pXA“Amaxq

HIO pyqq, otherwise
Figure 4 shows how AHIO works using a toy example with two
attributes and an aggregation query. The estimation is unbiased,
and its error bound of is:
Lemma 4. Answering query (3) using AHIO under ε-LDP has the
error bound of:

MSEpP̄Q
AHIOpRpT qqq “ O

´

2pA2
min`A

2
maxqn¨d logd`dq m

ε2

¯

.

Proof Sketch: First, since the n tuples is partitioned into d groups,
and the augmented attribute introduces an hierarchy of 2 layers, us-
ing HIO with ε-LDP to estimate the frequencies for C ^ pXA “
Aminq and C^pXA “ Amaxq has error bound of O

´

2n logd`dq m
dε2

¯

.
Then, scaling the frequencies by Amin and Amax, and multiplying
the weighted frequency sum by d, introduces multiplicative factors
pA2

min `A
2
maxq and d2 to the error.

3.3.2 Embed-then-Perturb (EHIO)
EHIO embeds the rounding value into the partition attribute by

doubling its domain. Specifically, it doubles the domain of A to
A´p“ r2Amin ´Amax ´ 1, Amin ´ 1sq _A`p“ rAmin, Amaxsq.



If the rounding value isAmin,REHIO maps trAs to 2Amin´trAs´
1 P A´; otherwise, the value is unchanged, and in A`. And the
mapped tuple is perturbed byRHIO.

To aggregate onA, P̄EHIO patches range conditions, i.e.,A P A´

for Amin and A P A` for Amax, to the predicate C to estimate the
frequencies of the two rounding values:

P̄Q
EHIOpyq “

$

’

&

’

%

0, if y is not partitioned for A

dpAmin ¨ P̄
C^pAPA´q
HIO pyq

`Amax ¨ P̄
C^pAPA`q
HIO pyqq, otherwise

If C contains range condition A P rl, rs, EHIO maps it to condi-
tions A P r2Amin´ l´ 1, 2Amin´ r´ 1s and A P rl, rs for Amin

and Amax, respectively. EHIO doubles the domain size of attribute
A from m to 2m. Thus, its error bound for query (3) is:

MSEpP̄Q
EHIOpRpT qqq “ O

´

pA2
min`A

2
maxqnd log2 2m logd`dq´2m

ε2

¯

.

Remarks. The difference between the error bounds of AHIO and
EHIO is 2 log2m

log2 2m
, which is between 0.5 (whenm “ 2) and 2 (when

mÑ8). It is better to use AHIO and EHIO when m is small and
large, respectively.

4. 1-TO-1 JOINT FREQUENCY ORACLES
In this section, we focus on the joint aggregation over tuples that

are collected by K separate services:
SELECT FpAq FROM T1 JOIN . . . JOIN TK WHERE C, (4)

where A is the aggregation attribute collected by one of the joining
services, and C consists of K ¨ dq conditions, on dq attributes of
each service. The key task here is to, given the vector of perturbed
values y “ xyiyKi“1 joined on the same user id, estimate its contri-
bution to the frequency of C, and we call such LDP primitive joint
frequency oracles, denoted as P̄C

pyq. Given such frequency ora-
cles, we can plug it into the partition-rounding-perturb framework,
in place of HIO, to achieve attribute aggregation, i.e., P̄Q

pyq, for
Q “ pA,Cq, i.e., P̄Q

p’
K
i“1 RpTiqq “

ř

yP’Kj“iRpTiq
P̄Q
pyq.

Next, we focus on joint frequency oracles over tuples with one-
to-one relation, and extend to one-to-many relation in Section 5.

4.1 Split-and-Conjunction Baseline
Split-and-conjunction (SC) in [32] enables single-table multi-

dimensional frequency oracles over tuples with independently per-
turbed attributes. In our setting, we can use SC to independently
perturb all attributes from the K services, each with privacy pa-
rameter ε

K¨d
, and estimate the frequency of C using the reported

perturbed attribute values. We call such mechanism SC-JOIN.
State inversion. To estimate the frequency for C, SC-JOIN first
decomposes C into K ¨ dq atomic predicates C1,C2, . . ., one for
each attribute in C. For the joined value y, SC-JOIN increments
f 1Crxs by one, where the i-th bit of x is 1 if y satisfies Ci; or 0
otherwise. Similarly, we can denote the vector fC as the vector of
frequencies on the original tuples, and fCr11 . . . 1s, i.e., 1 for all
Ci in C, is the true frequency aggregation for C. The two vectors
are connected via a state transition matrix M, which defines the
stochastic transition from the state fC to the frequency distribution
f 1C, i.e., Erf 1Cs “ M ¨ fC. For instance, when C contains only one
condition, we have

E

„ˆ

f 1Cr0s
f 1Cr1s

˙

“

ˆ

Prr0|0s Prr0|1s
Prr1|0s Prr1|1s

˙ˆ

fCr0s
fCr1s

˙

,

where Prrx1|xs indicates the probabilities of the perturbed value
evaluated as true/false (x1 “ 1/0), given the original value eval-
uated as true/false (x “ 1/0). Generally, for C with conjunctive
conditions on K ¨ dq attributes, M is of dimension 2K¨dq ˆ 2K¨dq ,
and we can derive M based on the probabilities p and q of the

Service 1 Service 2

[    ]
11
10
01
00

[    ]
11
10
01
00

⋀

3x3 hierarchical layers

One layer for 1/9 tuples

Figure 5: HIO-JOIN across two services, each collecting one
attribute using hierarchy with fan-out B “ 4.
LDP mechanism (See [32] for details). With f 1C and M, we
can calculate M´1

¨ f 1C as the unbiased estimation of the initial
state fC, which contains the frequency for the given predicate. We
call such technique state inversion, and we have P̄C

SC-JOINpyq “
pM´1

¨ f 1y,Cqr11 . . . 1s, where f 1y,C is the vector f 1C on y.
As stated in [32], for Q “ pA,Cq on T “’

K
i“1 Ti, SC-JOIN

has error bound of: MSEpP̄C
SC-JOINpRpT qqq “ O

´

n log3K¨dq m

pε{pK¨dqq2K¨dq

¯

.
To answer the joint frequency of C, SC-JOIN requires joint es-

timation on all attributes in C, whether from the same or different
services. For better utility, we want to minimize the number of joint
estimations to the number of services involved in C, i.e., up to K.

4.2 Multi-Service Joint Frequency Oracles
While supporting joint analysis, SC-JOIN independently per-

turbs all the attributes. This makes single-table analysis more noisy
as SC is used for each service, instead of HIO. To improve the util-
ity for single-service analysis and at the same time support joint
analysis, we propose to adapt the state inversion technique in SC-
JOIN for HIO reports, and call such mechanism HIO-JOIN.
RHIO-JOIN – independentRHIO with splitted ε. For each tuple of a
service, RHIO-JOIN applies RHIO to perturb it. Formally, for user u
with tuples Tu1 , . . . , TuK across the K services,

RHIO-JOINpT
u
1 , . . . , T

u
Kq “ Rε{KHIO pT

u
1 q, . . . ,Rε{KHIO pT

u
Kq (5)

is reported, whereRε{KHIO pT
u
i q perturbs the single tuple in Tui using

HIO with privacy parameter ε
K

. Here, tuples of the K services are
independently perturbed by RHIO, and the privacy parameter ε is
evenly divided for all the K tuples of the user so that the overall
privacy loss is bounded by ε. Next, we focus on the joint aggrega-
tion over these perturbed HIO reports.
P̄HIO-JOIN – state inversion across services with sampling. We
adapt the state inversion technique in SC-JOIN for HIO-JOIN with
the key insight that, after mapping a tuple to the node in the hierar-
chy, RHIO perturbs the node in the exact same manner as SC per-
turbs the single attribute. Thus, for each hierarchical layer across
the K services, we can derive the state transition matrix for the
nodes on that layer across the K services, following what SC does
for nodes across the K ¨ dq attributes, which gives us a state transi-
tion matrix of dimension 2K ˆ 2K . The joined tuples that are sam-
pled by RHIO on the same layers as the predicate decompositions
are classified into the vector f 1C, which is then multiplied by M´1

to recover the frequency of the original tuples. The estimated fre-
quencies of all the decompositions are added together, and scaled
by the number of layers across K services, i.e., logK¨dm, to com-
pensate for the layer sampling in HIO. Thus, we have the frequency
estimation of HIO-JOIN as:

P̄C
HIO-JOINpyq “

"

0, if y and C on different layers
logK¨dm ¨ pM´1

¨ f 1y,Cqr11 . . . 1s, otherwise

Example 4.1. Figure 5 shows how HIO-JOIN works with two ser-
vices, each collecting one attribute: at collection, each tuple of a
service is perturbed on one the 3 layers of the hierarchy of the at-
tribute; at aggregation, the predicate C with range conditions on at-
tributes of the two services is first decomposed into pairs of nodes



across the two hierarchies. For one pair of nodes, i.e., the green
and purple ones, HIO-JOIN calculates f 1C by counting the numbers
for indices 11, 10, 01 and 00, which represent the four cases where
the joined tuple yi has part from service 1 (not) in the green node
and part from service 2 (not) in the purple node. For instance, y1

has its two attributes inside the green and purple nodes, which in-
crements f 1Cr11s by 1. And y2 has its first attribute inside the green
node, and the second attribute outside the purple node, which in-
crements f 1Cr10s by 1. Joined values not on the same layers as the
decomposed nodes, e.g., y5, do not contribute to any of the classes.
Since there are 3 ˆ 3 layers across the two hierarchies, 1

9
of the

collected tuples are expected to be on the same layer as the decom-
posed nodes. Thus, after multiplying f 1C by M´1, HIO-JOIN mul-
tiplies the estimation by 9. HIO-JOIN repeats the estimation for
the other decompositions of predicate C, and adds their estimations
together as the aggregation for C.

We state the error bound of HIO-JOIN in Lemma 5:
Lemma 5. Answering the frequency query for predicate C on K ¨

dq attributes against T “’
K
i“1 Ti using HIO-JOIN has error bound:

MSEpP̄C
HIO-JOINpRpT qqq “ O

´

n logKpd`dqqm
pε{Kq2K

¯

.

Proof Sketch: First, the number of joined values sampled on the
same layer as C is O

´

n
logK¨dm

¯

. For these joined values, since the
parameter ε is only splitted by K, estimating the range frequency
on each of the O

`

logK¨dq m
˘

hierarchy nodes, using model inver-

sion, incurs error bound of O
´

n
logK¨dmpε{Kq2K

¯

. Finally, we mul-

tiply the aggregations by factor of O
`

logK¨dm
˘

.
Note that here the effect of joint estimation, which is manifested

as the power of ε, is at the scale of K, which is smaller than the
K ¨ dq in SC-JOIN. The difference will be considerable when dq
is large and ε is small, which we evaluate in Section 7.3
Security. HIO-JOIN splits ε by K, and, by sequential composi-
tion, the overall privacy guarantees for each user is ε-LDP. Fur-
thermore, since users have the same number of tuples collected by
each service, i.e., 1, it is ε-uLDP. This argument, however, does
not generalize to the one-to-many relation, where users of the i-th
service can generate arbitrary numbers of tuples. We will address
this problem in Section 5.

5. HANDLING ONE-TO-MANY JOIN
In this section, we focus on the joint aggregation over tuples

with one-to-many relation. In particular, we focus on the primary-
foreign-key joint aggregation with two services. Each user u gen-
erates exactly one tuple with user id as the primary key in service 1,
i.e., @u : |Tu1 | “ 1, and up to τmax tuples with user id as a foreign
key in service 2, i.e., @u : 0 ď |Tu2 | ď τmax. We assume that τmax,
the maximum number of tuples that can be generated by a user in
service 2 is public. We want to guarantee ε-uLDP (Definition 3),
and the target analytical task is the same as query (4).

5.1 Frequency-based Attack
We introduced SC-JOIN and HIO-JOIN for joint aggregation

under one-to-one relation. A straightforward extension to one-to-
many relation is to split the privacy parameter ε for a user u among
all the tuples collected. That is, each tuple in services 1 and 2
is reported under ε{p|Tu1 | ` |Tu2 |q-LDP. And the overall privacy
guarantees for u is ε-LDP, based on the sequential composition.

Unfortunately, this approach is not private, as it enables the sim-
ple yet effective frequency-based attack: After collecting perturbed
tuples from service 2, for each user, the adversary can count the
number (frequency) of tuples that can be joined with some tuple

from service 1 on user id, by grouping the tuples by user id. With
such frequency information available, one can immediately dis-
tinguish between users with different usage patterns in service 2.
With extra prior knowledge, based on these frequencies, the ad-
versary can launch even more devastating attacks to infer sensitive
attributes about users (see Example 1.1). In fact, the presence of
some reported tuples or absence of any tuple already reveals infor-
mation about whether the user is using a service, which by itself is
sensitive especially when the service targets certain group of users.

More formally, we can show that the above approach does not
provide uLDP (Definition 3) to individual users. To show this for
HIO-JOIN and two users u and u1, s.t., |Tu2 | ‰ |Tu

1

2 |, we take y “
RHIO-JOINpT

u
q in Definition 3, and, thus, |y| “ |RHIO-JOINpT

u
q| ‰

|RHIO-JOINpT
u1
q|. Thus, the ratio between the probabilities of the

perturbed tuples from u and u1 being equal to y are unbounded
(8-uLDP), as PrrRpTuq “ ys ą 0, and PrrRpTu

1

q “ ys “ 0.
The problem of the above approach is that it outputs a perturbed

value for each input tuple of the user, and breaks the privacy guar-
antees when users have different numbers of tuples. Next, we close
such security loophole by hiding the real number of tuples with user
id as the foreign-key, i.e., from service 2, of a user, and achieve ε-
uLDP under one-to-many relation.

5.2 Hiding Existence and Frequency
with τ-Truncation

To prevent the frequency-based attacks that exploit the distinct
numbers of collected tuples on service 2 among users, we propose
the τ -truncation mechanism that outputs the fixed number, i.e., τ ,
of perturbed tuples for each user’s tuples on service 2.
τ -truncation. Suppose user u generates a maximum of τmax tuples
in service 2, i.e., 0 ď |Tu2 | ď τmax. Here, |Tu2 | “ 0 means u not
using this service. The goal of τ -truncation is to hide each user’s
presence/absence information as well as the true frequency:
‚ If |Tu2 | ą 0, we want to hide the frequency |Tu2 |. The mecha-

nism samples τ tuples from Tu2 with replacement, and attach a trun-
cation weight (inversed sampling ratio) r “ |Tu2 |{τ P rrmin, rmaxs,
where rmin “ 0 and rmax “ τmax{τ , to each of these tuples. This
weight is used to obtain an unbiased estimate of the aggregation.
‚ If |Tu2 | “ 0, we want to hide the absence of u. The mechanism

randomly draws a sample of τ tuples from the domain D2 of T2,
and attach a weight r “ 0 to each of them (so that we know these
dummy tuples have no contribution in any aggregation).

Formally, the τ -truncation procedure Trunc is defined to be:

Truncpτ, T q “

#

xti
$
ÐÝ T, r “ |T |

τ
y
τ
i“1 if |T | ą 0

xti
$
ÐÝ D, r “ 0yτi“1 if |T | “ 0

,

where ti
$
ÐÝ T (or the domain D of T ) means that we use uniform

random sampling to draw a tuple from T (or D) as ti.
RTrunc – independent RAHIO with splitted ε. In both cases, each
user generates exactly τ tuples xti, ryτi“1. In order to completely
hide the existence and frequency information as well as the content
in ti, we apply an LDP perturbation mechanism, e.g., RAHIO in
Section 3.3, on both the value of r and ti.

In terms of service 1, since user id is the primary key, each user
generates exactly one tuple in Tu1 , and thus, we only need to apply
the perturbation mechanism on this tuple.

For each user u, there are a total of τ ` 1 tuples to be perturbed,
namely, one tuple in Tu1 and τ tuples in Truncpτ, Tu2 q “ xti, ry

τ
i“1.

The privacy budget is evenly partitioned among these τ ` 1 tuples.
Putting them together, we are going to release

RεTruncpTu1 , Tu2 q “ Rε{pτ`1q
AHIO pTu1 q ‘ xRε{pτ`1q

AHIO pxti, ryqy
τ
i“1 (6)



where each instance of Rε{pτ`1q
AHIO with privacy parameter ε

τ`1
runs

independently. We can show thatRεTrunc is ε-uLDP.
Lemma 6. Collecting a user’s tuples from service 1 (with user id
as the primary key) and service 2 (with user id as a foreign key)
usingRεTrunc above satisfies ε-uLDP.
Proof Sketch: For users u and u1, they both have one tuple on ser-
vice 1, and |Tu2 | and |Tu

1

2 | tuples on service 2, respectively. With
τ -truncation, both users have τ tuples collected by service 2. In
addition, all collected tuples of a user is perturbed with ε

1`τ
-LDP.

In the definition of uLDP, any possible value y from τ -truncation
consists of one perturbed tuple for service 1 and τ perturbed tuples
for service 2. Thus, we have PrrRpTuq“ys

PrrRpTu1 q“ys
ď peε{p1`τqq1`τ .

Both the aggregating attribute A and the truncation weight r
are randomly rounded (to tAmin, Amaxu and trmin, rmaxu, respec-
tively) during the perturbation process RAHIO. In the next subsec-
tion, we will introduce our double-rounding mechanism and esti-
mation technique to recover the answer to the original aggregation
query from truncated and perturbed data in an unbiased way.

5.3 Double Rounding: Recovering
Aggregation from Truncated Tuples

At aggregation, the contribution of each perturbed value need
to be multiplied by its truncation weight to compensate for tuples
truncated away by Trunc. In particular, we need to answer the
following queries for COUNTp˚q and SUMpAq, respectively:

SELECT SUMprq FROM T1 JOIN T2 WHERE C, and (7)
SELECT SUMpr ¨Aq FROM T1 JOIN T2 WHERE C, (8)

where r is the truncation weight in the collected tuples. Queries (7)
and (8) require two sensitive-weight frequency oracles, i.e., one for
Q “ pr,Cq and the other for Q “ pr ¨A,Cq, and directly applying
the mechanisms in Section 3.3 would degrade the utility for the
frequency aggregation (query (7)) by Opd` 1q, due to partitioning.

To preserve the utility for frequency aggregation, we do not par-
tition the tuples for frequency aggregation, and only partition the
tuples among the d attributes for attribute aggregation, via what we
call double rounding: for each truncated tuple output by Trunc, we
group it for one of the the d attributes, and derive two rounding val-
ues, one for the partition attributeA, and the other for the truncation
weight r; thus, the rounding value for r enables query (7) for all tu-
ples, i.e., P̄pr,CqTruncpyq “ rmax ¨ P̄

C^rmax
HIO-JOINpyq ` rmin ¨ P̄

C^rmin
HIO-JOINpyq;

Note that, since rmin “ 0, the contributions for predicate C^ rmin

is zero, and, thus, ignored; similarly, the rounding values for A and
r together enable query (8) for tuples partitioned forA, and, for one
such y, we have P̄pr¨A,CqTrunc pyq “ d¨

ř

br

ř

bA
br ¨bA ¨P̄

C^br^bA
HIO-JOIN pyq,

where br P trmin, rmaxu and bA P tAmin, Amaxu.
Concretely, we pack the two rounding values as a pair, and aug-

ment the tuple with attributeXr,A P txrmin, Aminy, xrmin, Amaxy,
xrmax, Aminy, xrmax, Amaxyu for it. The augmented attribute is
perturbed, together with the original d attributes, for data collec-
tion. For P̄pr¨A,CqTrunc pyq, if y is partitioned for A, we estimate

P̄C^rmin^Amin
HIO-JOIN pyq “ P̄

C^pXr,A“xrmin,Aminyq

HIO-JOIN pyq,

as well as for other pairs: xrmin, Amaxy, xrmax, Aminy and xrmax,

Amaxy; otherwise, P̄pr¨A,CqHIO-JOINpyq “ 0. And we have:

Lemma 7. P̄
pr¨A,Cq
Trunc pRTruncpT1, T2qq is unbiased for query (8).

Proof Sketch: First, since P̄HIO-JOIN is unbiased, and r and A are
independently rounded, we have

ErP̄
C^pXr,A“xrmin,Aminyq

HIO-JOIN pyqs “
1ttPCu¨prmax´trrsqpAmax´trAsq

dprmax´rminqpAmax´Aminq
.

And we have similar results for xrmin, Amaxy, xrmax, Aminy and

1 25 1 25

11 25 11 25
11

12

11

Figure 6: Optimal range decompositions for predicate C on at-
tributes Age and Income, with fan-out of 5.

xrmax, Amaxy. Hence, we have ErP̄
pr¨A,Cq
Trunc pRTruncpxT1, T2yqqs

“
ř

tPT1’T2

d¨1ttPCu¨trrs¨trAs¨prmax´rminqpAmax´Aminq

d¨prmax´rminqpAmax´Aminq

“
ř

tPT1’T2
1ttPCu ¨ trrs ¨ trAs.

Lemma 8. For n users, whose tuples on service 1 and 2 are col-
lected viaRTrunc, answering query (8) using P̄Trunc has error bound:

O
´

ndτp1`τq4 log2pd`dqqm

ε4
pr2min ` r

2
maxqpA

2
min `A

2
maxq

¯

. (9)

Proof Sketch: First, since the ε is splitted evenly for the 1 ` τ
tuples of a user, the tuples are each perturbed with ε

1`τ
-LDP. In

addition, we have rmin “ 0, rmax “ τmax{τ . Thus, estimating the
contribution of one pair of joined tuples from the two services to
the aggregation on A, using P̄

pr¨A,Cq
HIO-JOINpyq, has error bound

O
´

dp1`τq4 log2pd`dqqm

ε4
pr2min ` r

2
maxqpA

2
max `A

2
minq

¯

.

We need to add up the contributions from n ¨ τ pairs of joined tu-
ples, which sums up the error as Equation (9).

Based on Lemma 8, setting τ “ 1 achieves the optimal error
bound. We evaluate the effects of τ on utility in Section 7.3.

6. RANGE CONSISTENCY OPTIMIZATION
In this section, we propose an efficient consistency optimiza-

tion technique based on optimal range decompositions for multi-
dimensional range predicate, which cannot be handled with exist-
ing consistency post-processing techniques [7, 22].

6.1 Optimal Range Decomposition
Given the multi-dimensional hierarchy, there are multiple ways

to decompose the predicate C into the (hierarchy) nodes. For in-
stance, in Figure 6, the predicate asks for C “ Age P r11, 25s ^
Income P r11, 25s, and we can decompose it into minimum nine
nodes in four different ways, i.e., I1, . . . , I4, without overlapping.

For decomposition IC of C, with |IC| nodes, since the frequen-
cies of these nodes are added together for C, and the error bound
for each node is the same, we have:

MSEpP̄C
pyqq 9 |IC|. (10)

Thus, the optimal decomposition of C is the one with the minimum
number of nodes among all possible decompositions. The possible
decompositions include the ones that only add up the nodes, as in
previous work [32, 7], as well as those that subtract some nodes to
achieve the equivalent range conditions, e.g., I4 in Figure 6.

To find the decomposition with minimum number of nodes, we
can first find the optimal decomposition for each single-attribute
condition of C, and cross product them into the optimal decom-
position of C. For the example in Figure 6, 1© we find the top-2
decompositions for attributes Age and Income separately, and 2©
cross-product them to get the top-4 decompositions for C. For 1©,
we can solve for the top-k decompositions for all possible ranges of
each individual attribute using dynamic programming offline, with
complexity polynomial to the domain size.



6.2 Consistency Optimization
The top-k decompositions of C are consistent, i.e., they are all

unbiased estimations of C, and we can combine them for better util-
ity. For the top-k decompositions of C with |IC1 |, . . . , |ICk | nodes,
respectively, we assign wi as the weight for ICi , and the weighted
average of the k decompositions has MSEpP̄C

pyqq 9
řk
i“1 w

2
i |ICi |.

We can minimize the error bound using the KKT condition, un-
der the constraint that

řk
i“1 wi “ 1, and the optimal weights are

wi “ p1{|ICi |q{p
řk
j“1 1{|ICj |q. Hence, the optimal error bound of

the weighted average of the top-k decompositions is
MSEpP̄C

pyqq 9 1{p
řk
i“1 1{|ICi |q, (11)

which can be as small as 1
k

of Equation (10), i.e., when the top-k
decompositions all have the same number of nodes. We state the
utility improvement in Lemma 9
Lemma 9. For range frequency aggregation of C, weighted aver-
aging its top-2dq decompositions can improve the utility by 2dq .
Proof Sketch: Let’s first consider the case where each hierarchy
is single layer with B leaves. Then, denote the number of leaves
for the optimal decomposition as li for the i-th attribute, and the
total number of nodes of the decomposition is

śdq
i“1 li. For the i-th

attribute, we can substitute its li leaves with B ´ li ` 1 intervals,
i.e., the parent interval minus the other B ´ li leaves, which gives
us 2dq consistent decompositions. The error bound of the optimal
decomposition is 9

śdq
i“1 li. And the error bound of the weighted

average of the 2dq consistent decompositions is

9
śdq
i“1 li{p1`

řdq
j“1

ř

1ďi1ă¨¨¨ăijďdq

śj
k“1

B´lik
`1

lik
q.

When li “ B ´ li ` 1, i.e., li “ B`1
2

, the error bound is 2´dq

of that of the single optimal decomposition. For hierarchies with
more than one layers, we can follow the above analysis to derive
the same result.

7. EVALUATION
We evaluate the utility of our end-to-end framework using syn-

thetic and real-world datasets and queries. We conduct the eval-
uation on an Intel Xeon Platinum 8163 2.50GHz PC with 64GB
memory. We set up a single node Spark cluster on the machine, us-
ing Hadoop 2.7.1, Spark 2.4.3 and Hive 2.3.5. We register the R’s
and P̄’s of our mechanisms as UDF’s of SparkSQL. Each dataset
is first loaded as table into Spark SQL, and we perturb each row,
as a tuple, using the perturb UDF and collect them as the table to
be released. At query time, ordinary SQL statement is issued from
the user interface, and automatically rewritten using the proper P̄
UDF’s, which will be executed by the underlying SparkSQL en-
gine on the released table. For joint aggregation, multiple released
tables are first joined on the join key by SparkSQL, and the SQL
engine applies the joint frequency oracles over joined tuples and
adds up their contributions into the result. We will open-source the
code and the platform setup as a docker container.
Dataset We evaluate with two synthetic and two real-world datasets:

‚ SYN-1: Single-table synthetic data with 4 ordinal and 4 categor-
ical attributes, and 1 non-sensitive ordinal attributes. The number
of tuples ranges from 2´2

ˆ 106 to 22
ˆ 106 (default 1ˆ 106).

The domain size m for ordinal ranges from 52 to 54 (default
53), and that for categorical is 500. We simulate correlations
among ordinal attributes by sampling from normal distribution,
with pµ “ m

2
, σ “ m

4
q for one of them, and adding it with

Gaussian noises pµ “ 0, σ “ 10q for others.
‚ SYN-2: Synthetic data of two tables, both with one ordinal and

one categorical attributes. For ordinal, m “ 53, and, for cate-

AHIO EHIOHIO

(a) COUNT

AHIO EHIOHIO

(b) COUNT

AHIO EHIOHIO

(c) COUNT
HIO
AHIO

AMG
EHIO

HIO-PUB

(d) SUM

HIO
AHIO

AMG
EHIO

HIO-PUB

(e) AVG
HIO
AHIO

AMG
EHIO

HIO-PUB

(f) SUM

HIO
AHIO

AMG
EHIO

HIO-PUB

(g) AVG
HIO
AHIO

AMG
EHIO

HIO-PUB

(h) SUM

HIO
AHIO

AMG
EHIO

HIO-PUB

(i) AVG
Figure 7: Aggregation on sensitive attribute using SYN-1.
gorical, m “ 500. The two tables can be joined by the forged
id, with two configurations: i) one-to-one; and ii) one-to-many,
where a tuple in table one has r1, 10s matching tuples in table
two. And we test with 1ˆ 106 and 2ˆ 106 joined tuples.

‚ PUMS-P [29]: 3 ˆ 106 census records of US citizens in 2017,
with attributes AGE, MARST and UHRSWORK.

‚ PUMS-H [29]: 1940 census records of US households, with
attributes STATE and CITY, and citizens, with attributes SEX,
AGE, RACE and INCOME. Both records have HID as the join
key, and it is primary-key for household and foreign-key for cit-
izens. We focus on two samples: IN): 3.42ˆ 106 joined records
from Indiana; and IL): 7.56 ˆ 106 joined records from Illinois.
For both samples, each household has up to τmax “ 10 citizens.

Mechanisms. We consider six mechanisms in the evaluation:
‚ HIO: The mechanism proposed in [32] for single-table MDA.
‚ SC-JOIN: Joint aggregation mechanism using SC (Section 4.1).
‚ AHIO: Augment-then-perturb instantiation of PRP (Section 3.3).
‚ EHIO: Embed-then-perturb instantiation of PRP (Section 3.3).
‚ HIO-JOIN: Joint aggregation over HIO (Section 4.2), with aug-

ment-then-perturb and τ -truncation (Section 5.2).
‚ *-RDC: Mechanism * with utility optimization (Section 6).

We set the fan-out as 5 for hierarchies in both HIO and SC.
Queries. We evaluate the utility of aggregation queries for COUNT,
SUM and AVG, as well as their sensitivity to factors: i) m: the do-
main size of the aggregation attribute; ii) vol: the volume of the
predicate, i.e., the ratio of the predicate space over the entire do-
main; and iii) dq: the number of attributes in the predicate.
Metrics. We use two metrics to evaluate the estimation utility of P̄
over a setQ of queries of the same characteristics,
‚ Normalized Mean Squared Error. It measures how large the er-

rors are relative to the maximum possible answer, i.e.,



Figure 8: Q1-Q3 on PUMS-P.
ε “ 0.5 1.0 2.0 5.0 True

Q1

HIO 32.74
˘20.03

28.25
˘6.46

27.49
˘4.07

26.6
˘0.69

26.62
AHIO 26.88

˘5.15
27
˘2.82

26.71
˘1.2

26.23
˘0.75

EHIO 26.93
˘4.07

26.76
˘2.06

26.07
˘1.05

26.7
˘0.27

AHIO
-RDC

26.88
˘5.15

27
˘2.82

26.71
˘1.2

26.23
˘0.75

Q2

HIO 44.6
˘47.24

35.95
˘28.81

33.91
˘10.08

30.73
˘3.36

29.98
AHIO 24.53

˘12.08
24.33
˘5.79

29.63
˘3.43

29.55
˘1.25

EHIO 28.60
˘18.71

29.16
˘7.2

29.33
˘2.89

30
˘0.7

AHIO
-RDC

31.06
˘10.37

29.64
˘4.71

29.58
˘1.82

29.95
˘0.69

Q3

HIO ´110.27
˘320.65

22.76
˘121.81

54.35
˘73.6

26.32
˘8.48

30.82
AHIO 4.15

˘133.45
37.5
˘67.08

26.21
˘20.34

29.57
˘4.91

EHIO 42.58
˘243.41

26.58
˘36.65

29.18
˘14.62

30.78
˘1.76

AHIO
-RDC

25.13
˘98.24

30.7
˘25.03

29.18
˘9.12

30.83
˘1.74

NMSEpP̄pQqq “ 1
|Q|

ř

QPQ
`

pP̄Q
pRpTqq ´ PQ

pTqq{ΣT

˘2

where ΣT “ |T | for COUNT, and ΣT “
ř

tPT |trAs| for SUM,
are the upper bounds of aggregation. Note that this metric is
identical to the mean square error used in [7].

‚ Mean Relative Error. It measures how large the errors are rela-
tive to the true answers, i.e.,
MREpP̄pQqq “ 1

|Q|
ř

QPQ

ˇ

ˇpP̄Q
pRpTqq ´PQ

pTqq{PQ
pTq

ˇ

ˇ.

We use NMSE for COUNT and SUM, and MRE for AVG.

7.1 Attribute Aggregation
We first evaluate aggregation on attribute, with COUNT, SUM

and AVG queries, using the HIO, AHIO and EHIO mechanisms.
Benchmark with SYN-1. First, we evaluate the effect of the vol-
ume of the aggregation query. We sample queries with range vol-
ume from 0.04 up to 0.30, and fixed ε “ 2.0, d “ 2, m “ 125
and dq “ 1. Figures 7a, 7d, and 7e show the aggregation er-
rors for HIO, AHIO and EHIO. We observe that, for COUNT,
HIO performs better than AHIO and EHIO, and the reason is that
both AHIO and EHIO spare privacy budget for the rounding value
to support attribute aggregation. For SUM and AVG, AHIO and
EHIO outperform HIO consistently. The volume does not have
much effect on COUNT or SUM, and the relative error of AVG
decreases as the volume increases.

Second, we evaluate the effect of m, and test with m “ 5, 25,
125 and 250 for the aggregation attribute, with ε “ 2.0, d “ 2,
vol “ 0.15, and dq “ 1 (Figures 7b,7f and 7g). We first ob-
serve that the domain size has slight effects on the absolute error of
COUNT since there is an logarithmic relation between the hierar-
chy height and the domain size. As for SUM and AVG, the domain
size does not affect the errors for AHIO or EHIO much, and the
error for HIO increases fast as the domain size increases.

Third, we evaluate the effect of the number of attributes, i.e., d,
in the data, and test with d “ 2, 3, 4 and 5 (Figures 7c, 7h and 7i).
As d increases, all the errors increase.

To better understand the effect of the rounding technique, we
evaluate using HIO when the aggregation attribute is released as
non-sensitive. We show its results as HIO-PUB in Figure 7, and
we only report for SUM and AVG since its utility on COUNT is
the same as HIO. We observe consistent drop on utility for AHIO
and EHIO, compared to HIO-PUB.

We also evaluate the PRP framework when the underlying multi-
dimensional analytical frequency oracle is marginal release (MG)
[11], and we report the results for augment-then-perturb using MG
(AMG) in Figure 7. As the volume increases, the aggregation error

AHIO AHIO-RDC

(a) COUNT

2 4 8162 4 8162 4 8162 4 816

10 3

10 2

10 1

N
M

SE

k:
dq: 1 2 3 4

HIO HIO-RDC

(b) COUNT
AHIO AHIO-RDC

(c) SUM

2 4 8162 4 8162 4 8162 4 816

10 3

10 2

10 1

N
M

SE

k:
dq: 1 2 3 4

HIO HIO-RDC

(d) SUM
AHIO AHIO-RDC

(e) AVG

2 4 8162 4 8162 4 8162 4 816

10 2

10 1

100

M
R

E

k:
dq: 1 2 3 4

HIO HIO-RDC

(f) AVG
Figure 9: Effect of range consistency optimization using SYN-
1. Left: aggregation on sensitive attribute. Right: aggrega-
tion on non-sensitive attribute. k indicates the number of top
decompositions and dq indicates the number attributes in the
range predicate.

of AMG increases much faster than those of AHIO and EHIO (Fig-
ure 7d and 7e) because MG estimates a large range predicate with
many point conditions. When the volume is not large, e.g.,ď 0.15,
the errors of AMG are comparable to those of AHIO and EHIO.
Sample Queries on PUMS-P. We test on the PUMS-P dataset
with the following three queries:
Q1: SELECTAVGpUHRSWORKq FROMPUMS-P WHEREMARST

“ Married;
Q2: SELECTAVGpUHRSWORKq FROMPUMS-P WHEREMARST

“ Married AND 31 ď AGE ď 70;
Q3: SELECTAVGpUHRSWORKq FROMPUMS-P WHEREMARST

“ Single AND 31 ď AGE ď 50.
We set ε “ 0.5, 1, 2, 5, and test with HIO, AHIO, EHIO and AHIO-
RDC. For each setting, we release the data 10 times, evaluate Q1-
Q3 on the 10 releases, and report the mean aggregation results,
together with the standard deviations, in Figure 8. We include the
true results for the three queries in the right-most column. For all
mechanisms and settings, i.e., the pair of query and ε, we have the
true aggregation results in the standard deviation intervals. For each
setting, we highlight the mechanism with the smallest standard de-
viation because it provides the best confidence interval. We observe
that AHIO, EHIO and AHIO-RDC consistently out-performs HIO,
and AHIO and EHIO are comparable. AHIO-RDC performs better
than AHIO, especially for the more selective queries, e.g., Q3. In
addition, the standard deviation increases when the range predicate
gets more selective, and decreases as ε increases.

7.2 Range Consistency Optimization
We next evaluate the effect of the range consistency optimization

on attribute aggregations using the AHIO and AHIO-RDC mech-
anisms. We use SYN-1 with 4 ordinal sensitive attributes, and fix
ε “ 2. We evaluate the effects of dq and the number of top de-
composition k. In particular, we evaluate aggregation queries with
range predicate on dq “ 1, 2, 3 and 4 of the attributes, and vary k
to be 2, 4, 8 and 16. Figures 9a, 9c and 9e show the results. We ob-
serve that HIO-RDC improves the utility for COUNT and SUM, as
the number of sensitive attributes in the range predicate increases.



C OCOC OCOC OCOC OCO

10 5

10 3

10 1
N

M
SE

P:
: 2.0 5.0 2.0 5.0

n: 1M 2M

SC-JOIN HIO-JOIN HIO-JOIN-RDC

(a) COUNT

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

10 3

10 1

101

N
M

SE

:
: 1.0 2.0 5.0 1.0 2.0 5.0

n: 1M 2M

HIO-JOIN HIO-JOIN-RDC

(b) COUNT

C OCOC OCOC OCOC OCO

10 5

10 3

10 1

N
M

SE

P:
: 2.0 5.0 2.0 5.0

n: 1M 2M

SC-JOIN HIO-JOIN HIO-JOIN-RDC

(c) SUM

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

10 3

100

N
M

SE
:
: 1.0 2.0 5.0 1.0 2.0 5.0

n: 1M 2M

HIO-JOIN HIO-JOIN-RDC

(d) SUM

C OCOC OCOC OCOC OCO

10 2

100

M
R

E

P:
: 2.0 5.0 2.0 5.0

n: 1M 2M

SC-JOIN HIO-JOIN HIO-JOIN-RDC

(e) AVG

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

10 1

100

M
R

E

:
: 1.0 2.0 5.0 1.0 2.0 5.0

n: 1M 2M

HIO-JOIN HIO-JOIN-RDC

(f) AVG
Figure 10: Joint aggregation over SYN-2. Left: one-to-one,
C, O, CO indicate one categorical, one ordinal, one categorical
and one ordinal attributes in the predicate, respectively. Right:
one-to-many, τ is the truncation number.

In addition, larger k performs better when the number of attributes
in the predicate is larger, which is consistent with Equation (11).
Note that the improvement on utility is not exactly k because the
analysis in Lemma 9 is the upper bound when the k decompositions
are of the same error bound, which is not guaranteed for randomly
selected range predicates in our experiments.

To benchmark the effectiveness of the range consistency opti-
mization against the state of the art, we compare the utility of HIO-
RDC against that of HIO, using queries that aggregate on the non-
sensitive attribute of SYN-1 with range predicate on 1, 2, 3 and 4
of the ordinal attributes, and k P t2, 4, 8, 16u. Figures 9b, 9d, and
9f show the results, and HIO-RDC consistently outperforms HIO
for all the three types of aggregations.

7.3 Joint Aggregation
Finally, we evaluate joint aggregation across two tables. We first

evaluate with SC-JOIN, HIO-JOIN and HIO-JOIN-RDC using
SYN-2 for sensitivity analysis. Then we evaluate with HIO-JOIN
and HIO-JOIN-RDC on PUMS-H as case-study.
One-to-one. We test with queries of different range predicates on
the attributes: i) C: one point condition; ii) O: one range condi-
tion; and iii) CO: one point and one range conditions. The volume
for the range condition is fixed at 0.12. If the predicate involves
only one attribute, then the aggregation attribute is in the other ta-
ble. Figures 10a, 10c and 10e show the results. First, the overall
estimation utility improves as either ε or the table size n increases.
Second, as the predicate gets complicated, HIO-JOIN outperforms
SC-JOIN. In addition, HIO-JOIN-RDC consistently improves the
aggregation utility over HIO-JOIN.
One-to-many. We test with queries that aggregate on the attribute
with the CO range predicate of volume 0.12. We evaluate the HIO-
JOIN and HIO-JOIN-RDC schemes because, as we show above,
SC-JOIN is worse than HIO-JOIN for this kind of range pred-
icate. For the one-two-many setting, we enforce the user-level
LDP using τ -truncation, and we evaluate the same aggregation
with τ “ 1, 2, 4. Figures 10b, 10d and 10f show the results.
First, larger ε or table size n leads to better estimation utility for
all types of queries. Second, as τ increases, the estimation util-
ity on COUNT and SUM decreases, and the effect on AVG is not

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

10 4

10 2

N
M

SE

:
Age: 20 21-45 46-70 71-95 96

HIO-JOIN HIO-JOIN-RDC

(a) COUNT

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

10 4

10 2

N
M

SE

:
Age: 20 21-45 46-70 71-95 96

HIO-JOIN HIO-JOIN-RDC

(b) COUNT

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

10 3

10 1

N
M

SE

:
Age: 20 21-45 46-70 71-95 96

HIO-JOIN HIO-JOIN-RDC

(c) SUM

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

10 4

10 2

N
M

SE

:
Age: 20 21-45 46-70 71-95 96

HIO-JOIN HIO-JOIN-RDC

(d) SUM

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

10 1

101

M
R

E

:
Age: 20 21-45 46-70 71-95 96

HIO-JOIN HIO-JOIN-RDC

(e) AVG

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

2.
0

5.
0

10 1

101

M
R

E

:
Age: 20 21-45 46-70 71-95 96

HIO-JOIN HIO-JOIN-RDC

(f) AVG
Figure 11: Joint aggregation over PUMS-H. Left: Indiana.
Right: Illinois. The predicate is “CITY “ x AND AGE P rl, rs”.

substantial. Third, the range optimization technique improves the
overall utility consistently.
PUMS-H Case Study. We conduct a case study using the PUMS-
H dataset, for Indiana and Illinois, respectively. The study answers
the following question: how many people living in Indiana (Illi-
nois) are in the city Indianapolis (Chicago) and in the specific age
group? In addition to the count, we include in the analysis the sum
and average on AGE. The age groups are r1-20s, r21-45s, r46-70s,
r71-95s and r96-120s. We evaluate HIO-JOIN and HIO-JOIN-
RDC, and set ε “ 2 and 5. The truncation number τ is fixed at 1
for this study. Figure 11a, 11c and 11e show the results for Indiana,
and Figure 11b, 11d and 11f for Illinois.

8. EXTENSIONS AND DISCUSSION
8.1 Handling Group-by Queries

Our solution can be extended for group-by queries to perform
aggregation analysis over joins of relations from different services
and summarize the results by some group-by attribute. To answer
the group-by queries, we share the same assumption, as previous
works [13, 25, 8] do, that the dictionary (i.e., the set of all possible
values) of the group-by attribute is known to public. Note that this
assumption does not affect the privacy of each individual’s data,
as the dictionary is independent on the content of the data and is
usually public knowledge (e.g., group by CITY or RACE).
Algorithm HIO-GROUP-BY. Consider a query Q “ pA,C, T q
aggregating A under predicate C on a relation or join of relations
T , with a group-by attribute G. Abusing the notation, we also use G
to denote the dictionary of attribute G. With the perturbation algo-
rithms (τ -Truncation and Partition-Rounding-Perturb framework to
ensure ε-uLDP) unchanged, our query estimation algorithm HIO-
GROUP-BY is outlined in Figure 12. Let consider two cases:

If G is a nonsensitive attribute and known to public, we can par-
tition the perturbed relationRpT q by G. For each group v P G, we
read the perturbed tuples of this group into T pvq (line 3) and apply
HIO-JOIN on T pvq to estimate the aggregation value (line 4).

If G is a sensitive attribute, we can still enumerate all possible
values of G with the public dictionary, but cannot access its true
value for each perturbed tuple in RpT q. To estimate the answer to
Q, we rewrite it a bit: for each group v P G, we extend the predicate
C to be “C ^ G “ v” and apply HIO-JOIN to process Q with the



Aggregation query Q “ pA,C, T q group by G:
1: for v P G do
2: if G is nonsensitive then
3: T pvq Ð σG“vpRpT qq (σ¨p¨q is selection)
4: Sv Ð P̄

pA,Cq
HIO-JOINpT pvqq

5: else Sv Ð P̄
pA,C^G“vq
HIO-JOIN pRpT qq

6: return S

Figure 12: HIO-GROUP-BY for group-by query

W A N C J O
0

2

4

W A N C J O
0

5

10

-105-102
102105

-108-103
103108

×106 ×108

C
O

U
N

T

SU
M

True HIO-GROUP-BY

Figure 13: One run of HIO-GROUP-
BY estimation v.s. the ground truth.

W A N C J O

10 5

10 2

W A N C J O

N
M

SE

COUNT SUM
HIO-GROUP-BY

Figure 14: Average errors (over 15
runs) of HIO-GROUP-By by group.

extended predicate on RpT q (line 5). In this way, we obtain an
unbiased estimate of the aggregation value for each group.
Error bounds. If G is non-sensitive, the error bound of estimated
aggregation in each group follows from Lemmas 4, 5, or 8 for dif-
ferent join types. As each group is processed independently, the
mean squared error (MSE) is proportional to the size of the group
(n in the lemmas is equal to the number of tuples in each group).

The case when G is sensitive is more difficult. The error bound
for different join types again follows from Lemmas 4, 5, or 8. How-
ever, since the aggregation value is recovered from all the perturbed
tuples with an additional constraint “G “ v”, the MSE is propor-
tional to the total number of tuples in T (n in the lemmas is equal
to |T |) as well as the aggregation value. Note that MSE is the
“squared” error, the above error bound implies that, for groups with
large aggregation values, the relative estimation errors are smaller.
Case study and empirical evaluation. We test a group-by query
on the PUMS-H dataset: what are COUNT and SUMpIncomeq
of people whose households are in Chicago, grouped by RACE1?
All the attributes, including RACE, are sensitive. We compare
the estimates obtained by HIO-GROUP-BY in one run (ε “ 5)
with the ground truth (Figure 13), and further report the average
error (NMSE) of each group for 15 runs of the mechanism (Fig-
ure 14). The key observation is that, our HIO-GROUP-BY pre-
serves the trend across groups very well especially for large groups
(e.g., groups ‘W’ and ‘A’), which enables us to identify the “top
groups” and support accurate decision making on them. NMSE
for all the groups are very close, which is consistent with the theo-
retical error bounds. For small groups (e.g., groups ‘J’ and ‘O’), the
error is relatively large because of small aggregation values, which
is an inherently difficult case for DP-based estimations.

8.2 Join with Star Schema
We focus on two-table primary-foreign-key join in Section 5,

and can extend to join with the more complex star schema, where
one service collects tuples with foreign keys to multiple primary-
key tuples collected by different services. Such schema is com-
mon in business data warehouse. For instance, in Example 1.1, a
third service could collect tuples on products, with attributes Price
and Country, and a unique product id PID. The collected transac-
tion tuples further contain the foreign key PID of the corresponding
product. And an analyst wants to know the total sales from certain
users on products from certain country, e.g.,

SELECT SUMpAmountq FROM Transaction JOIN Product
ON T.PID “ P.PID JOIN User ON T.UID “ U.UID
WHERE Country “ “China” AND Age P r20, 30s.

We can extend τ -truncation to handle such relation, under ε-uLDP.
The major adaptation is that we need to enforce that the same num-
ber of tuples with foreign-key, i.e., transaction, match each pair of
primary-key tuples, i.e., xuser,producty. Thus, for n users and n
products, with τ -truncation, we need to collect n2τ transaction tu-
ples. Thus, for joint aggregation, we can join the perturbed values
1W: White; A: African American; N: American Indian or Alaska Native; C: Chinese;
J: Japanese; O: Other Asian or Pacific Islander.

from the three services, and aggregate on the joined values. It is
possible to optimize such straight-forward extension for better effi-
ciency and privacy management, which we leave as future work.

9. RELATED WORK
We review related topics in both the centralized setting of differ-

ential privacy (DP) [14] and its local model (LDP).
LDP mechanisms. There have been several LDP frequency ora-
cles [15, 4, 3, 31, 1] proposed. They rely on techniques like hashing
(e.g., [31]) and Hadamard transform (e.g., [3, 1]) for good utility.
LDP mean estimation is another basic task [12, 30] with stochas-
tic rounding as a subroutine. Frequency oracles are also used in
other tasks, e.g., finding heavy hitters [3, 34, 5], frequent itemset
mining [27, 33], and marginal release [28, 6, 36].
Answering range queries. Range counting queries are supported
in the centralized setting of DP via, e.g., hierarchical intervals [17]
or via wavelet [35]. [26] optimizes the hierarchical intervals in [17]
by choosing a proper branching factor. McKenna et al. [23] pro-
pose a method to collectively optimize errors in high-dimensional
queries of a given workload under the centralized setting of DP. [32,
7] adapt the hierarchical interval and wavelet techniques to handle
range counting queries under LDP with improved utility than naive
marginal release.

In both marginal release and range queries, it has been noticed
that constrained inference could boost the accuracy while enforcing
the consistency across different marginal tables and intervals (e.g.,
[2, 17, 10, 26]). Enforcing such consistency during post-processing
step has been shown effective for analysis under LDP as well [7].

Joint analysis in LDP. Several methods have been proposed to
handle the joint analysis in LDP. In particular, [16] proposed to
use EM algorithm. The starting point is to find on that maximizes
the likelihood (possibility) of the observed report. Later, [34] de-
rived formulas to direct evaluate the joint estimation, which essen-
tially extends the aggregation function to multi-dimensional set-
ting. Both methods work in the categorical setting. For the ordinal
setting [32] proposed a method based on matrix inversion.
SQL support in DP. In the centralized model of DP, where there is
a trusted party, there are efforts to support SQL queries, including
PINQ [24], wPINQ [25], Flex [18], and PrivateSQL [20]. These
systems assume a trusted data engine [21] that maintains users’ ex-
act data, and injects noise during the (offline or online) analytical
process so that query results transferred across the firewall ensures
DP. Different from that, our paper assumes no such trusted party.

10. CONCLUSION
In this work, we focus on collecting and analyzing data jointly

from multiple services under local differential privacy. We intro-
duce the notation of user-level LDP to formalize and protect the
privacy of a user when her joined tuples are released. We propose
mechanisms and estimation methods to process multi-dimensional
analytical queries, each with attributes (in its aggregation and pred-
icates) collected and perturbed independently by multiple services.



11. REFERENCES
[1] J. Acharya, Z. Sun, and H. Zhang. Hadamard response:

Estimating distributions privately, efficiently, and with little
communication. PMLR, 89:1120–1129, 2019.

[2] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry,
and K. Talwar. Privacy, accuracy, and consistency too: a
holistic solution to contingency table release. In PODS,
pages 273–282, 2007.

[3] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta.
Practical locally private heavy hitters. In NIPS, pages
2285–2293, 2017.

[4] R. Bassily and A. D. Smith. Local, private, efficient protocols
for succinct histograms. In STOC, pages 127–135, 2015.

[5] M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and the
structure of local privacy. In PODS, pages 435–447, 2018.

[6] G. Cormode, T. Kulkarni, and D. Srivastava. Marginal
release under local differential privacy. In SIGMOD, pages
131–146, 2018.

[7] G. Cormode, T. Kulkarni, and D. Srivastava. Answering
range queries under local differential privacy. PVLDB,
12(10):1126–1138, 2019.

[8] DifferentialPrivacyTeam. Learning with privacy at scale.
Apple Machine Learning J., 2017.

[9] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry
data privately. In NIPS, 2017.

[10] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private
data cubes: optimizing noise sources and consistency. In
SIGMOD, pages 217–228, 2011.

[11] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer.
Detecting violations of differential privacy. In CCS, pages
475–489, 2018.

[12] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local
privacy and statistical minimax rates. In FOCS, pages
429–438, 2013.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
TCC, pages 265–284, 2006.

[14] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211–407, 2014.

[15] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR:
randomized aggregatable privacy-preserving ordinal
response. In CCS, pages 1054–1067, 2014.

[16] G. Fanti, V. Pihur, and Úlfar Erlingsson. Building a rappor
with the unknown: Privacy-preserving learning of
associations and data dictionaries. Proceedings on Privacy
Enhancing Technologies, 2016.

[17] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially private histograms through
consistency. PVLDB, 3(1):1021–1032, 2010.

[18] N. M. Johnson, J. P. Near, and D. Song. Towards practical
differential privacy for SQL queries. PVLDB,
11(5):526–539, 2018.

[19] M. Joseph, A. Roth, J. Ullman, and B. Waggoner. Local
differential privacy for evolving data. In NeurIPS, 2018.

[20] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour,
A. Machanavajjhala, M. Hay, and G. Miklau. Privatesql: A
differentially private sql query engine. PVLDB,
12(11):1371–1384, 2019.

[21] I. Kotsogiannis, Y. Tao, A. Machanavajjhala, G. Miklau, and
M. Hay. Architecting a differentially private SQL engine. In

CIDR, 2019.
[22] Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, B. Skoric, and

N. Li. Estimating numerical distributions under local
differential privacy. In SIGMOD, 2020.

[23] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala.
Optimizing error of high-dimensional statistical queries
under differential privacy. PVLDB, 11(10):1206–1219, 2018.

[24] F. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In SIGMOD,
pages 19–30, 2009.

[25] D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data
to sensitivity in private data analysis. PVLDB, 7(8):637–648,
2014.

[26] W. H. Qardaji, W. Yang, and N. Li. Understanding
hierarchical methods for differentially private histograms.
PVLDB, 6(14):1954–1965, 2013.

[27] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy
hitter estimation over set-valued data with local differential
privacy. In CCS, pages 192–203, 2016.

[28] X. Ren, C. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and
P. S. Yu. Lopub: High-dimensional crowdsourced data
publication with local differential privacy. IEEE Trans.
Information Forensics and Security, 13(9):2151–2166, 2018.

[29] S. Ruggles, J. T. Alexander, K. Genadek, R. Goeken, M. B.
Schroeder, and M. Sobek. Integrated public use microdata
series: Version 5.0 [machine-readable database], 2010.

[30] N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin,
and G. Yu. Privtrie: Effective frequent term discovery under
local differential privacy. In ICDE, pages 1–12, 2018.

[31] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially
private protocols for frequency estimation. In USENIX
Security, pages 729–745, 2017.

[32] T. Wang, B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and
S. Jha. Answering multi-dimensional analytical queries
under local differential privacy. In SIGMOD, 2019.

[33] T. Wang, N. Li, and S. Jha. Locally differentially private
frequent itemset mining. In SP, page 578–594, 2018.

[34] T. Wang, N. Li, and S. Jha. Locally differentially private
heavy hitter identification. IEEE Trans. Dependable Sec.
Comput., 2019.

[35] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. In ICDE, pages 225–236, 2010.

[36] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen. Calm:
Consistent adaptive local marginal for marginal release under
local differential privacy. In CCS, 2018.


	Introduction
	Preliminaries
	Data Model and Analysis Tasks
	Local Differential Privacy
	User-level Privacy across Multiple Services

	Attribute Aggregation
	Building Block: Frequency Oracles
	Optimal Local Hashing 
	Hierarchical-Interval Optimized Mechanism

	Sensitive-weight Frequency Oracles
	Partition-Rounding-Perturb Framework
	Augment-then-Perturb (AHIO)
	Embed-then-Perturb (EHIO)


	1-to-1 Joint Frequency Oracles
	Split-and-Conjunction Baseline
	Multi-Service Joint Frequency Oracles

	Handling One-to-Many Join
	Frequency-based Attack
	Hiding Existence and Frequency  with -Truncation
	Double Rounding: RecoveringAggregation from Truncated Tuples

	Range Consistency Optimization
	Optimal Range Decomposition
	Consistency Optimization

	Evaluation
	Attribute Aggregation
	Range Consistency Optimization
	Joint Aggregation

	Extensions and Discussion
	Handling Group-by Queries
	Join with Star Schema

	Related Work
	Conclusion
	References

