
Learning to be a Statistician: Learned Estimator for Number of
Distinct Values

Renzhi Wu
∗

Georgia Institute of Technology

renzhiwu@gatech.edu

Bolin Ding

Alibaba Group

bolin.ding@alibaba-inc.com

Xu Chu

Georgia Institute of Technology

xu.chu@cc.gatech.edu

Zhewei Wei

Renmin University of China

zhewei@ruc.edu.cn

Xiening Dai

Alibaba Group

xiening.dai@alibaba-inc.com

Tao Guan, Jingren Zhou

Alibaba Group

{tony.guan,jingren.zhou}@alibaba-

inc.com

ABSTRACT
Estimating the number of distinct values (NDV) in a column is

useful for many tasks in database systems, such as columnstore

compression and data profiling. In this work, we focus on how

to derive accurate NDV estimations from random (online/offline)

samples. Such efficient estimation is critical for tasks where it is

prohibitive to scan the data even once. Existing sample-based esti-

mators typically rely on heuristics or assumptions and do not have

robust performance across different datasets as the assumptions on

data can easily break. On the other hand, deriving an estimator from

a principled formulation such as maximum likelihood estimation is

very challenging due to the complex structure of the formulation.

We propose to formulate the NDV estimation task in a supervised

learning framework, and aim to learn a model as the estimator. To

this end, we need to answer several questions: i) how to make the

learned model workload agnostic; ii) how to obtain training data;

iii) how to perform model training. We derive conditions of the

learning framework under which the learned model is workload
agnostic, in the sense that the model/estimator can be trained with

synthetically generated training data, and then deployed into any

data warehouse simply as, e.g., user-defined functions (UDFs), to
offer efficient (within microseconds on CPU) and accurate NDV es-

timations for unseen tables and workloads. We compare the learned

estimator with the state-of-the-art sample-based estimators on nine

real-world datasets to demonstrate its superior estimation accuracy.

We publish our code for training data generation, model training,

and the learned estimator online for reproducibility.

PVLDB Reference Format:
Renzhi Wu, Bolin Ding, Xu Chu, Zhewei Wei, Xiening Dai, Tao Guan,

Jingren Zhou. Learning to be a Statistician: Learned Estimator for Number

of Distinct Values. PVLDB, 15(2): 272 - 284, 2022.

doi:10.14778/3489496.3489508

∗
Work done at Alibaba Group.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.

doi:10.14778/3489496.3489508

1 INTRODUCTION
Estimating number of distinct values (NDV), also known as cardi-

nality estimation, is a fundamental problem with numerous appli-

cations [30, 33, 46, 48]. It has been extensively studied in many re-

search communities including databases [22, 30], networks [25, 48],

bioinformatics [46], and statistics [18, 31, 50].

The methods for estimating NDV in the absence of an index can

be classified into two categories: sketch based methods and sampling
based methods [45]. Sketch based methods scan the entire dataset

once, followed by sorting/hashing rows, and create a sketch that is

used to estimate NDV [33]. Sampling based methods estimate NDV

using statistics from a small sample, without needing to scan the

entire dataset. Generally, sketch based methods give more accurate

estimation, but scanning and hashing the entire dataset can be pro-

hibitively expensive in large data warehouses. Hashing techniques

such as probabilistic counting help alleviate the memory require-

ments but still requires a full scan of the table. When a full scan is

not possible or the computation cost of a full scan is not affordable,

sampling based methods are the only remaining alternatives which

exam only a very small fraction of the table, i.e., a sample, and thus

scale well with increasing data set.

In this paper, we focus on the problem of accurately estimating

the number of distinct values from samples of large tables.

The first challenge is that, unlike some other statistical parame-

ters, such as means and histograms, which can be accurately com-

puted from small random samples, accurate NDV estimation from

small samples has been proved to be an extremely difficult task (e.g.,
with theoretical lower bounds of error given in [22]).

We can formulate sample-based NDV estimation using a princi-

pled method for estimating unknown parameters, the maximum
likelihood estimation (MLE) [19]. An MLE estimator is workload-
agnostic: it is derived (analytically) before we see the real workloads.
It solves an optimization problem, which maximizes the likelihood

of observing a specific random sample, and gives an NDV estima-

tion with desirable properties such as consistency and efficiency.
However, the remaining steps are challenging (if not impossible):

how to express the likelihood function and the optimization prob-

lem in a compact way, and how to (even approximately) solve it.

Due to the above challenges, this paper proposes and studies a

more fundamental question:whether it is possible to train a workload-
agnostic machine learning model to approximate principled statistical
estimators such as MLE estimators, with the training set syntheti-

cally generated from a training distribution calibrated based on the

https://doi.org/10.14778/3489496.3489508
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489508

Figure 1: Evaluating trained models to estimate mean 𝜇 and
STD 𝜎 of Gaussian distributions: (1) Estimated 𝜇 viaMLE and
the trained model v.s. ground-truth 𝜇 on 20 data points. (2)
Estimated𝜎 viaMLE and the trainedmodel v.s. ground-truth
𝜎 on 20 data points. (3)Model predicted𝜎 v.s.MLE estimation
of 𝜎 in the closed form on 2000 data points.

properties of our estimation task, such that the learned model can

be used on unseen workloads.

Learning to be a Statistician: a Toy Example
It is traditionally the statistician’s job to derive a closed-form or

numerical estimator as a function that takes an observed sample or

sample statistics as the input for estimating unknown parameters

of a statistical model. On the other hand, it is known that any

continuous function can be approximated by a neural network

(with enough nodes and layers) [34], which require three elements:

a training set 𝐴, a class of model architectures H , and a training

algorithm. Thus, a natural question is whether we can train a neural

network in aworkload-agnostic way (without seeing any real dataset
during training) to approximate, e.g., an MLE estimator. Following

are two examples with positive answers to this question.

Learning MLE of mean and STD. Let’s consider the mean 𝜇 and

standard deviation (STD) 𝜎 of a Gaussian distribution. For a size-𝑘

sample drawn from this distribution, S = {𝑣1, . . . , 𝑣𝑘 }, the MLE

estimations of 𝜇 and 𝜎 are known to have closed forms: 𝜇MLE =∑
𝑖 𝑣𝑖/𝑘 and 𝜎MLE =

√∑
𝑖 (𝑣𝑖 − 𝜇MLE)2/𝑘 , respectively. Assume that

we do not know the concrete form of 𝜇MLE
and 𝜎MLE

. How should

we train machine learning models to approximate them?

We first need to prepare the training data. From a specific Gauss-

ian distribution N(𝜇, 𝜎), we draw a size-𝑘 sample S, and add one
training data point (S, 𝜇) to the training set𝐴1 for mean estimation,

and one data point (S, 𝜎) to 𝐴2 for STD estimation. Note that, here,

each S is a 𝑘-dim feature vector, and each 𝜇 and 𝜎 are the (ground-

truth) labels to be predicted for mean and STD, respectively. In

the outer loop, we need to try different combinations of 𝜇 and 𝜎

to add more training data points into 𝐴1 and 𝐴2. In this example,

we generate 10
5
pairs of (𝜇, 𝜎), where each 𝜇 is randomly picked

from a Gaussian distribution N(0, 100) and each 𝜎 is picked from

a folded Gaussian distribution (i.e., 𝜎 = |𝑧 | where 𝑧 ∼ N(0, 100)).
Thus, we will have 10

5
training data points in each of 𝐴1 and 𝐴2.

We train a regression model (multi-layer perception with one

hidden layer of size 𝑘 and mean squared loss) using the training set

𝐴1 for estimating 𝜇 and another model (with the same architecture)

on 𝐴2 for estimating 𝜎 , both with S as feature.
We evaluate the trained estimator on a completely different test

set. We generate pairs (𝜇, 𝜎) with each 𝜇 ∼ 𝑈 (−100, 100) and 𝜎 ∼
𝑈 (0, 100) from uniform distributions. For each (𝜇, 𝜎), we generate
a test data point (S, 𝜇) and a point (S, 𝜎) for a size-𝑘 sample S from

N(𝜇, 𝜎). The results are reported in Figure 1 (where we use 𝑘 = 100).

Figures 1(1)-(2) show that the estimations of mean/STD given by

the trained model have very similar performance as those by the

closed-form MLE estimations. The trained model and MLE even

make the same mistakes for some test points with non-trivial errors.

Figure 1(3) compares 𝜎MLE
and the learned estimator on more data

points for STD estimation, for which the MLE estimator has a more

complex form than a linear model for the mean estimation.

Our Contributions and Solution Overview
In this paper, we will formalize and investigate the learning frame-

work illustrated in the above example, but for a more challenging

task, sample-based NDV estimation. While the empirical evidence

for mean/STD estimation sheds light on the possibility of approx-

imating MLE estimators with trained models, there are several

key questions to be resolved for general estimation tasks: i) how

to generate training data and what features should be extracted

for learning the model; ii) what model architecture, loss function,

and regularization should be used; iii) with the choice in i) and ii),

whether the trained estimator approximates MLE and performs in

a robust and workload-agnostic way.

• MLE formulation. We first formulate NDV estimation as an MLE

problem. Assuming that a data column is generated from some prior

distribution and a sample S is drawn uniformly at random from the

column, we observe the sample profile, i.e., a vector 𝑓 = (𝑓𝑗) 𝑗=1,...

where 𝑓𝑗 is the number of distinct values with frequency 𝑗 in S.
For example, for S = {a, a, a, b, b, b, c, c}, we have 𝑓1 = 0, 𝑓2 = 1 (‘c’

has frequency 2), and 𝑓3 = 2 (‘a’ and ‘b’). For an MLE estimation,

we aim to find the value of NDV, 𝐷 , such that the probability of

observing 𝑓 conditioned on NDV = 𝐷 is maximized. Although it is

difficult to solve (even approximately) the MLE formulation, it will

guide the design and analysis of our machine learning model.

• Learning estimator that approximates MLE. With the sample pro-

file 𝑓 as a feature and the ratio error between the estimate and the

true NDV as the training loss, we have a skeleton of the learning

framework. Unlike learning MLE for mean and STD where the

training data preparation is trivial because each dimension of the

feature space (𝑣𝑖 in S) can be independently generated, in NDV

estimation, however, different dimensions of the sample profile (𝑓𝑖
in 𝑓) are correlated, conditioned on NDV; thus, it is more difficult

to characterize the distribution needed for preparing the training

set. After carefully investigating the probability distribution the

model learns based on our choice of feature and loss and comparing

the learned probability distribution with the one in our MLE for-

mulation, we derive several precise properties to characterize the

training distribution we need in order to make the learned estimator

approximate an MLE estimator.

• Efficient training data generation.We design an efficient algorithm

to generate training data points. To generate one data point, we need

to first generate a data column (in a compact way). And instead

of drawing a sample explicitly, we directly generate the sample

profile from its distribution determined by the data column. In our

experiment, 10
5
-10

6
data points suffice to train the estimator.

• Instance-wise negative results and model regularization. It is im-

portant to note that the negative result about sample-based NDV

estimation in [22] also hold for “learned estimators”. However, the

negative result in [22] is a global one, in the sense that there ex-

ist hard instances of data columns whose NDVs are difficult to be

estimated. However, the hope is that, upon the observation of the

sample profile, it is possible to infer that the underlying data col-

umn is not a hard instance and an estimate with error lower than

the global lower bound can be expected. We first derive a new

instance-wise negative result, i.e., a lower bound of the estimation

error upon the observation of a sample profile. We use this negative

result to regularize the training of our model. More specifically,

we propose a regularization method that encourages the learned

estimator to achieve just the instance-wise lower bound of estima-

tion error, instead of always minimizing the estimation error to be

zero (which is an impossible goal due to global negative result). Its

effectiveness will be verified via experimental studies.

• Deployment and experiments. The learned estimator, once trained,

can be deployed in any data warehouse without the need of re-

training or tuning. We publish our estimator online [43] as a trained

neural network that takes a sample/sample profile of a column as

the input feature and outputs an estimated NDV of that column. It

is compared with the state-of-the-art sample-based NDV estimators

and is shown to outperform them on nine different real datasets.

Note, again, that none of these datasets is used to train our estimator,

and all the training data is generated synthetically.

Related Work
Learned cardinality estimation. There have been a long line of

existing works on learning a model to estimate cardinality or se-

lectivity of a query [15, 26, 27, 41, 42, 44, 60]. In general, they can

be divided into two types [57]. The first type uses query as the

primary feature and training data comes from the records of query

executions. For example, [27] uses query as features and applies

tree-based ensembles to learn the selectivity of multi-dimensional

range predicates. This type of method typically requires executing a

huge number of queries to obtain enough training data [57]. There

are efforts to alleviate this issue: [26] proposes to reduce model con-

struction cost by incrementally generating training data and using

approximate selectivity label. Generally, this type of methods work

well when future queries follow the same distribution and similar

templates (e.g., conjunction of range and categorical predicates) as

the training data [60]. The second type (for example [35] and [60])

builds a model to approximate the joint distribution of all attributes

in a table. This type of methods require re-training in case of data

or schema update. In dynamic environments with unseen datasets

and workloads coming, both type of methods require huge efforts

of accessing the new dataset and retraining [57].

Although we also learn a model to estimate NDV/cardinality,

our method is completely different from the above methods. Our

method is a sample-based approach and we use features from sam-

ple rows (drawn from tables or query results) instead of queries.

More importantly, our method is workload agnostic (only needing

to be trained once) and can be applied to any dynamic workload.

Sample-based NDV estimation. Existing sampling based meth-

ods are typically constructed based on heuristics or derived by

making certain assumptions. For example, there are estimators de-

rived by assuming infinite population size [21], certain condition

of skewness [52], and certain distribution of the data [47]. GEE

estimator [22] is constructed to match a (worst-case) lower bound

of estimation error in [22]. We discuss these existing approaches in

more details in Section 2.2. These approaches are not robust espe-

cially on datasets where their assumptions about data distribution

break, as we will show in experiments in Section 6.

Sketch-based NDV estimation. Sketch-based methods (e.g., Hy-
perloglog [28]) scan the entire dataset once and keep a memory-

efficient sketch that is used to estimate NDV. These methods are

able to produce highly accurate NDV estimation. For example, the

expected relative error of HyperLogLog [28] is about 1.04/√𝑚
bytes

,

where𝑚
bytes

is the number of bytes used in HyperLogLog; With

10K bytes, the relative error of NDV estimation can be as small as

1%-2%. See survey [33] for a comprehensive review.

Sample v.s. Sketch. When one scan of the data is affordable,

sketch-based estimators are preferable to sample-based ones. In

scenarios where a full scan of the data is (relatively) too expensive,

sample-based methods are preferable. For example, when NDV es-

timation in a column is used by the query optimizer to generate a

good execution plan for a SQL query, a high-quality sample-based

estimation is preferable, as the query is almost processed after a

full scan. Another example is approximate query processing [24],

where offline samples are used to provide approximate answers to

analytical (e.g., NDV) queries over voluminous data with interactive

speed. In short, sketch-based estimators and sample-based methods

are two orthogonal lines of research with different applications.

Paper Organization
In Section 2, we provide the preliminaries including an MLE-based

formulation for NDV estimation, and review some representative

estimators. In Section 3, we provide an overview of our learning-to-

estimate framework; we analyze and derive properties of the train-

ing distribution needed to make the learned model approximate

MLE. In Section 4, we give details about training data generation

and model architecture; we also introduce our new instance-wise

negative result about sample-based NDV estimation, and how to

regularize the model accordingly. Section 5 gives a brief introduc-

tion on how to use our learned estimator that is available online.

We evaluate our estimator and compare it with the state of the arts

experimentally and report the results in Section 6.

2 PRELIMINARIES
We focus on a specific data column C of a table with 𝑁 rows. 𝑁

is called the population size. Let 𝐷 be the number of distinct values
(NDV) in C. When calculating NDV of the column C, we consider
C as a (multi)set of values from some (possibly infinite) domain Ω.
Problem statement: estimating NDV from samples.We want

to estimate 𝐷 from a random sample S ⊆ C of 𝑛 tuples drawn

uniformly at random from C. Let 𝑟 = 𝑛/𝑁 be the sampling rate. We

assume 𝑁 , or equivalently 𝑟 , is observed.

We first formally define two important notations.

Frequency. The frequency of a value 𝑖 ∈ Ω in a column C, or
a sample S, is the number of times it appears in C, or S, denoted
as 𝑁𝑖 , or 𝑛𝑖 , respectively. By definitions, we have

∑
𝑖 𝑁𝑖 = 𝑁 and∑

𝑖 𝑛𝑖 = 𝑛, and the NDV in C is 𝐷 = |{𝑖 ∈ Ω | 𝑁𝑖 > 0}|.
Profile. In order to calculate NDV, it is sufficient to consider

the profile of C, denoted as 𝐹 = (𝐹 𝑗) 𝑗=1,...,𝑁 , where 𝐹 𝑗 = |{𝑖 ∈

Ω | 𝑁𝑖 = 𝑗}| is the number of distinct values with frequency 𝑗 in

C; similarly, the profile of a random sample S is 𝑓 = (𝑓𝑗) 𝑗=1,...,𝑛

where 𝑓𝑗 = |{𝑖 ∈ Ω | 𝑛𝑖 = 𝑗}| is the number of distinct values

with frequency 𝑗 in S. By definitions, the NDV in C is 𝐷 =
∑
𝑗>0

𝐹 𝑗
and the population size is 𝑁 =

∑
𝑗 𝑗𝐹 𝑗 ; The NDV in sample S is

𝑑 =
∑
𝑗>0

𝑓𝑗 and the sample size is 𝑛 =
∑
𝑗 𝑗 𝑓𝑗 .

2.1 An MLE-based Formulation.
Estimating NDV from random samples can be formulated as a

maximum likelihood estimation (MLE) problem, which is commonly

used to estimate unknown parameters of a statistical model, with

desirable properties such as consistency and efficiency [19]. The

estimated value (or the solution to an MLE problem) maximizes the

probability of the observed data generated from this model.

We assume that the column C with profile 𝐹 is drawn from some

prior probability distribution. A uniformly random sample S with
profile 𝑓 is then drawn from C. An MLE-based formulation for

NDV estimation can be derived based on the observed profile in the

sample S, i.e., the sample profile 𝑓 , and the observed population

size 𝑁 (or equivalently, sampling rate 𝑟 = 𝑛/𝑁). We estimate 𝐷 as

the one that maximizes the probability of observing 𝑓 and 𝑁 .

𝐷MLE = arg max

𝐷

P(𝑓 , 𝑁 | 𝐷) = arg max

𝐷

∑
𝐹

P(𝑓 , 𝑁 | 𝐹) P(𝐹 | 𝐷) .

Define F (𝐷, 𝑁) = {𝐹 | ∑𝑗>0
𝐹 𝑗 = 𝐷 and

∑
𝑗>0

𝑗 · 𝐹 𝑗 = 𝑁 } to be
all the feasible profile configurations with NDV equal to 𝐷 and pop-

ulation size equal to 𝑁 . For 𝐹 ∈ F (𝐷, 𝑁), we have P(𝑓 , 𝑁 | 𝐹) =
P(𝑓 | 𝐹); and for 𝐹 ∉ F (𝐷, 𝑁), we have P(𝑓 , 𝑁 | 𝐹) = 0 and

P(𝐹 | 𝐷) = 0. The above formulation can be rewritten as:

𝐷MLE = arg max

𝐷

∑
𝐹 ∈F(𝐷,𝑁)

P(𝑓 | 𝐹) P(𝐹 | 𝐷) .

The estimator 𝐷MLE
is to be used on unknown columns; so in

order to solve the above optimization problem, it is reasonable to

assume that the prior distribution of 𝐹 is uniform, in the sense that

every possible profile in F (𝐷, 𝑁) appears with equal probability,

i.e., P(𝐹 | 𝐷) = 1/|F (𝐷, 𝑁) | for every 𝐹 ∈ F (𝐷, 𝑁). Under this
assumption, we want to solve the following one for 𝐷MLE

:

𝐷MLE = arg max

𝐷

1

|F (𝐷, 𝑁) |
∑

𝐹 ∈F(𝐷,𝑁)
P(𝑓 | 𝐹) . (1)

We can also interpret the MLE-based formulation (1) as follows.

After observing the sample profile 𝑓 and the population size 𝑁 ,

we estimate 𝐷 as 𝐷MLE
which maximizes the average probability

of generating 𝑓 from a feasible profile 𝐹 ∈ F (𝐷, 𝑁). Solving (1),

however, is difficult even approximately, and thus this formulation

has not been applied for estimating NDV yet.

A natural question is whether it benefits to use sample S, instead
of sample profile 𝑓 , as observed data to derive MLE and as features

in our learning framework. We defer a formal analysis on why

using sample is not more advantageous to a technical report [58]

due to space limit. In fact, most existing estimators (as we show

next) also use sample profile instead of sample to estimate NDV.

2.2 Existing Estimators
There have been a long line of works on estimating NDV from

random samples. We review some representative ones as follows.

• A problem related to the one in (1) is profile maximum likelihood
estimation (PML) [23, 32, 50], which chooses 𝐹 that maximizes the

probability of observing 𝑓 of the randomly drawn S. Define:

𝐹PML = arg max

𝐹

P(𝑓 | 𝐹) and 𝐷PML =
∑
𝑗>0

𝐹PML
𝑗

. (2)

There have been works on finding approximations to 𝐹PML
[23, 50],

which can be in turn used to obtain an approximate version of

𝐷PML
in (2), although, in general, 𝐷MLE ≠ 𝐷PML

.

• Shlosser [52] is derived based on an assumption about skewness:

E[𝑓𝑖]/E[𝑓1] ≈ 𝐹𝑖/𝐹1, and performs well when each distinct value

appear approximately one time on average [30]. It estimates 𝐷 as

𝐷Shlosser = 𝑑 + (𝑓1
∑𝑛
𝑖=1

(1 − 𝑟)𝑖 𝑓𝑖)
/
(∑𝑛𝑖=1

𝑖𝑟 (1 − 𝑟)𝑖−1 𝑓𝑖). (3)

• Chao [20] approximates the expected NDV, E[𝐷], in large popu-

lation for some underlying distribution, and estimates NDV as a

lower bound of E[𝐷] with the population size approaching infinity:

𝐷Chao = 𝑑 + 𝑓 2

1
/(2𝑓2) . (4)

• GEE [22] is constructed by using geometric mean to balance the

two extreme cases for values appearing exactly once in the sample:

those with frequency one in C and drawn into S with probability

𝑟 v.s. those with high frequency in C and at least one copy drawn

into S. It is proved to match a theoretical lower bound of ratio error

for NDV estimation within a constant factor.

𝐷GEE =
√

1/𝑟 · 𝑓1 +
∑𝑛
𝑖=2

𝑓𝑖 (5)

HYBGEE [22] is a hybrid estimator using GEE for high-skew data

and using the smoothed jackknife estimator for low-skew data.

AE [22] is a more principled version of HYBGEE with smooth

transition from low-skew data to high-skew data. It requires to

solve a non-linear equation using, e.g., Brent’s method [10].

2.3 Negative Results
The aforementioned lower bound of ratio error for sample-based

NDV estimators is given by Charikar et al. in [22]. More formally,

define the ratio error of an estimation 𝐷̂ w.r.t. the true NDV 𝐷 to be

error(𝐷̂, 𝐷) = max{𝐷̂/𝐷, 𝐷/𝐷̂}. (6)

It considers in [22] a even larger class of estimators which ran-

domly and adaptively examine 𝑛 tuples from C. Note that drawing
a random sample S ⊆ C of 𝑛 tuples is a special case here. It says

that for any such estimator, there exists a choice of column C such

that, with probability at least 𝛾 > 𝑒−𝑛 , the ratio error is at least

error(𝐷̂, 𝐷) ≥
√
𝑁−𝑛

2𝑛 ln
1

𝛾 . (7)

3 OVERVIEW OF LEARNING FRAMEWORK
Since analytically solving (1) even approximately is difficult, we

propose to formulate the task of deriving 𝐷MLE
as a supervised

learning problem.We first introduce some key elements in the learn-

ing model, including the loss function and the design of training

dataset, which learns an estimator to approximate (1).

Learning to estimate. In typical traditional estimators such as (3)-(5),

the NDV is estimated as a function 𝐷̂ = h(𝑓 , 𝑟) of the sample profile

𝑓 and the sampling rate 𝑟 , or equivalently a function 𝐷̂ = h(𝑓 , 𝑁)
of 𝑓 and the population size 𝑁 as 𝑟 =

∑
𝑖>0

𝑖 𝑓𝑖/𝑁 . As it is difficult

to directly derive the function ℎ from a principled formulation such

as MLE in (1), we attempt to learn the MLE of NDV from a set of

training data points 𝐴 = {((𝑓 , 𝑁), 𝐷)}, where in each point, (𝑓 , 𝑁)
is the input feature and the NDV 𝐷 is the label to be predicted.

We use the ratio error defined in (6) to measure the accuracy of

estimations, and accordingly, the loss function of the model h is:

𝐿(h(𝑓 , 𝑁) = 𝐷̂, 𝐷) = | log 𝐷̂ − log𝐷 |2 =

(
log error(𝐷̂, 𝐷)

)
2

. (8)

Given a hypothesis set H of estimation functions, the goal is to

find h ∈ H with small empirical loss:

𝑅𝐴 (h) = 1/|𝐴|∑((𝑓 ,𝑁),𝐷) ∈𝐴 𝐿(h(𝑓 , 𝑁), 𝐷). (9)

In order to generate a data point ((𝑓 , 𝑁), 𝐷) in the training set

𝐴, we first generate a data column C with profile 𝐹 according to a

training distribution A. The NDV 𝐷 as well as population size 𝑁 is

directly calculated from 𝐹 . A random sample S is drawn uniformly

at random from C with sampling rate 𝑟 . The sample profile 𝑓 is

then obtained from S. The above process is repeated independently

multiple times to generate a training set𝐴 = {((𝑓 , 𝑁), 𝐷)}. We only

generate one sample profile 𝑓 from a profile 𝐹 to ensure that each

training data point in𝐴 is independently and identically distributed.

Approximating MLE. Intuitively, for a different training distribution
A, a different learned estimator h will be derived from the hypoth-

esis set (model architecture) H . Assuming that H is expressive

enough [51], we give some guidelines here on how to choose A so

that the learned h approximates the MLE estimator 𝐷MLE
.

Let PA (𝑁, 𝐷, 𝐹, 𝑓) denote the joint distribution of (𝑁, 𝐷, 𝐹, 𝑓) in
the training set𝐴 that is generated from the training distributionA
as above. Using the loss function in (8)-(9), i.e., the L2 loss on log𝐷 ,

the trained model h learns the distribution PA (log𝐷 | 𝑓 , 𝑁) [29].
By minimizing (9), the model tends to emit an output

ℎ(𝑓 , 𝑁) ≈ argmax𝐷PA (log𝐷 | 𝑓 , 𝑁) , (10)

for a given input (𝑓 , 𝑁). The approximation sign ≈ is because the

trained model might not be able to learn the underlying distribution

A of the training set exactly and the accuracy of the approxima-

tion is also determined by the hypothesis set H and the training

algorithm. For the term PA (log𝐷 | 𝑓 , 𝑁) on the right hand side,

PA (log𝐷 | 𝑓 , 𝑁) = 1/PA (𝑓 | 𝑁) · PA (log𝐷 | 𝑁) PA (𝑓 | log𝐷, 𝑁)

=
PA (log𝐷 | log𝑁)
PA (𝑓 | 𝑁)

∑
𝐹 ∈F(𝐷,𝑁)

P(𝑓 | 𝐹) PA (𝐹 | 𝐷, 𝑁) (11)

where both equations are from properties of conditional probability.

Consider the following two conditions about the distribution A:

i) for any 𝑁 , PA (log𝐷 | log𝑁) = constant; (12)

ii) for any 𝑁 and 𝐷 , PA (𝐹 | 𝐷, 𝑁) = 1/|F (𝐷, 𝑁) |. (13)

Namely, i) for any fixed 𝑁 , the NDV 𝐷 distributes uniformly at

log scale (or equivalently log𝐷 distributes uniformly) in A; and ii)

for any fixed 𝑁 and 𝐷 , every feasible profile appears with equal

probability. If both are satisfied, the maximizer of (11) (as a function

of 𝐷) can be written as

arg max

𝐷

PA (log𝐷 | 𝑓 , 𝑁) = arg max

𝐷

constant

PA (𝑓 | 𝑁)
∑

𝐹 ∈F(𝐷,𝑁)

P(𝑓 | 𝐹)
|F (𝐷, 𝑁) |

= arg max

𝐷

1

|F (𝐷, 𝑁) |
∑

𝐹 ∈F(𝐷,𝑁)
P(𝑓 | 𝐹) = 𝐷MLE

(14)

by putting (12)-(13) back into (11). The second equality in (14) is

because PA (𝑓 | 𝑁) is a probability term that is independent on 𝐷 ;

and the last equality is from the definition of𝐷MLE
in (1). Therefore,

the learned estimator h(𝑓 , 𝑁) approximates 𝐷MLE
if the training

distribution satisfies the two conditions in (12)-(13).

From the above analysis, the learned estimator h(𝑓 , 𝑁) approxi-
mates (14) which depends on onlyF (𝐷, 𝑁) and P(𝑓 | 𝐹): the former

is a deterministic finite set, and the latter is a probability distribution

depending only on the sampling procedure but not onA; therefore,

intuitively, we can expect that h(𝑓 , 𝑁) is workload-agnostic, i.e., it
generalizes well on unseen data columns, which will be verified

later in our experiments reported in Section 6.

About uniformity of 𝐹 . When introducing the MLE estimator

𝐷MLE
and analyzing its equivalence to the learned model h(𝑓 , 𝑁),

the underlying assumption is that the prior distribution of 𝐹 is

uniform. In fact, any targeted prior distribution of 𝐹 can be plugged

into𝐷MLE
and accordingly, used as the training distributionA for h.

However, we assume the uniformity purposely to enable the learned

estimator generalize to unseen datasets (workload-agnostic). We

tried to train an estimator (Lower Bound (LB) in Section 6) with the

prior of 𝐹 and A the same as those in the test datasets. In experi-

ments, we observed that the LB estimator works well only on this

particular workload but does not generalize to unseen workloads.

In comparison to the LB estimator with the “optimal” prior, our

workload-agnostic estimator with the uniform prior has comparable

performance on every test table (refer to, e.g., Table 2).

4 LEARNING ESTIMATOR FROM DATA
4.1 Efficient Training Data Generation
As long as the training data satisfies the conditions in (12)-(13),

whether the data is synthetic or from real world makes no difference.

This makes it possible for us to train the model using synthetically

generated data without needing any real-world data.

To generate a training data point ((𝑓 , 𝑁), 𝐷), one may first gen-

erate a random column C, then draw a random sample S from C
and calculate sample profile 𝑓 from S. However, since the popula-
tion profile 𝐹 of C contains all required information to generate a

random sample profile 𝑓 (as we will show in Section 4.1.2), we can

directly randomly generate a population profile 𝐹 and then draw a

random sample profile 𝑓 from PA (𝑓 |𝐹).

4.1.1 Population profile generation. Generating population profile

is to draw samples from the distribution PA (𝐹), written as:

PA (𝐹) = ∑
𝑁

∑
𝐷 PA (𝐹 |𝑁, 𝐷) PA (𝐷 |𝑁) PA (𝑁) . (15)

We can draw samples from PA (𝐹) by repeating the following: sam-

ple a 𝑁 from PA (𝑁), sample a 𝐷 from PA (𝐷 |𝑁), and sample a 𝐹

from PA (𝐹 |𝑁, 𝐷), with PA (𝐷 |𝑁) and PA (𝐹 |𝑁, 𝐷) satisfying the con-
ditions in (12)-(13). In order to ensure the training data to be diverse,

we want to have 𝑁 cover a big range of magnitude, so we set the

Figure 2: Frequency distribution of log𝐷/log𝑁 .

distribution of 𝑁 to be uniform at log scale, i.e., log
10
𝑁 ∼ 𝑈 (0, 𝐵)

where 𝐵 is a constant specifying the maximum population size. We

select 𝐵 = 9 according to the memory limit of our machine.

Generating 𝐹 from PA (𝐹 |𝑁, 𝐷) is, however, non-trivial. Given
population size 𝑁 and population NDV 𝐷 , drawing a population

profile from PA (𝐹 |𝑁, 𝐷) is equivalent to randomly sampling an

element under i) the uniform-distribution constraint (i.e., every
feasible 𝐹 has equal probability to be drawn) from set F (𝐷, 𝑁)
which is specified by the two constraints ii)

∑
𝑗>0

𝐹 𝑗 = 𝐷 and iii)∑
𝑗>0

𝑗𝐹 𝑗 = 𝑁 . Designing such a sampling procedure that satisfies

the three constraints simultaneously is very challenging.

If the dimensionality of 𝐹 can be given, the sampling procedure

is easier. Consider an alternative form of PA (𝐹):

PA (𝐹) = ∑
𝑁

∑
𝑀 PA (𝐹 |𝑁,𝑀) PA (𝑀 |𝑁) PA (𝑁). (16)

This indicates an alternative procedure: sample a 𝑁 from PA (𝑁),
sample a 𝑀 from PA (𝑀 |𝑁), and sample a 𝐹 from PA (𝐹 |𝑁,𝑀). In
this procedure, dimensionality𝑀 is givenwhen sampling 𝐹 from dis-

tribution PA (𝐹 |𝑁,𝑀). The distributions PA (𝐷 |𝑁) and PA (𝐹 |𝑁, 𝐷)
are now implicitly induced from PA (𝐹). To see why it is the case,

when PA (𝐹) is derived as in (16), the joint distribution PA (𝐹, 𝑁 , 𝐷)
is determined, because, by definitions, 𝑁 and 𝐷 are deterministi-

cally dependent on 𝐹 , i.e., PA (𝐹, 𝑁 , 𝐷) = PA (𝐹) if 𝑁 =
∑
𝑖 𝑖𝐹𝑖 and

𝐷 =
∑
𝑖 𝐹𝑖 , and PA (𝐹, 𝑁 , 𝐷) = 0 otherwise. PA (𝑁, 𝐷) and PA (𝑁)

are just marginal distributions of PA (𝐹, 𝑁 , 𝐷). Therefore, by the

definition of conditional probabilities, we can obtain PA (𝐷 |𝑁) as
PA (𝑁, 𝐷) /PA (𝑁) and PA (𝐹 |𝑁, 𝐷) as PA (𝐹, 𝑁 , 𝐷) /PA (𝑁, 𝐷).

We plan to design the two distributionsPA (𝑀 |𝑁) andPA (𝐹 |𝑁,𝑀)
to make the induced PA (𝐷 |𝑁) and PA (𝐹 |𝑁, 𝐷) approximately sat-

isfy the conditions in (12)-(13). In the following, we first intuitively

specify the form of PA (𝑀 |𝑁) and PA (𝐹 |𝑁,𝑀), then derive an effi-

cient sampling algorithm to generate 𝐹 , and show that the condi-

tions in (12)-(13) are approximately satisfied in the end.

Achieving (approxiamte) uniformity in sample. Intuitively,𝑀
is the highest number of times that a value can appear in population.

We draw𝑀 uniformly at log scale i.e. log
10
𝑀 ∼ 𝑈 (0, 𝐵). Note that

𝑀 is the dimensionality of the space where we draw 𝐹 and it is

different from the actual length of 𝐹 (maximum 𝑙 with 𝐹𝑙 > 0), so

𝐹𝑀 can be zero. Thus, 𝑀 and 𝑁 are independent (with log
10
𝑁 ∼

𝑈 (0, 𝐵)), and PA (𝑀 |𝑁) is identical to PA (𝑀).
Given 𝑁 and𝑀 , similarly we can have a feasible configuration

set for 𝐹 : F ′(𝑁,𝑀) = {𝐹 |∑𝑀𝑖=1
𝑖𝐹𝑖 = 𝑁 }. To make PA (𝐹 |𝐷, 𝑁)

approximately uniform (required in (13)), intuitively, we need to

make the distribution of 𝐹 as diffusive as possible, so we also draw

𝐹 uniformly from F ′(𝑁,𝑀). Notice that compared with F (𝑁, 𝐷),

F ′(𝑁,𝑀) only has one constraint and the dimensionality of 𝐹 is

given. This make it much easier to design a sampling procedure.

Let 𝑆𝐹𝑖 denote
∑𝑀
𝑖 𝐹𝑖 , then 𝐹𝑖 = 𝑆𝐹𝑖 − 𝑆𝐹𝑖+1. Apparently, 𝑆𝐹 has

a one-to-one mapping relationship with 𝐹 , so drawing each feasible

𝐹 with equal probability is equivalent to drawing each feasible

𝑆𝐹 with equal probability. The feasible set for 𝑆𝐹 is 𝑄 (𝑁,𝑀) =

{𝑆𝐹 | ∑𝑀𝑖=1
𝑆𝐹𝑖 = 𝑁 ; 𝑆𝐹𝑖 ≥ 𝑆𝐹𝑖+1 ∀ 𝑖}. Without the constraint

𝑆𝐹𝑖 ≥ 𝑆𝐹𝑖+1, the problem of generating 𝑆𝐹 so that each feasible 𝑆𝐹

has equal probability to be generated is known as the random fixed
sum problem, and there are existing efficient algorithms to solve

it in 𝑂 (𝑀 log𝑀) [9, 14]. The constraint 𝑆𝐹𝑖 ≥ 𝑆𝐹𝑖+1 can be easily

satisfied afterwards by reassigning 𝑆𝐹 to be its sorted version. Once

a 𝑆𝐹 is generated, the corresponding 𝐹 can be obtained.

To summarize, the process of generating one population profile

𝐹 is as follows: draw 𝑁 from log
10
𝑁 ∼ 𝑈 (0, 𝐵), draw 𝑀 from

log
10
𝑀 ∼ 𝑈 (0, 𝐵), draw 𝑆𝐹 from𝑄 (𝑁,𝑀) using algorithms for the

random fixed sum problem, and obtain 𝐹 by 𝐹𝑖 = 𝑆𝐹𝑖 − 𝑆𝐹𝑖+1.

As discussed above, PA (𝐹 |𝑁, 𝐷) and PA (log𝐷 | log𝑁) can be in-

duced from the distribution PA (𝐹), and thus also from PA (𝐹 |𝑁,𝑀)
and PA (𝑀 |𝑁). The uniformity of PA (𝐹 |𝑁, 𝐷) and PA (log𝐷 | log𝑁)
is still not strictly guaranteed. For PA (𝐹 |𝑁, 𝐷) and PA (𝐹 |𝑁,𝑀),
however, the sizes of the supporting sets F and F ′

, respectively,

are both extremely big and it can be shown the fraction of 𝐹 that

we can sample with our best effort (∼ 10
9
elements of 𝐹) is at

the scale of 10
−3991

. This leads to the fact that the samples we

drawn are extremely sparse in the space of all possible 𝐹 and

each 𝐹 can at most appear once in the samples. Therefore, the

empirical distribution of PA (𝐹 |𝑁, 𝐷) in training data will be close

to uniform. For PA (log𝐷 | log𝑁), we empirically show its unifor-

mity in Figure 2. For 𝑁 and 𝐷 drawn from log
10
𝑁 ∼ 𝑈 (0, 𝐵) and

log
10
𝐷 ∼ 𝑈 (0, log

10
𝑁), the ratio log𝐷/log𝑁 should follow the

uniform distribution𝑈 (0, 1) and we show the frequency distribu-

tion of log𝐷/log𝑁 in Figure 2(1); we obtain the𝑁 and𝐷 of our gen-

erated profiles and plot the frequency distribution of log𝐷/log𝑁 –

as shown in Figure 2(2), it is also roughly uniformly distributed.

4.1.2 Sample profile generation. To draw a sample, we need to

know the sampling rate 𝑟 . The conditions in (12)-(13) have no

constraint on the distribution of 𝑟 . To ensure the training data

to be diverse, we would like to have 𝑟 cover a big range of mag-

nitude. Therefore, we draw sampling rate 𝑟 uniformly at log scale

by log
10
𝑟 ∼ 𝑈 (−𝐵′,−1) where we select 𝐵′ = 4 as 10

−4
is a small

enough sampling rate in practice.

Instantiating the population/column from 𝐹 and then performing

random sampling to get a sample S and then sample profile 𝑓 is of

complexity𝑂 (𝑁). We propose to directly perform sampling from 𝐹

with a complexity of𝑂 (𝐷). When performing sampling, for a value

appeared 𝐾 times in population, the number of times 𝑘 it appears

in sample follows a binomial distribution P(𝑘) =
(𝐾
𝑘

)
𝑟𝑘 (1 − 𝑟)𝐾−𝑘

where 𝑟 is the sampling rate. By performing a binomial toss for

every distinct value in population, we obtain the number of times

each value appear in sample and sample profile 𝑓 can be calculated.

Accordingly, the complexity of generating a sample profile is𝑂 (𝐷).

4.1.3 Diversity training data. To further improve the generalization

ability of the trained model, we diversify the profiles we draw from

F ′
by incorporating some human knowledge. This is in the same

spirit as that one may incorporate human knowledge to diversify

an image dataset by operations such as rotation to improve the

generalization ability of models trained on the dataset [53].

We diversify our training data based on the following intuition:

each 𝐹 can be seen as a point in high dimensional space with 𝐹𝑖
being its coordinate at the 𝑖th dimension; we want to enlarge the

supporting region of the points (i.e., the region that the points span)

so that the trained model generalizes better, since machine learning

models are better at interpolation than extrapolation [59].

The most ideal way to increase the support region of the profiles

is to have some data points with a much bigger population size. In

this way, 𝐹𝑖 at every dimension can be very big yielding a bigger

support region. However, due to hardware limit in practice we are

not able to achieve this, so we choose to randomly increase one

𝐹𝑖 along one single random dimension for each 𝐹 . Specifically, for

each profile 𝐹 generated by the method in Section 4.1.1, a new

component 𝐹 ′ is added to 𝐹 to obtain the final profile 𝐹 ′′ = 𝐹 + 𝐹 ′
where 𝐹 ′ contains only one positive value 𝐹 ′

𝑖p
= 𝐷 ′

and 𝐹 ′
𝑖≠𝑖p

= 0;𝐷 ′

and 𝑖p are randomly generated by log
10
𝑁 ′ ∼ 𝑈 (0, 𝐵) , log

10
𝐷 ′ ∼

𝑈 (0, log
10
𝑁 ′), and 𝑖p = ⌊𝑁 ′/𝐷 ′⌉. Since 𝐹 ′ only have one non-

zero value 𝐹 ′
𝑖p
, with the same population size distribution, 𝐹 ′

𝑖p
will

be much greater than 𝐹𝑖p on average. In this way, the supporting

region of the profiles 𝐹 used in training is increased greatly.

4.2 Feature Engineering and Model Structure
4.2.1 Feature engineering. The raw features include sample profile

𝑓 and population size 𝑁 . On top of the two raw features, other

meaningful features that we can derive include sample size 𝑛 =∑
𝑖 𝑖 𝑓𝑖 , sample NDV 𝑑 =

∑
𝑖 𝑓𝑖 , and sampling rate 𝑟 = 𝑛/𝑁 .

The number of elements in the sample profile 𝑓 varies for differ-

ent samples. The length of 𝑓 can be as large as the sample size and

as be as small as one. However, during model training, we have to

use a fixed number of features. We choose to keep only the first𝑚

elements of the sample profile 𝑓 , i.e. 𝑓 [1 :𝑚]. If the length of 𝑓 is

less than𝑚, we pad it with zeros. This is based on the intuition that

the predictive power of 𝑓𝑖 decreases as 𝑖 increases. In fact, some of

the well-known estimators only use the first few elements in the

sample profile 𝑓 , yet achieving fairly good performance [20, 22, 30].

To make up for the elements being cutoff in the sample profile 𝑓 ,

we add the corresponding cut-off sample size 𝑛𝑐 =
∑
𝑖=𝑚+1

𝑖 𝑓𝑖 and

cut-off sample NDV 𝑑𝑐 =
∑
𝑖=𝑚+1

𝑓𝑖 as two additional features.

The feature set we use is 𝑥 = {𝑁,𝑛, 𝑛𝑐 , 𝑑, 𝑑𝑐 , 1/𝑟, 𝑓1, . . . , 𝑓𝑚}, with
a total of𝑁𝑥 =𝑚+6 features, and the single target we aim to predict

is population NDV 𝐷 . We set𝑚 = 100 by default in experiments.

4.2.2 Model structure. Recall that our goal is to learn an estima-

tor/model to approximate 𝐷MLE
. Simple models often assume some

specific relationship between the input features, i.e., the sample

profile 𝑓 in our case, and the label to be predicted, i.e., NDV 𝐷 .

For example, linear/logistic regression assumes a linear relation

between 𝑓 and (transformed) 𝐷 : e.g., 𝐷 =
∑
𝑖 𝑎𝑖 𝑓𝑖 . However, 𝐷

MLE

can be any unknown function of 𝑓 (e.g., refer to the previous estima-

tor 𝐷Shlosser
introduced in Section 2.2) that is much more complex

than the above restricted class of linear functions. Therefore, since

neural networks are able to approximate any function (with enough

nodes and layers) [34], we choose our model to be a neural network.

Figure 3: Network architecture: # of linear layers is 𝑁𝑙 + 𝑁𝑠 .

Our network architecture is shown in Figure 3. There are 𝑁𝑙 +𝑁𝑠
linear layers in total. The activation function for every layer is

LeakyRelu [6]. The first 𝑁𝑙 linear layers compose a set of more

complex features than the raw features. This is followed by a "sum-

marizer" component with 𝑁𝑠 = 2 linear layers that gradually sum-

marize features in 𝑁𝑥 dimensions to form the final one dimensional

prediction.We can control the capacity and complexity of ourmodel

by 𝑁𝑙 . We set 𝑁𝑙 = 5 by default and test the sensitivity to 𝑁𝑙 in Sec-

tion 6.4. Since the architecture is very simple, the model inference

time is at the scale of microseconds on CPU in our experiments.

There is one additional challenge for model learning: The mag-

nitude of different features in the feature set 𝑥 can be at different

scale. For example, the population size can be as large as 10
7
while

the sample NDV 𝑑 can be as small as 1. This makes it very difficult

to learn the model parameters [37, 38]. The common practice to

resolve this problem is to perform normalization [37, 38]. For exam-

ple in z-normalization each feature 𝑧 is normalized by the mean 𝜇

and standard deviation 𝜎 of the feature: 𝑧′ = 𝑧−𝜇
𝜎 . The underlying

assumption of this practice is that training data and test data are

drawn from the same distribution, so that the mean and standard

deviation in the test set will be equal to that of the training set.

When each test data point comes, we can use the mean and standard

deviation in the training set to normalize it. However, in our case,

we do not assume the training set and test set to share the same

distribution. In fact, our training set is synthetically generated, so

it can be very different from the real-world test datasets.

We take the logarithm of features (e.g., sample profile 𝑓𝑖 ’s and

inverse sampling rate 1/𝑟) before the first layer, after adding a

small constant to each feature to avoid logarithm of zero. Since

the network now operates at log scale, we take exponential on

the output of the last linear layer as the final output. Specifically,

let 𝐷
log

denote the output of the last linear layer, and the final

estimation is 𝐷 = 𝑒𝐷log
. There are three reasons for taking the

logarithm of features in the model. First, our learning objective is

to reduce the ratio error defined in (6), which is translated into a

loss function as the squared difference between log𝐷 and log 𝐷̂ in

(8). Secondly, taking logarithm makes NDV and different features

at the same scale, and thus easier to train the model (otherwise,

the training data points with big NDVs dominate the loss). Thirdly,

taking logarithm explicitly introduces non-linearity to the model,

so it can be more expressive to approximate nonlinear functions,

and helps the learned model to generalize better outside the support

region of training data [36] to approximate unbounded functions.

4.3 Model Regularization
We now introduce a regularization method tailed for our task by

considering negative results on sample-based NDV estimation. Note

that the negative result [22] introduced in Section 2.3 holds for

learned estimator as well, and it says that, any learned estimator

h ∈ H with sample or sample profile as the feature has a ratio error

at least in the order of Ω(
√
𝑁 /𝑛) in the worst case (for some dataset),

where 𝑁 is the population size and 𝑛 is the sample size. Since the

sample profile 𝑓 is an input feature to the learned estimator, we

first try to derive an instance-wise negative result by answering

the question how large the error could be after observing 𝑓 .

An instance-wise negative result and its implication.The idea
of our instance-wise negative result generalizes the one of a “global”

negative result [22]. Consider two columns (multi-sets) C1 = C0 ∪
Δ1 and C2 = C0 ∪ Δ2 sharing the common subset C0, and the

difference (Δ1 v.s. Δ2) makes their NDVs 𝐷1 and 𝐷2 differ signifi-

cantly from each other. We draw two samples from C1 and C2 with

sample profiles 𝑓1 and 𝑓2 observed, respectively. As long as C0 is

large enough, we can show that, with high probability, both the

two samples contain values only in C0, and thus 𝑓1 and 𝑓2 follow

the same distribution which are indistinguishable. More formally:

Proposition 1. For any size-𝑛 sample with profile 𝑓 and NDV
𝑑 , there exist two size-𝑁 columns C1 and C2 with NDVs 𝐷1 and 𝐷2,
respectively, such that with probability at least𝛾 we cannot distinguish
whether the observed 𝑓 is generated from C1 or from C2, with

𝐷1 =

⌊
𝑁 − 𝑛

4𝑛

(
ln(1

𝛾
) − 2

𝑒𝑐

)⌋
+ 𝑑 and 𝐷2 = 𝑑 (17)

for 𝛾 ≥ 𝑒−4𝑛−2𝑒−𝑐 and 𝑛 ≥ 𝑑 (ln𝑑 + 𝑐).

Proof of Proposition 1 can be found in our technical report [58].

Proposition 1 suggests that, no matter how well an estimator h is

trained under the loss function 𝑅𝐴 in (9), it is inherently hard to

estimate NDV using the model h(𝑓 , 𝑁). Consider the two columns

C1 and C2 with NDVs 𝐷1 and 𝐷2 constructed in Proposition 1.

Samples with profiles 𝑓1 and 𝑓2 are then drawn from C1 and C2,

respectively. Proposition 1 says that, with high probability, 𝑓1 and

𝑓2 follow the same distribution, and thus the expected output of

h(𝑓1, 𝑁) should be the same as the one of h(𝑓2, 𝑁), considering the
randomness in drawing samples. This property of h contradicts to

the fact that the true NDVs 𝐷1 and 𝐷2 in (17) differ significantly.

Following the above discussion, we can derive an instance-wise

lower bound of the ratio error by forcing h(·, 𝑁) to output

√
𝐷1𝐷2.

Theorem 1. For any size-𝑛 sample with profile 𝑓 and sample NDV
𝑑 observed (where 𝑛 ≥ 𝑑 (ln𝑑 + 𝑐)), with probability 𝛾 ≥ 𝑒−4𝑛−2𝑒−𝑐 ,
there exist a choice of column with NDV 𝐷 such that any estimation
of 𝐷 based on 𝑓 , i.e., h(𝑓 , 𝑁), has ratio error at least

error(h(𝑓 , 𝑁), 𝐷) ≥

√√ ⌊
𝑁−𝑛

4𝑛

(
ln(1

𝛾) −
2

𝑒𝑐

)⌋
+ 𝑑

𝑑
≜ 𝑏 (𝑑, 𝑛) . (18)

Proof of Theorem 1 can be found in our technical report [58].

Regularization for aworst-case optimal estimator.When train-

ing an estimator h under the loss function 𝑅𝐴 in (9), consider two

training data points 𝑝1 = ((𝑓 , 𝑁), 𝐷1) and 𝑝2 = ((𝑓 , 𝑁), 𝐷2) where
𝐷1 and 𝐷2 as in (17) are NDVs of the two columns C1 and C2 con-

structed in Proposition 1. If 𝑝1 is in the training data 𝐴 but 𝑝2 is

not, h tends to predict 𝐷1 after training; if 𝑝2 is in 𝐴 but 𝑝1 is not,

a trained h tends to predict 𝐷2. In both cases, the worst-case ratio

error for estimation could be as large as 𝐷1/𝐷2.

Our goal of regularization here is to push a trained model h
towards an instance-wise worst-case optimal estimator h∗ whose

ratio errormatches an instance-wise lower bound𝑏 (𝑑, 𝑛) as in (18). To
this end, consider a loss function 𝑅𝐴,h∗ (h) which aims to minimize

the distance between h and h∗ in prediction:

𝑅𝐴,h∗ (h) =
1

|𝐴|
∑

((𝑓 ,𝑁),𝐷) ∈𝐴
|𝐿(h(𝑓 , 𝑁), 𝐷)−𝐿(h∗ (𝑓 , 𝑁), 𝐷) |. (19)

Intuitively, with this loss function in (19), we want our model h
to be trained towards the “optimal” estimator h∗. In particular, if

𝑅𝐴,h∗ (h) = 0, h behaves exactly the same as h∗ on the training set

𝐴 with 𝐿(h(𝑓 , 𝑁), 𝐷) = 𝐿(h∗ (𝑓 , 𝑁), 𝐷) for each ((𝑓 , 𝑁), 𝐷) ∈ 𝐴.

Comparing to the loss 𝑅𝐴 (h) in (9), 𝑅𝐴,h∗ (h) in (19) allows the

model h to have a higher error (only as good as 𝐿(h∗ (𝑓 , 𝑁), 𝐷)) on
the training set, but aims to prevent overfitting.

Loss function with regularization. Recall the loss 𝐿(·, 𝐷) in (8)

used by ourmodel. If h∗’s ratio errormatches the instance-wise lower
bound 𝑏 (𝑑, 𝑛) in (18), we have 𝐿(h∗ (𝑓 , 𝑁), 𝐷) = (log𝑏 (𝑑, 𝑛))2

. We

also apply L2 regularization on model parameters𝑊 to encourage

𝑊 to be small and sparse for better generalization [16]. Putting

them together, we use the following loss function in training:

𝑅∗𝐴 (h) =
1

|𝐴|
∑

((𝑓 ,𝑁),𝐷) ∈𝐴
|𝐿(h(𝑓 , 𝑁), 𝐷)−(log𝑏 (𝑑, 𝑛))2 |+𝜆∥𝑊 ∥2 . (20)

Note that 𝑏 (𝑑, 𝑛) is defined only when 𝑛 ≥ 𝑑 (ln𝑑 + 𝑐) according
to Theorem 1. For 𝑛 < 𝑑 (ln𝑑 + 𝑐) (sample NDV is close to sample

size), we define 𝑏 (𝑑, 𝑛) ≜ 1. In our implementation, 𝑐 is set to be 10

in (18) such that the 2/𝑒𝑐 term in 𝑏 (𝑑, 𝑛) is negligible.
There are two hyperparameters here. i) 𝛾 for 𝑏 (𝑑, 𝑛) defined in

(18) controls how confident this lower bound is. We set 𝛾 = 0.6

by default to have a medium level of confidence. ii) 𝜆 controls the

strength of the L2 regularization. We set 𝜆 = 10
−1

by default in

our learned estimator after a tuning process based on training loss.

Details about the tuning process can be found in our technical report

[58]. It is important to note that, when choosing 𝛾 and 𝜆, we use

absolutely no knowledge about the test datasets. The robustness of

our model to different choices of 𝛾 and 𝜆 is evaluated in Section 6.4.

5 USAGE AND DEPLOYMENT
We extract the trained weights of our model in “model_paras.npy”
and implement a numpy version of the model to have minimum

dependency on other libraries. We provide the trained model, i.e.,
our learned NDV estimator in [43]. The usage of it is as simple as

a statistical estimator such as GEE and users can easily estimate

population NDV by providing either a sample or a sample profile

(drawn from a column or query results), as shown below:

Our model does not require any re-training for new workloads

and the inference time is at the scale of microseconds on CPU as

our model structure is very simple. Specifically, in our experiments,

inference on a single profile has a running time of 240 × 10
−6

sec-

onds. Our trained estimator can be easily plugged into any existing

systems. For example, we have plugged our trained model to the

cloud big data processing platform MaxCompute [7] at Alibaba.

6 EXPERIMENTS
We conduct experiments to evaluate the efficacy of our proposed

method and compare it with baselines along three dimensions:

• Performance. How accurate is our learned estimator?

• Ablation study.How does our way of generating training data and

performing model training contribute to the final performance?

• Sensitivity analysis. How sensitive is the performance of our

model to different hyperparameters?

6.1 Experiment Setup
Hardware.All our experiments were performed on amachine with

a 2.50GHz Intel(R) Xeon(R) Platinum 8163 CPU, a GeForce RTX

2080 Ti GPU and 376GB 2666MHz RAM.

Datasets. We conduct experiments on nine real-world datasets

from diverse domains. Note our method does not use any of them

for any training or hyperparameter tuning. The datasets are only

used for evaluation after our model is trained on synthetic data.

1) Kasandr [54, 55]: Behavior records of customers in e-Commerce

advertising with 15.8M rows and 7 columns.

2) Airline [1, 3]: Summary statistics of airline departures from 1987

to 2013 with 10.0M rows and 10 columns.

3) DMV [5, 39]: Data from Department of Motor Vehicles, contain-

ing information about cars, their owners and accidents. There are

11.7M rows and 20 columns.

4) Campaign [4]: Information of individual contributions to election

campaigns. There are 3.3M rows and 21 columns.

5) SSB [49]: The star schema benchmark. We use the fact table with

a scaling factor of 50, resulting in 300M rows and 17 columns.

6) NCVR [12]: North Carolina voter registration data with 8.3M

rows and 71 columns.

7) Product: Private dataset with information of product items on

an online-shopping website. There are 5.2M rows and 25 columns.

8) Inventory: Private dataset of inventory statistics. There are 8.8M

rows and 19 columns

9) Logistics: Private dataset of logistics information of shipping

orders. There are 8.6M rows and 28 columns.

Methods evaluated.We compare our method to nine methods:

1) GEE [22]: This method is constructed by using geometric mean

to balance the two extreme bounds of NDV. It is proved to match a

theoretical lower bound of ratio error within a constant factor.

2) HYBGEE [22]: This is a hybrid estimator using GEE for high-

skew data and using the smoothed jackknife estimator for low-skew

data. We refer to Pydistinct [8] to test for high or low skewness.

3) HYBSKEW [30]: This is a hybrid estimator using shlosser for

high-skew data and using the smoothed jackknife estimator for

low-skew data. We refer to the implementation in Pydistinct [8].

4) AE [22]: This was proposed to be a more principled version

of HYBGEE with smooth transition from low-skew data to high-

skew data. This method requires numerically finding the root of a

non-linear equation. We use the classic Brent’s method [10, 17].

5) Chao [20]: Thismethod is derived by approximating the coverage

as 1 − 𝑓1/𝑛 and assuming the population size is infinity. It predicts

NDV to be infinite when 𝑓2 = 0, so we invoke GEE in this case.

6) Chao-Lee [21]: This method adds a correction term to the cover-

age estimation in Chao to handle skew in data [30].

Table 1: Inference complexity (1st line) and # arithmetic op-
erations (2nd line) needed in implementation

GEE

HYB

GEE

HYB

SKEW
AE Chao

Chao

-Lee

Shlo

sser
APML Our

O(1) O(𝑛) O(𝑛) - O(1) O(|𝑓 |) O(|𝑓 |) O(𝑛) O(1)
5 5𝑛 5𝑛 - 4 4 |𝑓 | 7 |𝑓 | + 2 𝑛 +

√
𝑛 log𝑛 300 + 51200

7) Shlosser [52]: This method is derived based on a skewness as-

sumption: 𝐸 (𝑓𝑖)/𝐸 (𝑓1) ≈ 𝐹𝑖/𝐹1. The method performs well when

each distinct value appear approximately one time on average [30].

8) APML [50]: This method analytically approximates the profile

maximum likelihood estimation for population profile 𝐹PML
(so-

lution to (2)), and estimate NDV as

∑
𝑖 𝐹

PML

𝑖
. We use the imple-

mentation provided in the original paper. Note this method doesn’t

assume population size 𝑁 is given. For a fair comparison, when

this method predicts NDV to be greater than 𝑁 (in this case ratio

error can be extremely big), we replace its prediction with the best

performing baseline GEE’s prediction.

9) Lower Bound (LB): This method is to demonstrate the possible

gain of accessing some columns of the real-world test set at training

phase. For this method, we split all columns in the the nine real-

world datasets by 4:1:5 as training, validation and test set. We fine

tune our learned model (trained on synthetic data) on the training

set and use the validation set to perform early stopping to prevent

over-fitting. We evaluate the fine-tuned model on the remaining

test set. This provides an empirical lower bound for the error of

any workload agnostic estimators.

Inference cost. For all the methods evaluated, the inference cost,

i.e., processing time of estimating NDV per column, is usually dom-

inated by the cost of scanning the sample with size 𝑛 to obtain

sample profile 𝑓 and sample NDV 𝑑 . Suppose 𝑓 and 𝑑 are already
obtained, Table 1 summarizes the complexity and the number of

arithmetic operations needed in the remaining steps for inference
in different methods. Here, let |𝑓 | = max{ 𝑗 | 𝑓𝑗 > 0} denote the
length of 𝑓 . GEE, Chao, and our method need another O(1) arith-
metic operations to derive the NDV estimation, while Chao-Lee

and Shlosser need another O(|𝑓 |) arithmetic operations and HY-

BGEE, HYBSKEW, and APML need another O(𝑛) operations. Our
method needs about 300 arithmetic operations for feature engineer-

ing and 51200 arithmetic operations for a forward pass in the neural

network. AE needs to solve a nonlinear equation numerically.

Setup for various estimators.We evaluate all methods with sam-

pling rates varying from 10
−4

to 10
−2
: 10

−4
, 2 × 10

−4
, 5 × 10

−4
,

10
−3
, 2 × 10

−3
, 5 × 10

−3
, and 10

−2
. To deal with randomness in e.g.

sampling, we run ten times and report the averaged results. We

implement our model with pytorch and use Adam [40] as optimizer

and perform training with skorch [11]. We implement L2 regular-

ization with its equivalent form - weight decay [13, 56]. For our

method, the hyperparameters include: the number of elements in

sample profile that are used as features𝑚, the number of linear lay-

ers in our network architecture 𝑁𝑙 , learning rate during training 𝑙𝑟 ,

logarithm of the smallest sampling rate 𝐵′, logarithm of the largest

population size in training data 𝐵, number of synthetic training

data used 𝑁𝐴 , the confidence level 𝛾 of our derived lower bound

in (18), and the L2 regularization parameter 𝜆. We have explained

we set 𝑁𝑙 = 5 in Section 4.2.2, 𝐵′ = −4 in Section 4.1.2, 𝐵 = 9 in

Section 4.1.1, 𝛾 = 0.6 and 𝜆 = 0.1 in Section 4.3. For the remaining

parameters: We set 𝑚 = 100 so the total number of features we

use is 𝑁𝑥 = 106, and we test the sensitivity to 𝑚 in Section 6.4.

We choose a learning rate that has the smallest training loss and

also converges in a reasonable time: 𝑙𝑟 = 0.0003. We generate

𝑁𝐴 = 0.72 × 10
6
training data points, which takes about two hours

running in parallel on our machine and we further vary the amount

of training data used in Section 6.4. For sanity, we drop the data

points with population size 𝑁 < 10
4
as the sample may contain

zero data points because sampling rate can be as small as 10
−4
.

Performance metric. We used the widely used ratio error as our

performance metric, which is defined in (6).

6.2 Performance
Overall performance. The overall performance of all methods is

shown in Table 2. Our method achieves the lowest ratio error on

seven out of nine datasets and has comparable error to the best

baseline methods on the other two datasets. Our averaged ratio

error is very close to the empirical lower-bound error. Overall, most

baseline methods fail significantly on at least one dataset, which

could be caused by the violation of the assumptions they make.

GEE is the best performing baseline. Although HYBGEE and AE

were both designed to improve over GEE, their performance is very

sensitive to choice of dataset, because HYBGEE involves estimating

skewness of population which can be difficult on some datasets and

AE requires numerically solving a non-linear equation which can

be brittle in some cases. APML also doesn’t work well. One reason

is the analytical approximation in APML can introduce a big error;

Another reason is that APML is designed to estimate population

profile 𝐹 and is not tailored for estimating NDV.

Ratio error under different sampling rate. We plot the aver-

aged ratio error under different sampling rate in Figure 4(1). Our

method has the lowest error and is close to the empirical lower-

bound under all sampling rates. In addition, as sampling rate de-

creases, the advantage of our method over other methods increases

significantly. Shlosser has comparable performancewith ourmethod

at a high sampling rate 10
−2
, but its performance decreases rapidly

as sampling rate decreases. The error of AE is irregular with respect

to sampling rate because error of AE depends on the accuracy of the

root finding of a non-linear equation, which is brittle in practice.

Ratio error under different NDV. We plot the averaged ratio

error under different number of distinct values in Figure 4(2). Our

method has the lowest error under all range of number of distinct

values except the extremely small region, i.e., NDV ≈ 1.

Data distributions with high skew (small NDV) and low skew

(large NDV) are two relatively “easy” scenarios for NDV estima-

tions. Intuitively, when NDV is extremely small, it can be estimated

as NDV in the sample; when NDV is extremely large (close to popu-

lation size), NDV can be estimated as
sample NDV

sampling rate
. For example, as

is analyzed in [22] and demonstrated above in Figure 4(2), GEE and

Shlosser are known to perform well for data with high skew (NDV

< 10); some other estimator, e.g., HYBSKEW and HYBGEE, com-

bines the results of two estimators (one performs well for low skew

and the other for high skew)–one of the two is selected depending

on a test designed to measure the skew of the data. Therefore, the

Table 2: Ratio error for all methods averaged over all
columns in each dataset and over all sampling rates. The er-
ror for the empirical lower bound is denoted in grey.

GEE

HYB

GEE

HYB

SKEW

AE Chao

Chao

-Lee

Shlo

sser

APML LB Our

Kasandr 3.4 7.9 8.2 4.6 4.7 9.9 19.2 5.1 2.2 2.4
Airline 4.1 1.8 1.8 1.4 1.6 1.8 70.0 2.0 2.5 1.9

DMV 5.2 3.5 17.5 7.7 8.8 13.8 23.5 7.6 3.2 2.7
Campaign 7.3 6.5 8.4 291.8 13.4 48.0 21.9 13.2 2.9 3.9
SSB 5.2 1.2 1.2 1.1 1.1 1.2 173.1 1.3 1.5 2.0

NCVR 12.2 31.0 56.9 150.2 13.2 58.6 42.6 16.9 5.6 6.4
Product 36.3 60.6 58.7 46.1 46.9 250.6 30.5 54.8 9.2 14.6
Inventory 17.8 23.5 18.4 75.1 24.8 252.9 11.6 26.7 4.5 7.8
Logistics 17.1 93.1 100.0 552.0 15.5 275.1 19.5 16.7 3.6 3.5
Average 12.1 25.5 30.1 125.6 14.5 101.3 45.7 16.0 3.9 5.0

Figure 4: Averaged ratio error over all datasets for different
(1) samping rate and (2) NDV.

general trends for most estimators observed in Figure 4(2) are simi-

lar: they perform well for small NDV, and as NDV increases, the

error first increases and then decreases for large NDVs. Given this

general trend, however, the turning points for different methods are

different, depending on their concrete forms and data distributions.

For example, the turning point of Chao-Lee is 10
5
; the turning point

of HYBSKEW/HYBGEE is about 10
4
, and their performance also

largely depends on the skewness test result on the sample data,

which may not be stable; the turning point of Shlosser is 10
3
. The

performance of AE is irregular and largely depends on data distri-

butions, as it considers only estimators of the form 𝑑 + 𝐾𝑓1 [22],

and tries to estimate 𝐾 from the sample data.

Ratio error distribution. To show the distribution and the worst

case of ratio error, we plot the boxplot [2] of ratio error in Figure 5

when sampling rate 𝑟 = 10
−3
. Overall, our method has the smallest

error in most cases and also has the smallest worst case error. In

75% of cases, the ratio error of our method is smaller than 3, much

better than all baselines. The worst case ratio error of our method

is almost the same as the baseline GEE that has theoretical worst

Figure 5: Ratio error on all columns in all datasetswhen sam-
pling rate 𝑟 = 10

−3. In each sub-boxplot for eachmethod, the
five vertical lines denote minimum, 25th percentile, median,
75th percentile, and maximum respectively; the colored box
contains 50% of the data points; the diamond symbols on the
right side of the maximum line are outliers.

case ratio error guarantee. In 75% of cases, the two hybrid methods

HYBGEE and HYBSKEW are on average better than GEE but they

are not stable and their worst case error can be as large as 1000

causing their averaged ratio error to be greater than GEE in Table 2.

6.3 Ablation Study
We perform ablation study to show the contribution of each com-

ponent in our method and compare them to existing or straightfor-

ward solutions. Table 3 shows the results. Column "Full" denotes

our method with full set of components. We ablate our method

in three aspects, training data generation, model architecture and

objective function for training. The symbol "-" denotes dropping

the component that it precedes.

Training data generation. As shown in column "-diversify" in

Table 3, when removing the diversify component proposed in Sec-

tion 4.1.3, ratio error increases a bit, though the error is still sig-

nificantly lower than the best performing baseline in Table 2. This

verifies our intuition in Section 4.1.3: increasing the support re-

gion of the profiles is helpful to the generalization ability of our

model. We also compare to four heuristic method of generating

training data. "uni" denotes generating each 𝐹𝑖 of the population

profile 𝐹 by a uniform distribution. "pl" denotes generating 𝐹 so

that the relationship between 𝐹𝑖 and 𝑖 is power law. "rw" denotes

generating 𝐹 by random walk, i.e. 𝐹𝑖+1 = 𝐹𝑖 + 𝑠 where 𝑠 is a random
step size. "mix" denotes mixing all training data generated by the

three heuristic methods. For the three heuristic methods, we also

ensure that we introduce enough randomness by using a set of dif-

ferent random hyperparameters (e.g. length of 𝐹 , range of uniform

distribution, parameters in power law distribution, and step size

in random walk) for each data point. The results in Table 3 show

that our way of generating training data outperforms the heuristic

methods significantly. When mixing the three types of heuristically

generated data together, the averaged error is smaller than using

each type along because mixing all data increases training data

diversity and helps the model to generalize better.

Model architecture. We drop the logarithm layer in our model

architecture (Figure 3). As shown in column "-log" in Table 3, the

ratio error increases dramatically. This validates our choice to take

logarithm and its advantages as discussed in Section 4.2.2.

Table 3: Ablation analysis. "-" denotes removing a compo-
nent. The four columns under "heuristic" replace our train-
ing data generation by four heuristic methods respectively.

Datasets Full

Training data

generation

Model

arch

Training

objective

-diver

sify

heuristic

-log -b
-b

-L2

-b-L2

-loguni rw pl mix

Kasandr 2.4 5.2 40.8 30.8 >1k 50.1 >1k 2.3 3.3 >1k

Airline 1.9 2.5 3.4 4.7 464.0 24.9 >1k 1.8 1.9 >1k

DMV 2.7 3.4 129.8 45.2 14.6 98.3 >1k 2.5 3.8 >1k

Campaign 3.9 6.7 147.9 176.5 933.1 127.9 >1k 3.9 21.6 >1k

SSB 2.0 3.3 19.1 1.2 6.5 3.1 >1k 2.1 1.8 >1k

NCVR 6.4 8.1 83.2 92.9 >1k 113.8 >1k 7.2 8.2 >1k

Product 14.6 20.1 417.6 227.3 52.7 658.5 >1k 20.4 22.0 >1k

Inventory 7.8 10.1 386.7 313.4 >1k 109.5 >1k 9.4 12.0 >1k

Logistics 3.5 9.2 496.7 390.6 >1k 115.5 >1k 3.8 4.8 >1k

Average 5.0 7.7 191.2 142.5 >1k 76.9 >1k 5.9 8.8 >1k

Training objective. Column "-b" in Table 3 denotes removing

our proposed regularization for a worst-case optimal estimator

in (19). Overall, contrasting the column "Full" to the column "-b",

we can see adding the proposed regularization makes the overall

ratio error decrease by 0.9, closing the gap to the empirical lower-

bound by 45%. This regularization pushes the model to a worst-case

optimal estimator, and make it more robust (for datasets where it

is not the best, it is close to the best-performing estimator). With

this regularization, the ratio error on the most difficult datasets

(e.g., Product, and Inventory) decreases significantly more than on

other datasets. Removing this regularization does not make the

learned estimator "optimal" in specific datasets, but the error may

decrease a bit on the easy datasets (e.g., Kasandr, Airline, and DMV).

We further drop the L2 regularization (column "-b-L2") and error

further increases. This is expected as L2 regularization encourages

sparse and small model parameters that generalize better. Finally,

we further drop the logarithm on NDV (column "-b-L2-log") to use

a naive mean squared loss on NDV and the error increases to be

extremely high (similar to the "-log" column under "Model arch").

6.4 Sensitivity Analysis
We show the robustness of our method to the hyperparameters.

Sensitivity to number of features. Our number of features is

𝑁𝑥 =𝑚 + 6 where𝑚 is the number of elements in sample profile

that used as raw features. We set𝑚 = 100 by default. To test the

sensitivity, we vary𝑚 from 10 to 200. As shown in Figure 6(1), as𝑚

increases from 100 to 200 (𝑁𝑥 increases from 106 to 206), averaged

ratio error doesn’t change, so setting𝑚 = 100 suffices.

Sensitivity to number of layers in network. The number of

layers in our network is 𝑁𝑙 + 𝑁𝑠 where 𝑁𝑠 = 2. We vary 𝑁𝑙 from

0 to 8 so the number of layers varys from 2 to 10. In addtion, we

evaluate one extreme case 𝑁𝑙 = 0 and 𝑁𝑠 = 1, where the network

only has one linear layers with 𝑁𝑥 input dimenions and one output

demension. The averaged ratio error with respect to the number

of layers is shown in Figure 6(2). As the number of layer increases,

averaged ratio error decreases due to the increase of model com-

plexity. Although 𝑁𝑙 + 𝑁𝑠 = 10 gives marginally better result, our

choice with 𝑁𝑙 = 5 and 𝑁𝑙 + 𝑁𝑠 = 7 gives good enough result.

Figure 6: Averaged ratio error vs (1) # of features 𝑁𝑥 (2) # of layers 𝑁𝑙 + 𝑁𝑠 (3) L2 regularization parameter 𝜆 (4) Probability 𝛾

Sensitivity to L2 regularization. Figure 6(3) shows the average
ratio error under different L2 regularization parameter 𝜆. The error

is overall quite stable when 𝜆 is in region [0, 10
−1
]. Error increases

significantly when 𝜆 increases from 10
−1

to 1 and increases even

more dramatically when 𝜆 increases from 1 to 10. This increasing

trend in region [10
−1, +∞) is similar to the increasing trend of the

training loss[58]. Our heuristic method of selecting 𝜆 based on the

training loss curve at the end of Section 4.3 is able to select 𝜆 = 10
−1
.

Although the optimal 𝜆 is at 10
−2
, 𝜆 = 10

−1
is good enough.

Sensitivity to probability 𝛾 . Probability 𝛾 is the confidence level

of our derived lower bound in (18). Figure 6(4) shows the averaged

ratio error when probability 𝛾 varies in region (0, 1]. Overall, the
averaged ratio error is quite stable. The optimal value for 𝛾 is about

0.2. We heuristically selected 𝛾 to be 0.6 in Section 4.3. Although it

is not the optimal, 𝛾 = 0.6 is good enough.

Sensitivity to number of training data points. We vary the

number of training data points 𝑁𝐴 from 10
2
to 7.2×10

6
. In Figure 7,

the averaged ratio error decreases significantly as 𝑁𝐴 increases

because more training data improves the generalization ability of

the model. However, as 𝑁𝐴 further increases, averaged ratio error

increases marginally and then stabilizes. This counter-intuitive

phenomenon happens often when the distribution of training set is

different from the test set. When the training set becomes extremely

large, the model learns the very fine-grained details of the training

distribution, which tend to not generalize better to the test set.

Choosing training data size.Note that the best choice of training
data sizes for different columns can be different. Our goal is to train

a workload-agnostic estimator, and it can be too expensive (if not

impossible) to tune the training data size for each different workload.

From Figure 7, which reports the average error across a number

of tables for varying 𝑁𝐴 , a general trend is that: after 𝑁𝐴 exceeds

some threshold (e.g., 10
4
), the performance of the learned estimator

stabilizes. Thus, in practice, we simply choose a training data size

that is large enough (exceeding the threshold) but does not make

the training data preparation and model training too expensive. We

set the training data size 𝑁𝐴 = 0.72 × 10
6
to train the estimator

(available in [43]) used in all the other experiments.

Out-of-range generalization. In our training set, the max popula-

tion size is 10
9
and the max population NDV is 10

9
. To evaluate the

out-of-range performance, i.e., estimation for a column with large
NDV not seen at training time, of our learned estimator, we create

such extended test datasets: for each column in the original test

datasets, we duplicate it 10
4
times and add a suffix 𝑖 to each value in

the 𝑖th duplicate. In this way, columns in the extended datasets have

extremely large population sizes (maximum at 3 × 10
12
) and NDVs

Figure 7: Averaged ratio error vs number of training data𝑁𝐴.

Table 4: Error on columns with out-of-range NDV (> 10
10)

GEE

HYB

GEE

HYB

SKEW

AE Chao

Chao

-Lee

Shlo

sser

APML Our

Avg ratio error 20.6 30.1 78.3 15.6 143.2 164.5 15.7 37.5 4.2

(maximum at 0.9×10
11
). We focus on columns with population size

in [10
10, 3 × 10

12] and population NDV in [10
10, 0.9 × 10

11], and
report the average ratio error for all methods with sampling rate

10
−3

on these columns in Table 4. Note that both the original and

extended test datasets are not used for training our estimator. It can

be seen that our method also works very well even when NDV to

be estimated is out-of-range, and is still better than other baselines.

The out-of-range generalizability of our learned estimator is partly

due to the logarithm operations as discussed in Section 4.2.2.

7 CONCLUSION AND FUTUREWORK
In this paper, we consider a fundamental question: whether it is pos-
sible to train a workload-agnostic machine learning model to approx-
imate principled statistical estimators such as maximum likelihood
estimators (MLE). We provide a positive answer to this question

on the concrete task of estimating the number of distinct values

(NDV) of a population from a small sample. We formulate the

sample-based NDV estimation problem as an MLE problem which,

however, is difficult to be solved even approximately. We propose a

learning-to-estimate framework to train a workload-agnostic model

to approximate the MLE estimator. Extensive experiments on nine

datasets from diverse domains demonstrate that our learned esti-

mator is robust and outperforms all baselines significantly.

For futurework, wewould like to extend our learning-to-estimate

method to learn estimators for other properties whose MLE is diffi-

cult to obtain, e.g., entropy and distance to uniformity.

REFERENCES
[1] 2020. Airlines Departure Delay. https://www.openml.org/d/42728

[2] 2020. Box plot. https://en.wikipedia.org/wiki/Box_plot

[3] 2020. Bureau of Transportation Statistics. https://www.transtats.bts.gov/

[4] 2020. Campaign finance data. https://www.fec.gov/data/

[5] 2020. Department of Motor Vehicle (DMV) Office Locations. https://catalog.

data.gov/dataset/department-of-motor-vehicle-dmv-office-locations

[6] 2020. Leaky ReLU. https://pytorch.org/docs/stable/generated/torch.nn.

LeakyReLU.html

[7] 2020. MaxCompute. https://www.alibabacloud.com/product/maxcompute

[8] 2020. Pydistinct - Population Distinct Value Estimators. https://pydistinct.

readthedocs.io/

[9] 2020. Random numbers that add to 100: Matlab. https://stackoverflow.com/

questions/8064629/random-numbers-that-add-to-100-matlab

[10] 2020. scipy.optimize.brentq. https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.brentq.html

[11] 2020. skorch documentation. https://skorch.readthedocs.io/en/stable/

[12] 2020. Voter Registration Statistics. https://www.ncsbe.gov/results-data/voter-

registration-data

[13] 2020. weight decay in neural networks. https://metacademy.org/graphs/

concepts/weight_decay_neural_networks

[14] 2021. Random Vectors with Fixed Sum - File Exchange - MATLAB Cen-

tral. https://www.mathworks.com/matlabcentral/fileexchange/9700-random-

vectors-with-fixed-sum [Online; accessed 27. Apr. 2021].

[15] Christos Anagnostopoulos and Peter Triantafillou. 2015. Learning to accurately

count with query-driven predictive analytics. In 2015 IEEE international conference
on big data (big data). IEEE, 14–23.

[16] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[17] Richard P Brent. 1973. Algorithms for Minimization without Derivatives, chap.

4.

[18] John Bunge and Michael Fitzpatrick. 1993. Estimating the number of species: a

review. J. Amer. Statist. Assoc. 88, 421 (1993), 364–373.
[19] Raymond L Chambers, David G Steel, Suojin Wang, and Alan Welsh. 2012. Maxi-

mum likelihood estimation for sample surveys. CRC Press.

[20] Anne Chao. 1984. Nonparametric estimation of the number of classes in a

population. Scandinavian Journal of statistics (1984), 265–270.
[21] Anne Chao and Shen-Ming Lee. 1992. Estimating the number of classes via

sample coverage. Journal of the American statistical Association 87, 417 (1992),

210–217.

[22] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 2000.

Towards estimation error guarantees for distinct values. In Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 268–279.

[23] Moses Charikar, Kirankumar Shiragur, and Aaron Sidford. 2019. Efficient profile

maximum likelihood for universal symmetric property estimation. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing. 780–791.

[24] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query

Processing: No Silver Bullet. In SIGMOD. 511–519.
[25] Reuven Cohen and Yuval Nezri. 2019. Cardinality Estimation in a Virtualized

Network Device Using Online Machine Learning. IEEE/ACM Transactions on
Networking 27, 5 (2019), 2098–2110.

[26] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.

Efficiently Approximating Selectivity Functions using Low Overhead Regression

Models. Proc. VLDB Endow. 13, 11 (2020), 2215–2228.
[27] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,

and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using

lightweight models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057.
[28] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perloglog: the analysis of a near-optimal cardinality estimation algorithm. In

Proceedings of the Analysis of Algorithms Conference. 137–156.
[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2017. Deep learning Ch. 5

Machine Learning Basics. The MIT Press, 132–133.

[30] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Lynne Stokes. 1995. Sampling-

based estimation of the number of distinct values of an attribute. In VLDB, Vol. 95.
311–322.

[31] Peter J Haas and Lynne Stokes. 1998. Estimating the number of classes in a finite

population. J. Amer. Statist. Assoc. 93, 444 (1998), 1475–1487.
[32] Yi Hao and Alon Orlitsky. 2019. The broad optimality of profile maximum

likelihood. In Advances in Neural Information Processing Systems. 10991–11003.
[33] Hazar Harmouch and Felix Naumann. 2017. Cardinality estimation: An experi-

mental survey. Proceedings of the VLDB Endowment 11, 4 (2017), 499–512.
[34] Simon Haykin. 1998. Neural Networks: A Comprehensive Foundation. Prentice

Hall.

[35] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian

Kersting, and Carsten Binnig. 2020. DeepDB: learn from data, not from queries!

Proceedings of the VLDB Endowment 13, 7 (2020), 992–1005.

[36] J Wesley Hines. 1996. A logarithmic neural network architecture for unbounded

non-linear function approximation. In Proceedings of International Conference on
Neural Networks (ICNN’96), Vol. 2. IEEE, 1245–1250.

[37] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on International Conference on Machine Learning
- Volume 37 (Lille, France) (ICML’15). JMLR.org, 448–456.

[38] Piotr Juszczak, D Tax, and Robert PW Duin. [n.d.]. Feature scaling in support

vector data description. Citeseer.

[39] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating

join selectivities using bandwidth-optimized kernel density models. Proceedings
of the VLDB Endowment 10, 13 (2017), 2085–2096.

[40] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[41] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and

Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with

deep learning. arXiv preprint arXiv:1809.00677 (2018).

[42] Seetha Lakshmi and Shaoyu Zhou. 1998. Selectivity estimation in extensible

databases-a neural network approach. In VLDB, Vol. 98. 24–27.
[43] Library. 2021. An learned sample-based NDV estimator. https://github.com/

wurenzhi/learned_ndv_estimator. [Online; accessed 11-October-2021].

[44] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte. 2015.

Cardinality estimation using neural networks. In Proceedings of the 25th Annual
International Conference on Computer Science and Software Engineering. 53–59.

[45] AhmedMetwally, Divyakant Agrawal, and Amr El Abbadi. 2008. Why go logarith-

mic if we can go linear? Towards effective distinct counting of search traffic. In

Proceedings of the 11th international conference on Extending database technology:
Advances in database technology. 618–629.

[46] Hamid Mohamadi, Hamza Khan, and Inanc Birol. 2017. ntCard: a streaming

algorithm for cardinality estimation in genomics data. Bioinformatics 33, 9 (2017),
1324–1330.

[47] Rajeev Motwani and Sergei Vassilvitskii. 2006. Distinct values estimators for

power law distributions. In 2006 Proceedings of the Third Workshop on Analytic
Algorithmics and Combinatorics (ANALCO). SIAM, 230–237.

[48] Suman Nath, Phillip B Gibbons, Srinivasan Seshan, and Zachary Anderson. 2008.

Synopsis diffusion for robust aggregation in sensor networks. ACM Transactions
on Sensor Networks (TOSN) 4, 2 (2008), 1–40.

[49] Patrick E O’Neil, Elizabeth J O’Neil, and Xuedong Chen. 2007. The star schema

benchmark (SSB).

[50] Dmitri S Pavlichin, Jiantao Jiao, and TsachyWeissman. 2019. Approximate Profile

Maximum Likelihood. Journal of Machine Learning Research 20, 122 (2019), 1–55.

http://jmlr.org/papers/v20/18-075.html

[51] Maithra Raghu, Ben Poole, Jon M. Kleinberg, Surya Ganguli, and Jascha Sohl-

Dickstein. 2017. On the Expressive Power of Deep Neural Networks. In Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017.
2847–2854.

[52] A Shlosser. 1981. On estimation of the size of the dictionary of a long text on the

basis of a sample. Engineering Cybernetics 19, 1 (1981), 97–102.
[53] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data

augmentation for deep learning. Journal of Big Data 6, 1 (2019), 60.
[54] Sumit Sidana, Charlotte Laclau, Massih R Amini, Gilles Vandelle, and André

Bois-Crettez. 2017. KASANDR: a large-scale dataset with implicit feedback for

recommendation. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1245–1248.

[55] Daniel Ting. 2019. Approximate Distinct Counts for Billions of Datasets. In Pro-
ceedings of the 2019 International Conference on Management of Data (Amsterdam,

Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York,

NY, USA, 69–86. https://doi.org/10.1145/3299869.3319897

[56] Twan Van Laarhoven. 2017. L2 regularization versus batch and weight normal-

ization. arXiv preprint arXiv:1706.05350 (2017).
[57] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.

2021. Are We Ready for Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (May 2021), 1640–1654. https://doi.org/10.14778/3461535.3461552

[58] Renzhi Wu, Bolin Ding, Xu Chu, Zhewei Wei, Xiening Dai, Tao Guan, and

Jingren Zhou. 2021. An learned sample-based NDV estimator (technical report).

https://figshare.com/s/8cd5f3dad9418b84b75a. [Online; accessed 11-October-

2021].

[59] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and

Stefanie Jegelka. 2021. How neural networks extrapolate: From feedforward to

graph neural networks. In ICLR.
[60] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,

Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method

for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (May 2021), 1489–1502.

https://doi.org/10.14778/3461535.3461539

https://www.openml.org/d/42728
https://en.wikipedia.org/wiki/Box_plot
https://www.transtats.bts.gov/
https://www.fec.gov/data/
https://catalog.data.gov/dataset/department-of-motor-vehicle-dmv-office-locations
https://catalog.data.gov/dataset/department-of-motor-vehicle-dmv-office-locations
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://www.alibabacloud.com/product/maxcompute
https://pydistinct.readthedocs.io/
https://pydistinct.readthedocs.io/
https://stackoverflow.com/questions/8064629/random-numbers-that-add-to-100-matlab
https://stackoverflow.com/questions/8064629/random-numbers-that-add-to-100-matlab
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html
https://skorch.readthedocs.io/en/stable/
https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
https://metacademy.org/graphs/concepts/weight_decay_neural_networks
https://metacademy.org/graphs/concepts/weight_decay_neural_networks
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
http://arxiv.org/abs/1412.6980
https://github.com/wurenzhi/learned_ndv_estimator
https://github.com/wurenzhi/learned_ndv_estimator
http://jmlr.org/papers/v20/18-075.html
https://doi.org/10.1145/3299869.3319897
https://doi.org/10.14778/3461535.3461552
https://figshare.com/s/8cd5f3dad9418b84b75a
https://doi.org/10.14778/3461535.3461539

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 An MLE-based Formulation.
	2.2 Existing Estimators
	2.3 Negative Results

	3 Overview of Learning Framework
	4 Learning Estimator from Data
	4.1 Efficient Training Data Generation
	4.2 Feature Engineering and Model Structure
	4.3 Model Regularization

	5 Usage and Deployment
	6 Experiments
	6.1 Experiment Setup
	6.2 Performance
	6.3 Ablation Study
	6.4 Sensitivity Analysis

	7 Conclusion and Future work
	References

