
FS-Real: A Real-World Cross-Device Federated Learning Platform
Dawei Gao∗, Daoyuan Chen∗, Zitao Li, Yuexiang Xie, Xuchen Pan,

Yaliang Li, Bolin Ding, Jingren Zhou
Alibaba Group

ABSTRACT

Federated learning (FL) is a general distributed machine learning
paradigm that provides solutions for tasks where data cannot be
shared directly. Due to the difficulties in communication manage-
ment and heterogeneity of distributed data and devices, initiating
and using an FL algorithm for real-world cross-device scenarios
requires significant repetitive effort but may not be transferable to
similar projects. To reduce the effort required for developing and
deploying FL algorithms, we present FS-Real, an open-source FL
platform designed to address the need of a general and efficient
infrastructure for real-world cross-device FL. In this paper, we intro-
duce the key components of FS-Real and demonstrate that FS-Real
has the following capabilities: 1) reducing the programming burden
of FL algorithm development with plug-and-play and adaptable
runtimes on Android and other Internet of Things (IoT) devices;
2) handling a large number of heterogeneous devices efficiently
and robustly with our communication management components;
3) supporting a wide range of advanced FL algorithms with flexible
configuration and extension; 4) alleviating the costs and efforts for
deployment, evaluation, simulation, and performance optimization
of FL algorithms with automatized tool kits.

PVLDB Reference Format:

Dawei Gao, Daoyuan Chen, Zitao Li, Yuexiang Xie, Xuchen Pan, Yaliang Li,
Bolin Ding, and Jingren Zhou. FS-Real: A Real-World Cross-Device
Federated Learning Platform. PVLDB, xx(x): XXX-XXX, 2023.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/alibaba/FederatedScope/tree/FSreal.

1 INTRODUCTION

Federated Learning (FL) is widely recognized as a promising learn-
ing paradigm for preserving data privacy and sovereignty by dis-
tributing the machine learning training process across multiple de-
vices, and requiring the devices to only share model updates instead
of raw local data [7]. This design can also achieve high communica-
tion efficiency by enabling devices to share model updates only after
every few rounds of local training. Further, by incorporating diverse
data sources, FL has great potential to improve the performance of
machine learning models, in terms of better adaptation to a wide
range of scenarios and more accurate and personalized results [4].

∗Co-first authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. xx, No. x ISSN 2150-8097.
doi:XX.XX/XXX.XX

Nonetheless, the distributed nature of FL, coupled with data
heterogeneity (data following different distributions) and device
heterogeneity (learning is conducted on various software and hard-
ware environments), results in greater complexity compared to
centralized learning, and presents considerable challenges in the
development, evaluation, and deployment of FL algorithms. In a
cross-device context, there are typically thousands to millions of
devices that have limited hardware computation capacities and
unstable network connections. Thus, implementing cross-device FL
algorithms demands substantial effort, including the development
of local training modules for diverse edge devices, aggregation of
updates from numerous concurrent communications, management
of time-delayed and drop-out clients, and evaluation of model and
system performance [3]. Certain components of existing FL imple-
mentations, such as inter-party communication, often serve similar
purposes but are not reusable across different projects or systems
involving diverse device types and device scales. Moreover, due
to the absence of dedicated tools for managing or simulating a
multitude of heterogeneous devices, the evaluation of existing FL
algorithms (especially in terms of system and model performance)
may lead to discrepancies between reported research findings and
real-world outcomes. Overcoming these challenges is crucial for the
widespread adoption and successful implementation of cross-device
FL in real-world applications.

To address these challenges, we propose a comprehensive, effi-
cient, and flexible platform for the development, simulation, and
deployment of FL algorithms, named FS-Real. The proposed plat-
form, derived from an event-driven FL framework named Federated-
Scope [10], achieves significant progress in tackling the aforemen-
tioned challenges in cross-device FL. Specifically, FS-Real offers
encapsulated interfaces that conceal low-level details from FL al-
gorithm designers and users on both the server and client sides,
and supports adaptation across various types of devices. Moreover,
FS-Real is equipped to handle the complexities and large commu-
nication volumes associated with cross-device FL settings, making
that FS-Real can process messages up to 3.9x more efficiently than
FS and other competitive FL frameworks designed toward scaling
[5], and can support 100,000 scale devices as shown in [2]. Addition-
ally, the proposed FS-Real can be flexibly integrated with various
advanced FL techniques such as personalization, compression and
asynchronous aggregation to satisfy real-world requirements, and
has been plugged with an easy-to-use GUI and a monitoring module
for helping users to configure, track and analyze the FL process. In
summary, the proposed FS-Real provides a comprehensive solution
that streamlines the FL research and development processes by sim-
plifying implementations and providing a standardized platform
for comparing different cases across various FL scenarios.

In this demo, we first introduce the core components in FS-Real,
including: (1) Client runtimes, built on various devices operating
systems (Android, AliOS, and Linux on embedded devices) and

https://doi.org/XX.XX/XXX.XX
https://github.com/alibaba/FederatedScope/tree/FSreal
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

MNN [6] APIs, provide customizable data preprocessing and lo-
cal training functions. This frees users from handling underlying
programming interfaces. (2) An exceptionally efficient message han-
dling and model aggregation module, enables the server to manage
cross-device FL tasks involving millions of clients. (3) A collection
of flexible programming interfaces that allow users to easily cus-
tomize the key FL processes, such as training, communication, and
aggregation. With these interfaces, a wide range of advanced FL
algorithms can be supported such as asynchronous training, model
compression, and personalized FL [1]. (4) A user-friendly simula-
tion platform that can be initiated with a single command, and can
faithfully emulate the complete FL training process involving a
large number of clients with configurable heterogeneous devices.

After walking through these components, we demonstrate how
to use FS-Real with three distinct scenarios. • In the first scenario,
we illustrate how users can conduct FL processes using our An-
droid runtime and server-side support on a vision dataset. After
completing a few configuration steps on mobile devices, users can
seamlessly participate in the FL process. The FL coordinator can
also monitor various aspects of the process, including device hard-
ware distribution, system performance, and model performance. •
In the second scenario, we demonstrate how to initiate our simu-
lation platform and configure it easily to incorporate advanced FL
techniques on a textual dataset, achieved by simply modifying a few
values in configuration files. • In the third scenario, we showcase a
real-world FL application running on cars with speech data, backed
by the FS-Real platform.

C
lie

nt
Se

rv
er

Cross-device
Communication

gRPC
Compression
(gzip, deflate)

Advance FL

MNN API

Personalization

Quantization

Monitor/GUI

CPU

Memory

Training Status

Async Training Training
Statistic

Communication
Cost

Finetune FedBABU

INT8 FLOAT16

MNN API

Timeout Staleness

Automatization

Batching

Dataset Dispatch

Device/Emulator
Set-up

Configuration
Generator
Hardware

Distribution

Server Set-up

Hyper-parameter
Search

Result

Result Analysis

Parallelized
Message

Processing

Converter Train Hardware/algorithm
level optimization

Device
Utilization

Figure 1: Overall architecture of FS-Real. Gold blocks are

on the server side; blue blocks are on the client side; green

blocks involve functions on both server and client side.

2 FS-REAL: ARCHITECTURE IMPROVEMENT

In this section, we summarize the major components of FS-Real
as illustrated in Figure 1. We refer readers to [2] for more details
about the system design and implementations.

Specifically, the server side of FS-Real is adapted from an event-
driven FL system, FederatedScope (FS) [10]. Although FS has demon-
strated its potential to support a wide range of FL tasks, it falls short
in addressing real-world cross-device FL challenges stated below:
(i) Being primarily implemented in Python, FS does not inherently
account for the computational limitations and implementation het-
erogeneity of edge devices with their specific hardware and op-
erating systems. (ii) FS struggles when the number of clients is

more than 10,000 in distributed mode, a minimum requirement
for cross-device FL. (iii) FS’s server side does not sufficiently con-
sider robustness and efficiency in dealing with resource-limited and
connection-spotty clients. To address these shortcomings, we refac-
tor and enhance several key components of FS and build matched
runtimes for Android and IoT devices, resulting in FS-Real as a
next-generation FL system tailored for real-world cross-device FL.

FS-Real runtime: Towards easing programming local train-

ing and optimizing system performance on heterogeneous

devices. We provide plug-and-play runtimes that can be executed
on various types of devices, including Android, NVIDIA Jetson and
AliOS for intelligent cars. Users can effortlessly customize the run-
time to manage their own FL tasks by defining the data paths and
implementing the optional data preprocessing functions, without
having to start from scratch with the underlying operating system
APIs. The training and inference components of the runtimes are
developed in C++ and utilize MNN [6], which offers extensible in-
terfaces for common yet fundamental learning behaviors to support
advanced FL algorithms such as personalization [1]. The runtimes
also provide hardware-level optimization on different devices’ hard-
ware structures to ensure efficient memory and time usage. In
response to this change, the server-side implementation has also
been modified and optimized to support MNN accordingly, where
the implementations in Python are well-supported with the help of
conversion among MNN, ONNX1, and PyTorch models. Communi-
cation between the participating devices and the FL server is built
on gRPC, which provides efficient cross-device message transfer,
flexible message sharing, and lossless compression tools to reduce
network traffic.

Parallelized message processing: Towards providing more

efficient and flexible FL communication. Unlike cross-silo FL
with only a few participated clients, the server in cross-device FL
must manage thousands or even millions of heterogeneous devices
during the training process. To accommodate this challenging de-
mand, our system is equipped with a multi-process parallel message
sending, receiving and processing mechanism on the server side,
ensuring that the server can handle numerous model updates con-
currently. Moreover, this new message-handling mechanism can be
configured to manage late or asynchronous messages effectively,
which helps to deal with slow and network-spotty devices. Some
lossless compression methods are also embedded in this message-
processing component, including Gzip and Deflate.

Client selection: Towards ensuring robustness and efficiency

at the client level. In cross-device FL, clients may have varying
computational power and network accessibility during the training
process, making drop-outs and delays quite common. However, only
a subset of clients is required to participate in one training round.
To address this, we provide a component that enables the server to
not only track the status of clients in each iteration but also actively
select the subset of clients to be involved in the next iteration based
on their performance records. The system can be configured to
select a slightly larger portion of users than the preferred aggrega-
tion number (over-selection) to ensure there are sufficient in-time
updates even if some clients drop out. Our system can automatically

1https://onnx.ai/

2

adjust the timeout duration based on the responsiveness of clients,
making the system adaptable under various network conditions.
If an FL application demands high efficiency and has low delay
tolerance, the server can also be configured to favor reliable clients,
trading potential bias for improved training efficiency.

High-fidelity simulation platform: Towards making the first

step of research and development easier. Prototyping FL so-
lutions that involve recruiting or collecting a large number of het-
erogeneous devices can be expensive and resource-intensive. To
address this challenge, our system also offers a simulation platform
that can support high-fidelity and efficient simulation for the FL
process of thousands upon thousands heterogeneous devices using
only a few servers. The resources of participating client devices
(including computational power and network accessibility), hyper-
parameters on each device and data distribution are all configurable.
Users can define a resource distribution from which resource con-
figurations are sampled, creating an application context that closely
resembles real-world scenarios. In addition, the simulation platform
can be started with a single command and clear step-back-step feed-
back, making the user’s learning curve shallow.

3 DEMONSTRATION

In this section, we showcase how the proposed system serves as a
robust infrastructure in three scenarios, ranging from themost basic
use case (running FL with our vanilla Android runtime) to more
advanced techniques (utilizing our simulation platformwith various
FL performance enhancement methods) and practical applications
(supporting a car-related app).

3.1 Running with the default Android runtime

Figure 2a demonstrates the basic steps and expected outputs of
running our vanilla Android runtime.

Before FL training. There are default data preprocessing and
training functions (based on FedAvg [7]) implemented already in
the vanilla Android runtime. Thus, after compiling and installing
the runtime, the only thing users need to do before initiating the FL
training is to set the training-related parameters (0○ in Figure 2a).
The users can directly adjust those parameters via the GUI of the
runtime, by clicking the setting icon in the upper-right corner.
The parameters that need to be specified include the ports and IP
addresses of the devices and the FL server, the model type, and the
training-related numbers (e.g., learning rate and batch size).

During FL training. There are mainly three types of communi-
cation between server and device in FS-Real by default: join-in,
training, and evaluation. The client can activate the application and
click the “CONNECT TO SERVER” button to join the configured
FL task (1○ in Figure 2a). The underlying function then sends a
join-in message to the server. If the server validates the eligibility
of the client, it will send a confirmation message with an assigned
client ID back. When a certain number of clients have joined for
the FL tasks, the server will start the FL training by broadcasting
the global model to the devices and request for local training. The
device will upload an updated model to the server after running
configured local training epochs. During the local training phase,
training information will be displayed on the screen, including the

FL iteration, local training epoch, training loss, and resource usage
(2○ in Figure 2a). The process will repeat a few rounds as specified
in the configuration file. The server may request a local evaluation
from local devices occasionally (e.g., every 10 rounds) or at the end
of the training by sending local evaluation requests to clients. To
answer such requests, the device will use a local validation/test set
to evaluate the received model, print the results on screen and also
send them back to the server (3○ in Figure 2a).

Server side monitor. On the server side, an easy-to-use monitor
is available to display various types of FL system or model perfor-
mance information (4○ in Figure 2a). The web GUI of the monitor
is implemented using WandB 2. The monitor can generate charts
about device hardware distribution upon receiving device join-in
messages, update network traffic, and display CPU or memory us-
age during the training process. It can also show validation/test
loss and accuracy after aggregating local evaluation results from
the selected devices, including the globally weighted metrics and
several fairness-related metrics. To customize the information dis-
played on the page, users can easily specify which metrics should
be evaluated and logged with simple configuration and WandB.

3.2 Running experiments with advanced FL

techniques on FS-Real simulation platform

We provide an example of how to utilize our simulation platform
for experiments and how to integrate our system with advanced
FL features. Figure 2b illustrates the process.

Starting simulation platform. After deploying the system on the
server, users can then initiate the simulation with a single command
with provided or customized YAML configuration files, with the IP
addresses and port number specified as well, as demonstrated in
Figure 2b. The information displayed on the terminal indicates the
progress of setting up the simulation.

Workingwith advance FL. As for starting with some advanced FL
techniques, FS-Real users can refer to the provided configuration
files. The right side of Figure 2b provides some examples of ready-
to-use advanced FL algorithms in the FS-Real.

• When the network cost is a main concern, users can turn on the
lossless compression function via adding “grpc_compress” with
“gzip” as the method under the “distribute" keyword, and/or
turn on the lossy compression by further quantizing the model via
adding “mnn_quantization” with “int8” as the target precision.

• If users want to adopt personalization techniques to improve the
models on local datasets, FS-Real provides some implementation
for reference as well. In the example, we turn on the FedBABU
algorithm [9]. Users can specify personalization training hyper-
parameters, including learning rate, local update step, etc., in the
YAML file under the “personalization” keyword.

• If users want to improve the system’s efficiency by turning on
the asynchronous message processing mechanism, they can add
the “asyn” keyword in the YAML file to use the default FedBuff
algorithm [8]. The asynchronous training parameters, such as the
“staleness_toleration” controlling the tolerable staleness (the

2https://wandb.ai/site

3

④ System/Model monitor

①Client
join-in

⓪Set
configuration

②Local
training log

Join-in
communication

Training
communication

③Local
eval log

Eval
communication

(a) Running FS-Real with Android runtime.

Compression/quantization

Personalization

Asynchronous

…

…

…

OR/AND

yaml config filesStarting simulation platform with one-line command:

(b) Simulation platform with advanced FL techniques.

Application
interface?

Event that
triggers
model
local
update

Effect of
updated
model

Training starts

Evaluation

FS-Real

(c) A speech recognition application on the car.

Figure 2: Three demonstration scenarios of FS-Real.

maximum difference number of FL rounds used in aggregation),
can be specified after the “asyn” keyword.

By turning on these advanced FL techniques, the corresponding
metrics are expected to be improved. For example, the network cost
can be reduced with gzip or quantization; the local testing accuracy
can be improved with the personalized models; the client utilization
can be improved in the asynchronous mode, as shown in the right
part of figure 2b. We also allow users to easily extend their own FL
algorithms and introduce new parameters into YAML files.

3.3 Supporting FL with intelligent cars

FS-Real can be easily adapted into other IoT applications running
on various OS, including the embedded NVIDIA Jetson system and
AliOS system for intelligent cars. Here we show such a successful
case of supporting a federated speech recognition task on the AliOS
system in Figure 2c. Due to the fact that the FL tasks on IoT devices
usually run in the background without a GUI (e.g., as a dynamic li-
brary being integrated into third-party applications), here we print
the training logs on the car screen to demonstrate that the training
follows the same paradigm as running on Android devices and the
simulation platform. Thanks to the portability of the MNN and
gRPC, FS-Real can greatly save users’ efforts on communication
management and local training modules when migrating the built-
in FL projects onto other types of devices. The compiling, building

and packaging are easy-configurable according to the target hard-
ware with automatic optimization on the computation and storage
efficiency.

REFERENCES

[1] Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, and Bolin Ding. 2022.
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning.
In NeurIPS’22, Datasets and Benchmarks Track.

[2] Daoyuan Chen, Dawei Gao, Yuexiang Xie, Xuchen Pan, Zitao Li, Yaliang Li, Bolin
Dingand, and Jingren Zhou. 2023. FS-Real: Towards Real-World Cross-Device
Federated Learning. arXiv preprint arXiv:2303.13363 (2023).

[3] Imteaj, Ahmed, et al. 2022. A Survey on Federated Learning for Resource-
Constrained IoT Devices. IEEE Internet of Things Journal 9, 1 (2022), 1–24.

[4] Kairouz, Peter, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends in Machine Learning 14, 1–2 (2021), 1–210.

[5] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, and Mosharaf Chowdhury. 2022. Fedscale: Benchmarking model
and system performance of federated learning at scale. In ICML’22. 11814–11827.

[6] Lv, Chengfei, et al. 2022. Walle: An End-to-End, General-Purpose, and Large-
Scale Production System for Device-Cloud Collaborative Machine Learning. In
OSDI’22. 249–265.

[7] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017. Communication-efficient learning of deep networks from
decentralized data. In AISTATS’17. 1273–1282.

[8] Nguyen, John, et al. 2022. Federated learning with buffered asynchronous aggre-
gation. In AISTATS’22. 3581–3607.

[9] Jaehoon Oh, SangMook Kim, and Se-Young Yun. 2022. FedBABU: Toward En-
hanced Representation for Federated Image Classification. In ICLR’22.

[10] Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang,
Yaliang Li, Bolin Ding, and Jingren Zhou. 2023. FederatedScope: A Flexible
Federated Learning Platform for Heterogeneity. PVLDB 16, 5 (2023), 1059–1072.

4

	Abstract
	1 Introduction
	2 FS-Real: Architecture Improvement
	3 Demonstration
	3.1 Running with the default Android runtime
	3.2 Running experiments with advanced FL techniques on FS-Real simulation platform
	3.3 Supporting FL with intelligent cars

	References

