
ALECE: An Attention-based Learned Cardinality Estimator for SPJ
Queries on Dynamic Workloads

Pengfei Li

Alibaba Group, China

lpf367135@alibaba-inc.com

Wenqing Wei

Alibaba Group, China

weiwenqing.wwq@alibaba-inc.com

Rong Zhu †
Alibaba Group, China

red.zr@alibaba-inc.com

Bolin Ding †
Alibaba Group, China

bolin.ding@alibaba-inc.com

Jingren Zhou †
Alibaba Group, China

jingren.zhou@alibaba-inc.com

Hua Lu †
Roskilde University, Denmark

luhua@ruc.dk

ABSTRACT
For efficient query processing, DBMS query optimizers have for

decades relied on delicate cardinality estimation methods. In this

work, we propose an Attention-based LEarned Cardinality Estima-

tor (ALECE for short) for SPJ queries. The core idea is to discover

the implicit relationships between queries and underlying dynamic

data using attention mechanisms in ALECE’s two modules that are

built on top of carefully designed featurizations for data and queries.

In particular, from all attributes in the database, the data-encoder

module obtains organic and learnable aggregations which implicitly

represent correlations among the attributes, whereas the query-

analyzer module builds a bridge between the query featurizations

and the data aggregations to predict the query’s cardinality. We

experimentally evaluate ALECE on multiple dynamic workloads.

The results show that ALECE enables PostgreSQL’s optimizer to

achieve nearly optimal performance, clearly outperforming its built-

in cardinality estimator and other alternatives.

PVLDB Reference Format:
Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu.

ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries

on Dynamic Workloads. PVLDB, 17(2): 197 - 210, 2023.

doi:10.14778/3626292.3626302

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/pfl-cs/ALECE.

1 INTRODUCTION
A cardinality estimator in a DBMS [18, 47] estimates the number

of result elements of a SQL query before query execution, and thus

helps the query optimizer to generate good query plans. In the

past, the mainstream of cardinality estimation has always been sta-

tistical data-driven methods. Such methods condense information

about data into lightweight summaries, e.g., histograms, sketches

and data distribution approximation, and adopt analytic functions

with the summaries as the input to estimate cardinatilies of SQL

† Corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 2 ISSN 2150-8097.

doi:10.14778/3626292.3626302

queries [27, 47, 67]. However, real-world datasets are often complex

and the analytic functions are usually not powerful enough to build

correct mappings between coarse data summaries and SQL query

cardinalities. Also, SQL queries often contain join predicates but

it is difficult and time-consuming to build particular summaries

for each join. Computing joint data distributions is also usually

intractable due to high computation and storage overhead.

Recently, traditional cardinality estimators have been disrupted

by estimators based on learned models. Data-driven models [26, 55,

63, 64] learn tighter data distributions from the underlying data-

base and use analytic expressions to estimate the cardinalities. In

contrast, query-driven models [32, 65] utilize the feedback of exe-

cuted queries in a supervised fashion. The latter learn the relation

between cardinalities and query distributions, without paying par-

ticular attention to the underlying database. However, neither kind

of models can fully make use of both data and queries. It is difficult

for them to extract individualized useful information for different

queries. A few models [14, 32, 41] consider both data and queries.

However, they either only use simple and trivial data information

and requires sampling operations over relations [32, 58], or do not

support processing queries with joins [14] or complex joins [41].

In addition, existing models have a more critical problem: They

do not perform well on dynamic workloads that mix queries
and data manipulation statements including inserts, deletes
and updates. Such statements tend to make estimations difficult as

they influence the data distribution and shift the mapping between

true cardinalities and query distributions.When the underlying data

changes, the joint data distributions among relations and attributes

as well as the mapping between queries and true cardinalities also

become different. Thus, pure data- or query-driven methods can

hardly work on dynamic workloads. Some methods [32, 58], al-

though they consider both data and queries, will also have degraded

performance on dynamic workloads as their required featurization

or sampling approaches does not support model training and in-

ference with data updates. More importantly, existing methods do

not answer how to reasonably link SQL queries and the un-
derlying data and build an appropriate mapping among the true

cardinalities, queries and data—especially when data is dynamic.

To address these drawbacks, we design anAttention-based LEarned

Cardinality Estimator (ALECE) for select-project-join (SPJ) queries.

Fig. 1 depicts ALECE in the context of DBMS’s query execution.

ALECE is both data- and query-driven. When estimating an SPJ

query’s cardinality, it losslessly featurizes the query into a vector.

Meanwhile, it efficiently featurizes the current underlying data in

https://doi.org/10.14778/3626292.3626302
https://github.com/pfl-cs/ALECE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3626292.3626302

Data

Histogram

... ...

DB States

Keys Values Queries

Self-Attention based

Data-encoder

0101 1001 0.25 0.5

Query Featurization

Queries

Attention based

Query-analyzer

Keys Values

SQL

Query

Initialize

Insert/

Delete/

Update

Modify

both

Runtime Query Optimizer

ALECE

 Execution

Engine

Cardinality Estimate

Query Plan

Figure 1: ALECE-based Query Execution.
the database into a set of vectors, called DB states, which ‘com-

press’ the whole database. Both query and data featurizations are

of low space overhead and can be efficiently computed. On top of

the DB states and query featurizations, ALECE builds a neural net-

work based model to create reasonable connections between them.

The model integrates the information of the DB states and query

featurization, and feeds them into a feed-forward regression neural

network to make the estimates. Roughly speaking, ALECE first

learns to assign different weights to the raw DB states 𝑿 , with

each weight showing the correlation between two elements in 𝑿 .

This correlation is an useful distribution information to build suit-

able mapping between the caridinality of a SQL query with the

underlying data. Then, 𝑿 is mapped into another set of vectors 𝒁
which are the weighted combinations of 𝑿 and better represent

the underlying data. ALECE also learns an another weight for each

mapped vector 𝒛𝑖 in 𝒁 and the query featurization 𝒒 to measure the

influence of 𝒛𝑖 on 𝒒. The weighted combination of 𝒁 is a convolu-

tion of the DB states and the query featurization. The combination

vector is finally used to generate the cardinality estimate.

Our ALECE’s design encounters two challenges. First, we need

to build the DB states suitable for dealing with data changes in

dynamic workloads, and meanwhile make them efficient to access.

To this end, we propose a simple yet effective data featurization

approach that is a good approximation of data distributions, sen-

sitive to data changes, and computation-efficient. This approach

constructs succinct summaries of the underlying data, i.e., DB states,

based on the histogram of each attribute of the database relations.

Each time a record is inserted, deleted or updated, we only need to

modify the DB states’ vectors relevant to the changed relation. Also,

the basic single attribute distributions and even joint distributions

are covered by the DB states. These factors together enable us to

process dynamic workloads with the DB states. Besides, depending

on the requirement of the distribution approximation precision,

the number of bins in a histogram can be flexibly adapted. More-

over, other useful information relevant to underlying data can be

seamlessly integrated if needed.

Second, we need to extract the implicit relevance between SQL

queries and corresponding DB states, and make the information

helpful for cardinality estimation. To this end, we adopt the at-

tention mechanism [6, 30, 53] in our model to draw global depen-

dencies between SQL queries and underlying data. The attention

mechanism is widely used in a variety of tasks including question

answering [25, 50]. Generally, it simulates the process of selection

from a set using an attention function that takes as input two main

components: a set of queries and a set of key-value pairs. It figures

out in an individualized manner which parts of the data play more

important roles for different queries, assigns higher weights to the

more important and relevant keys for each query, and outputs the

combination of the weighted values. Unlike those concepts in a

database, a query in attentions is a specific element for which we

need to learn a representation, the role of keys is to respond more

or less to the query, and the values are used to compose an answer.

Nevertheless, the selection process exactly matches our settings

where the SQL queries and underlying data are analogies of the

queries and key-value pairs in attentions, respectively.

There are two modules in our ALECE where the attentions are

used in different ways. On the one hand, the ‘data-encoder’ module

uses a self-attention whose inputs of queries, keys and values all

come from the DB states. The self-attention allows the DB states,

which correspond to different attributes, to interact with each other.

By using the self-attention, the data-encoder module learns the im-

plicit joint distribution information among attributes and computes

a smarter representation of the underlying data. On the other hand,

in the ‘query-analyzer’ module, the queries set of the attention is

exactly a set covering only one featurization vector of a SQL query,

while the keys and values come from the output of the data-encoder

module. The query-analyzer module outputs a fixed-dimensional

‘answering’ vector integrating the information from the query and

data representations. We then use a simple linear regression model

to map the answering vector to a cardinality estimate.

Compared to the state-of-the-art cardinality estimation meth-

ods, ALECE is able to make more reasonable use of both queries

and underlying data. With the help of the two attentions, it answers

the questions that ‘which parts of data should a SQL query pays

more attention to?’ and ‘how to find the more important data?’ A

SQL query usually focuses on some local parts of selected attributes.

Also, the join conditions make particular tuples contribute more

to the cardinality. Moreover, ALECE is able to adapt to dynamic

workloads. In practice, learned models need to be trained with past

queries and corresponding DB states, and estimate cardinalities for

future queries. The performance of existing query-driven models

often dramatically degrades when making predictions on a dynamic

database. In contrast, ALECE can make immediate and suitable re-

actions to data changes by modifying the DB states, and learn an

appropriate but implicit mapping between the true cardinality and

the query featurization accompanied with the corresponding DB

states. Our experimental results show that ALECE is able to make

accurate estimates even when the distribution of the underlying

data changes. Thus, ALECE is less sensitive to data changes.

In our evaluation, ALECE achieves the best cardinality estimation

performance on multiple dynamic workloads. Experimental results

show ALECE improves the average end-to-end query time by up to

2.7× faster on the benchmark workload, very close to the optimal

results acquired by using true cardinalities. This demonstrates that

our ALECE makes more accurate cardinality estimates and helps

the query optimizer find better query plans.

We make the following major contributions in this paper:

• We propose necessary principles for a method to featurize the

underlying database data and SPJ queries. Accordingly, we design

a featurization schema to losslessly featurize an SPJ query and

make a reasonable compression of the data. The featurizations

can be efficiently updated to support dynamic workloads.

• Based on the featurizations of queries and data, we propose an

attention based learned cardinality estimator ALECE, together

with detailed analyses.

• ALECE is designed to be a ‘whitebox’ which not only gives

estimates but also clear rationale to integrate the SPJ queries and

underlying data together in processing dynamic workloads.

• We experimentally validate ALECE ’s advantages over more than

half dozen representative alternatives on real datasets.

The rest of the paper is organized as follows. Section 2 gives

the preliminaries. Section 3 presents the featurizations of data and

queries. Section 4 elaborates on ALECE, followed by an analysis

of it in Section 5. Section 6 reports on the experimental studies.

Section 7 reviews the related work. Section 8 concludes the paper. In

addition, due to space limit, we introduce our developed benchmark,

which integrates ALECE into PostgreSQL’s query optimizer, and

more experimental analyses in an extended version [36].

2 PRELIMINARIES AND PROBLEM
Table 1 lists important notations used in the paper.

Table 1: Notations
𝑅𝑖 A relation in the database

𝐴𝑖
𝑗

The 𝑗 th attribute of the relation 𝑅𝑖

𝑁 ,𝑇 The number of relations/attributes in the database

𝑿 = {𝒙𝑖 }𝑇𝑖=1 The set of data featurizations (a.k.a. DB states)

𝑑𝑥 The number of histogram bins (dimensionality) for a DB state

𝒒 = ⟨𝒒𝑱 , 𝒒𝑭 ⟩ A SQL query and its vectorized featurization

𝑑𝑞 The dimension of a query featurization vector

𝑛enc , 𝑛ana The number of attention layers in the data-encoder/query-analyzer module

𝑲 ,𝑽 ,𝑸 The input keys/values/queries of an attention function

2.1 Cardinality Estimation Problem
Suppose a database D has a set of relations {𝑅1, · · · , 𝑅𝑁 }. A rela-

tion 𝑅𝑖 has 𝑛𝑖 attributes, i.e., 𝑅𝑖 = (𝐴𝑖
1
, · · · , 𝐴𝑖

𝑛𝑖
). Each attribute 𝐴𝑖

𝑗

can be either categorical or numerical: the domain of a categorical

attribute is a finite set and can be 1-to-1 mapped to an integer set

{1, · · · ,max𝑖
𝑗
}; the domain of a numerical one is [min𝑖

𝑗
,max𝑖

𝑗
].

Problem Formulation. Given a SQL query 𝒒 and a dynamic data-

base D, we want to estimate the cardinality of 𝒒, denoted as c(𝒒,D),
i.e., the number of resulting tuples when 𝒒 is executed on D.

In this paper, we focus on select-project-join SQL queries with

conjunctive filter predicates; the cardinality c(𝒒,D) is the number

of tuples after joins and filters, as the following counting query:

c(𝒒,D) : SELECT COUNT(∗) FROM 𝑅𝑖1 , · · · , 𝑅𝑖𝑛 (1)

WHERE join predicates 𝑱 AND filter predicates 𝑭

where 𝒒 involves 𝑛 relations 𝑅𝑖1 , · · · , 𝑅𝑖𝑛 , with a set of join predi-

cates 𝑱 which is a conjunction of join conditions each in the form

of “𝑅𝑖 .𝐴
𝑖
𝑥 = 𝑅 𝑗 .𝐴

𝑗
𝑦”, and a conjunction of filter predicates 𝑭 . This

formulation allows us to support not only PK-FK joins but also

more general joins by specifying join predicates on pairs of join-

able attributes (which may or may not be primary/foreign keys)

in 𝑱 . A filter predicate is an relational expression in the form of

“𝑅𝑖 .𝐴
𝑖
𝑗
op const” where op ∈ {<, ≤, >, ≥,=} and const is a fixed

value. In 𝒒, an attribute can appear in a join or a filter predicate, or

both. The support for LIKE predicates is left for future work.

ALECE in the Optimization of SPJ Queries. The estimation re-

sults for counting queries in the format of (1) can be used to support

the optimization of more complex queries, e.g., widely-used SPJ
(select-project-join) queries in the following format:

𝒒SPJ : SELECT AGG1, · · · AGG𝑚 FROM 𝑅𝑖1 , · · · , 𝑅𝑖𝑛 (2)

WHERE join predicates 𝑱 AND filter predicates 𝑭

ORDER BY attribute_set_1 GROUP BY attribute_set_2

where each AGG𝑘 (𝑘 = 1, · · · ,𝑚) is an aggregate function over one

or multiple attributes which can be COUNT, AVG, MIN and MAX, etc, or
can be simply omitted. The join predicate set 𝑱 and filter predicate

set 𝑭 carry the same meanings with that in (1).

To search for the best execution plan, the query optimizer of a

modern DBMS like PostgreSQL first decomposes 𝒒SPJ into a series

of sub-queries (implicitly) in some fixed order [22]. The cardinalities

of these sub-queries are then estimated with the built-in estima-

tor. Accordingly, candidate query execution plans are enumerated

and their estimated execution costs given the cardinality estimates

are calculated using also a fixed cost model. The plan with the

smallest estimated cost is chosen to execute the query physically.

Apparently, the execution performance of a query 𝒒SPJ is basically
determined by the cardinality estimates of its sub-queries. The de-

sign of our ALECE enables it to provide more accurate estimates.

Our developed benchmark can plug external cardinality estimator

into the optimizer to replace the built-in one. Thus, ALECE is able

to improve the cardinality estimation for 𝒒SPJ’s sub-queries, and
further enable the query optimizer to select a good execution plan.

ALECE is applicable for optimizing even more complex queries.

For the sub-queries that it supports, it gives better cardinality esti-

mates; for the sub-queries that ALECE does not support, the opti-

mizer can still use its default cardinality estimator.

Estimation Model on Dynamic Workloads. In reality, the data

in a DBMS is seldom static but often keeps being updated. Thus, it

is beneficial to design cardinality estimators able to make accurate

estimates for a dynamic workload, i.e., a sequence of SQL statements

including queries, inserts, deletes and updates. Our ALECE aims
to support dynamic workloads and provide up-to-date cardinality
estimates for queries at any time during the workload.

For a learned cardinality estimator to work on frequent changes

of the underlying data distribution without retraining, a straight-

forward idea is to use the database D itself as part of the input

features to train an estimation model. However, this is infeasible

as the size of D can be huge and varies continuously. Instead, we

use succinct summaries of the database (e.g., fixed-size histograms),

called DB states, as part of input features to train ALECE. As the

database D is updated, the DB states should be updated accordingly

(and efficiently) such that they can be fed into the trained model to

produce cardinality estimates. Details about featurizing D as DB

states are in Section 3.1. We assume that D’s schema is static. The

support for dynamic schema is left for future work.

2.2 Overview of ALECE
An overview of ALECE’s model structure and its role in the query

engine is shown in Fig. 1. Features from dynamic data and queries

are decoupled and handled by two modules in ALECE. The data-
encoder module adopts a self-attention structure on DB states to

figure out the correlations among all attributes and to learn their

joint distribution, whereas the query-analyzer module employs

a data-query cross attention to discover correlation between the

data-encoder’s outputs and the cardinalities of (sub-)queries. The

cardinality estimates eventually produced by the query-analyzer in

ALECE depend on both data (DB states) and queries.

Offline Training. Training ALECE needs a dataset of queries,

their true cardinalities, and the corresponding database information

when these queries are executed. The training dataset is obtained

by collecting the true cardinalities of the historical queries exe-

cuted on a dynamic database for a period of time. We start from

featurizing the initial database by generating a set of vectors with

fixed dimensionality, i.e., DB states (Section 3.1). Statements in the

SQL workload are sequentially processed. For the insert, delete and

update statements, we modify the DB states accordingly. When

a query comes, it will also be featurized into a vector with fixed

dimensionality (Section 3.2). The query features and the current

DB states will be packed together as a training sample with the true

cardinality as its label. With sufficient training samples collected,

ALECE is trained with gradient descent methods.

Online Estimation. A well-trained ALECE can make online esti-

mates on both static and dynamic workloads. Given a new query,

we feed its featurization and the up-to-date DB states into ALECE

to get the estimates. If the workload is static, i.e., it contains no data
update statements, the DB states are constant. Otherwise, the DB

states keep changing and the latest ones will always be used.

3 FEATURIZATIONS OF DATA AND QUERIES
The underlying database data and SQL queries are required to be

featurized numerically such that our ALECE can deal with. Any

featurizationmethod is able to be flexibly adopted by ALECE as long

as it satisfies some principles. First, the underlying data needs to be

featurized into a set of fixed-dimensional vectors covering enough

distribution information. Second, any SPJ query should be losslessly

mapped to a fixed-dimensional vector such that ALECE could better

understand it. Also, to effectively support the dynamic workloads,

the featurization method is supposed to be efficient and of low

storage overhead. Following these principles, we propose anmethod

of featurizing the database data and SQL queries numerically. The

details are given in Section 3.1 and 3.2, respectively. Moreover,

Section 3.3 discusses the properties of our featurization method

and how it helps process dynamic workloads. It is noteworthy that

our featurization method is specifically designed for our ALECE

and it perfectly aligns with the requirements on inputs to ALECE.

3.1 Data Featurization
In our settings, the data featurization 𝑿 , also known as the ‘DB

states’, is a compression of the whole database, which can roughly

describe the data of each attribute and the relationships among

them. Our ALECE requires the data featurization to be a set of

vectors of the same dimension. Here we use the set of histograms

for each attribute as the DB states, i.e., 𝑿 = {𝒙1, · · · , 𝒙𝑇 } where 𝒙𝑖
is the histogram of the 𝑖th attribute and 𝑇 =

∑︁𝑁
𝑖=1 𝑛𝑖 is the number

of all attributes in the database. How to order the 𝑇 attributes will

be introduced in Section 3.2. This featurization method is simple but

powerful and we can efficiently access and update the histograms.

In particular, the values of categorical attributes are first con-

verted to consecutive integers numbered from 1. Given an attribute

𝐴𝑖 , we use dom(𝐴𝑖) to denote its domain or the converted integer

set if 𝐴𝑖 is categorical. It is easy to show that dom(𝐴𝑖) ⊆ D(𝐴𝑖) =
[𝑙, 𝑢) where 𝑙 = inf Dom(𝐴𝑖) and 𝑢 = supDom(𝐴𝑖) + 𝜖 with 𝜖→0

+
.

Then, given a time stamp 𝑡 and the database data at 𝑡 , we create a

𝒅𝒙 -bin-histogram for each 𝐴𝑖 . In particular, let 𝑎 = 𝑢−𝑙
𝑑𝑥

and 𝛽 𝑗 be

the number of 𝐴𝑖 ’s values in [𝑙 + (𝑗 − 1) · 𝑎, 𝑙 + 𝑗 · 𝑎) for 1 ≤ 𝑗 ≤ 𝑑𝑥 ,

the histogram 𝒙𝑖 for attribute 𝐴𝑖 could be easily accessed with

𝒙𝑖 = [𝛽1, · · · , 𝛽𝑑𝑥]. Our DB states at any time is simply a set of 𝑇

elements each being a 𝑑𝑥 -dim histogram vector. In practice, each

𝛽𝑖 in all histogram vectors will be scaled to the range [0, 1] through

a suitable affine transformation. The value of 𝑑𝑥 can be flexibly

modified according to the complexity of the data distribution. Ap-

parently, a larger 𝑑𝑥 will make the data featurization capture more

distribution information among the attributes but result in extra

time and storage overhead. Usually, when strong correlations exist

among attributes, a larger value tends to be used for 𝑑𝑥 .

3.2 Query Featurization
Following and extending the existing work [56, 65], we featurize a

SQL query 𝒒 into a fixed length vector 𝒒1. It is a simple concatena-

tion of two separately generated parts 𝒒𝑱 and 𝒒𝑭 , which featurize

the join predicates 𝑱 and filter predicates 𝑭 , respectively.
Join featurization. For the 𝑁 relations numbered from 1 to 𝑁 , we

use 𝑚1 = ⌈log
2
(𝑁 + 1)⌉ bits to featurize the id of each relation.

Similarly,𝑚2 = ⌈log
2
(𝑛𝑚𝑎𝑥 + 1)⌉ bits can featurize the ids of all

attributes in any relation, where 𝑛𝑚𝑎𝑥 = max({𝑛1, · · · , 𝑛𝑁 }) is the
maximum number of attributes in a relation. Thus, any attribute

𝑅𝑖 .𝐴
𝑖
𝑗
can be uniquely identified with a binary vector of dimension

𝑚 =𝑚1+𝑚2. The first𝑚1-dimensional and the last𝑚2-dimensional

sub-vectors identify the relation and the attribute, respectively.

Then a join predicate 𝑃 is featurized by a 2𝑚-dim binary vector

𝐸 𝐽 (𝑃) with the first and second half sub-vectors refer to the left

and right hand side of 𝑃 , respectively.

Suppose there are Δ possible join patterns, the join featurization

𝒒𝑱 of a SQL query 𝒒 is a (2𝑚 · Δ)-dim binary vector, containing

Δ 2𝑚-dim sub-vectors, indicating which join patterns 𝒒 covers

and featurizing their referred attributes. If the join predicates of

𝒒 contain the 𝑖th join pattern 𝑃𝑖 , the 𝑖th sub-vector of 𝒒𝑱 equals

𝐸 𝐽 (𝑃𝑖). Otherwise, this sub-vector is set to zero. Usually, the value of
Δ is not large, nearly linearly related to the number of attributes [59,

67]. Unlike existing work [65] that simply featurizes whether each

join condition appears in the query, our featurization way is more

compact and incorporates more helpful information about the joins.

In practice, we define the attributes in the left and right hand side

of a join predicate are ‘equivalent’ and find all equivalence classes

in 𝑱 . Afterwords, we re-organize the join predicates based on the

equivalence classes. Given an equivalence class 𝐶 = [𝐴1, · · · , 𝐴𝑡]
containing 𝑡 attributes sorted by their 𝑚-dim featurizations, we

re-create (𝑡 − 1) join predicates with the 𝑖th one to be𝐴𝑖 = 𝐴𝑖+1. By
doing this to each equivalence class and packing the corresponding

join predicates together, we generate a new join predicate set 𝑱 ′.
The join featurization is actually performed with 𝑱 ′ instead of 𝑱 .
In this way, two equivalent join predicate sets in explicitly differ-

ent forms will be featurized to be the same. For example, in the

following formula, join predicate set 𝑱1 and 𝑱2 both have two same

equivalence classes. They will be converted to another set 𝑱 ′.

𝑱1 :
(︁
𝐴1

1
= 𝐴2

1
and 𝐴2

1
= 𝐴3

1

)︁
and

(︁
𝐴3

3
= 𝐴2

2

)︁
𝑱2 :

(︁
𝐴1

1
= 𝐴2

1
and 𝐴3

1
= 𝐴2

1

)︁
and

(︁
𝐴2

2
= 𝐴3

3

)︁
𝑱 ′ :

(︁
𝐴1

1
= 𝐴2

1
and 𝐴2

1
= 𝐴3

1

)︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Equi-class-1

and

(︁
𝐴2

2
= 𝐴3

3

)︁⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
Equi-class-2

Filter featurization. We sort all attributes according to their𝑚-

dim featurizations and use 𝐴𝑘 to denote the 𝑘th one among 𝑇

1
Without ambiguity, 𝒒 denotes both a SQL query and its vectorized featurization.

attributes. Without loss of generality, we assume D(𝐴𝑘) is [0, 1) for
each attribute𝐴𝑘 . Thus, the product spaceD(𝐴1)×· · ·D(𝐴𝑘)×· · ·×
D(𝐴𝑇) = [0, 1)𝑇 . Apparently, the filter predicates 𝑭 are equivalent

to a hyper-rectangle [𝑙1, 𝑢1)×· · · [𝑙𝑇 , 𝑢𝑇) which is a subset of [0, 1)𝑇 .
In particular, for any filter condition on the attribute𝐴𝑘 , we convert

it into an equivalent one in the form like 𝜎𝑙𝑏≤𝐴𝑘<𝑢𝑏 . Then, the

values of 𝑙𝑘 and 𝑢𝑘 are set to 𝑙𝑏 and 𝑢𝑏, respectively. Specifically,

(𝑙𝑏 ≤ 𝐴𝑘) ∼ (𝑙𝑏 ≤ 𝐴𝑘 < 1), (𝑙𝑏 < 𝐴𝑘) ∼ (𝑙𝑏 − 𝜖 ≤ 𝐴𝑘 < 1),
(𝐴𝑘 < 𝑢𝑏) ∼ (0 ≤ 𝐴𝑘 < 𝑢𝑏), (𝐴𝑘 ≤ 𝑢𝑏) ∼ (0 ≤ 𝐴𝑘 < 𝑢𝑏 + 𝜖)
(𝐴𝑘 = 𝑥) ∼ (𝑥 ≤ 𝐴𝑘 < 𝑥 + 𝜖), where 𝜖 → 0

+ .

Above, ∼ denotes the equivalence operator.

Accordingly, the featurization of filter predicates 𝒒𝑭 is a 2𝑇 -

dim vector composed of the boundary points of the search hyper-

rectangle, i.e., 𝐸𝑓 = [𝑙1, 𝑢1, 𝑙2, 𝑢2, · · · , 𝑙𝑇 , 𝑢𝑇]. In practice, each 𝑙𝑖 and
𝑢𝑖 will be normalized to [0, 1].

Concatenation. By concatenating 𝒒𝑱 and 𝒒𝑭 , we get the 𝑑𝑞-dim
featurization vector of SQL query 𝒒. Fig. 2 shows an example.

SQL query 𝒒 :

SELECT ∗ FROM R1, R2, R3, · · · WHERE
𝑅1 .𝐴

1

1
= 𝑅2 .𝐴

2

1
AND 𝑅2 .𝐴

2

2
= 𝑅3 .𝐴

3

3
AND · · ·

AND 0.25 ≤ 𝑅1 .𝐴
1

1
< 0.5 AND · · ·

Featurization 𝒒 :

with𝑚1 =𝑚2 = 2

join featurization 𝒒𝑱⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
0101 1001⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

𝑅1 .𝐴
1

1
=𝑅2 .𝐴

2

1

1010 1111⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
𝑅2 .𝐴

2

2
=𝑅3 .𝐴

3

3

· · ·

filter featurization 𝒒𝑭⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
0.25 0.5⏞ˉ̄⏟⏟ˉ̄⏞

0.25≤𝐴1<0.5

· · ·⏞⏟⏟⏞
𝑙𝑘 ≤𝐴𝑘<𝑢𝑘

Figure 2: An example of query featurization.

3.3 Discussions
3.3.1 Featurization properties. As we claimed, our way of featuriz-

ing database data and SQL queries has the following properties:

1) Efficiency. Building the data featurizations of a static database

requires looking over each relation once only. An insert/delete/up-

date statement only influences one relation and modifying the

relevant histograms takes 𝑂 (𝑣) time where 𝑣 is the number of the

records involved. The time complexity of featurizing a SQL query

is 𝑂 (|𝑱 | + |𝑭 |), which is small and can often be ignored.

2) Low space overhead. The DB states only contain𝑇 ·𝑑𝑥 float num-

bers. In practice, we usually set 𝑑𝑥 smaller than 100. The dimen-

sionality of a query featurization is 2𝑚 · Δ + 2𝑇 . Usually, the value
of𝑚 is small. In our experiments,𝑚 is smaller than 10. Our way

of re-generating join predicates based on equivalence classes will

usually reduce Δ, the number of possible joins. Also, the joins tends

to be performed on attributes with primary keys. According to our

observations, Δ is usually less than 𝑁 2
and featurizing a query on

a 8-relation database requires less than 1000 float numbers.

3) Stability. The dimensions of data and query featurizations are

fixed, no matter how the database or queries change. This ensures

the featurizations can be easily processed with learned models.

3.3.2 Why our featurizations work on dynamic workloads? It is

noteworthy that no matter how the underlying data changes, the

featurization of a given query will not change. In contrast, the

DB states will vary with the change of the data in the database.

It is a compression of the whole database and able to catch the

distribution characteristics of each attribute. Our model takes both

featurizations as input and is able to ‘convolute’ the query featuriza-

tions with the DB states. Thus, when the data changes, it can react

properly and give different predictions for the same query with

different DB states. The experiments in Section 6 and Section C in

the extended version [36] show that our model outperforms other

state-of-the-art methods on both static and dynamic workloads.

4 DESIGN OF ALECE
Given the DB states 𝑿 and a SQL query featurization 𝒒, our ALECE
can reasonably discover the implicit relations between them that

are required for cardinality estimation. The mystery behind lies in

the attention mechanisms [53] twice used in our ALECE. In this

section, we will review the motivation of ALECE’s design, introduce

the details of ALECE including its two modules processing 𝑿 and

𝒒, respectively, and the training process of ALECE.

4.1 Motivations and ALECE Overview
An attention function maps a query and a set of key-value pairs

to an output, where the query, keys, values, and output are all

vectors [53]. Here, the concepts of key-value pairs and queries can

be analogous to retrieval systems. Take a user’s search behavior

on an e-commerce platform like Amazon as an analogy. When the

search engine receives a query (the text in the search bar), it maps

the query against a set of keys (item names, tags and descriptions,

etc.) associated with values (candidate items) in the database and

outputs the best matched items. The output is a weighted sum of the

values, where each weight is computed by a compatibility function

that measures the relevance between the query and keys.

The idea behind the attention mechanism is to encode the in-

put key-value pairs set, and utilize the most relevant parts of the

keys, associated with values, with the query in a flexible manner.

Through a weighted combination of all encoded input vectors, this

mechanism ‘answers’ the query with the most relevant vectors

getting the highest weights. This idea perfectly fits in our research

problem as a SQL query’s featurization 𝒒 is a natural query vector.

Besides, the DB states 𝑿 can be seen as the item information in the

above example and be used as the keys and values in the attention

functions. Thus, we extend this idea and design ALECE, which

takes full advantage of the attention mechanism to accurately es-

timate cardinalities of SQL queries on dynamic workloads. Fig. 3

illustrates the structure of ALECE.

Multi-head

self-attention

Data featurizations

 (T-element set)

Add & Norm

Query featurization

 Dim: DJ + 2T

Multi-head

attention

Add & Norm

Linear Regression

Insert /

Delete/

Update

Modify

Output estimate c

K

K

V Q

V Q

Keys, Values, Queries

Add & Norm

Feed-forward

Add & Norm

Feed-forward

ana ×

enc ×

Project

Figure 3: ALECE structure.

Our attention-based model ALECE is designed like a soft lookup

table. It fetches information from a better representative of the DB

states 𝑿 using features from the transformation of 𝒒 as indices.

It is composed of two modules. The left data-encoder module

maps 𝑿 = {𝒙1, · · · , 𝒙𝑇 } to another set of representations 𝒁 =

{𝒛1, · · · , 𝒛𝑇 }. It learns the implicit joint distribution information

among all attributes by computing the relevance between any pairs

of DB states through a stack of self-attention layers. This distri-

bution information is embodied in the set 𝒁 . Given 𝒁 , the right
query-analyzer module adopts another stack of attention layers

to measure the relevance between the query featurization 𝒒 and

𝒁 , and generates an ‘answer’ vector 𝒚. Finally, vector 𝒚 is fed into

a linear regression layer and 𝒒’s cardinality given DB states 𝑿 is

estimated and returned.

4.2 Attentions in ALECE
Attention background. Before showing the data-encoder and

query-analyzer modules in ALECE, it is worth briefly introduc-

ing the attention mechanism. In neural networks, attention is a

technique that is meant to mimic cognitive attention. Its motivation

behind is that the network should devote more focus to the impor-

tant parts of the data instead of treating all data equally. It uses an

attention function to discover which parts of the data should be

emphasized. The function maps a query and a set of key-value pairs

to an output, which is a weighted sum of the values. Usually, the

function computes the similarity (relevance) between each pair of

query and key with some metric, and uses it to produce the weight

assigned to the corresponding value.

Our ALECE uses the ‘Scaled Dot-Product Attention’ [53], namely

Attn, as the attention functions in the attention layers from both

the data-encoder and query-analyzer modules. The input keys and

values are packed together into matrices 𝑲 and 𝑽 , of dimension

𝑆 × 𝑑𝑘 and 𝑆 × 𝑑𝑣 , respectively, where 𝑆 denotes the size of the

original key-value pair set.
2
The 𝑑𝑘 -dim query vector is converted

to a 1 × 𝑑𝑘 matrix 𝑸 . The function Attn computes the dot products

of the given query 𝑸 with all keys 𝑲 , divides each by

√︁
𝑑𝑘 , and

applies a softmax function to obtain the weights on the values 𝑽 :

Attn(𝑸, 𝑲, 𝑽) = softmax

(︁𝑸 · 𝑲𝑇√︁
𝑑𝑘

)︁
𝑽

The dot product above is used as the similarity metric. To prevent

the dot products from growing too large such that the gradients of

the softmax function ‘vanishing’, we divide the dot product by the

factor

√︁
𝑑𝑘 . In practice, the function Attn is computed with batches

of queries simultaneously to improve the efficiency. Before feeding

the input to Attn, we adopt a multi-head projection mechanism [53]

to first project the queries, keys and values multiple times with ℎ

different linear projections. This operation is able to enhance the

representation ability of ALECE. Due to space limit, more details

are given in Section A in the extended version [36].

Attentions in ALECE’s two modules.The multi-head attention

layer appears twice in ALECE. The first is a self-attention layer in

the data-encoder module. It is fed with the same query, key and

value matrix 𝑿 of dimension 𝑇×𝑑𝑥 , and outputs a matrix 𝒁 ′ ∈
R𝑇×𝑑𝑥 that will be later projected to another matrix 𝒁 ∈ R𝑇×𝑑𝑞 .
Then, 𝒁 is used as the key and value matrix of the other attention

layer in the query-analyzer module, where the input query set con-

tains only one SQL query featurization vector. It is noteworthy that

2
In the rest of the paper, we regard a set of vectors as a matrix. In other words,

we do not distinguish a set of key/value/query vectors with a key/value/query matrix.

the "queries" set in the self-attention layers does not come from

the SQL query. In addition, we do not need to order the vectors in

the DB states. Thus, unlike transformer-like models to process se-

quences [7, 13], ALECE does not need the positional encodings [53]

or positional embeddings [16] of the attention layers’ inputs.

Table 2 states the input sources and output of the two mod-

ules’ attention layers, and what each module is able to learn. The

rationale behind them is given in the following two subsections.

4.3 Data-encoder
Suppose a random variable 𝑉 ’s value is taken randomly with an

equal possibility from the possible values of an attribute. As a

result, the corresponding histogram can be regarded as the rough

distribution function of 𝑉 . Thus, the DB states consists of a series

of ‘marginal’ distributions describing single attributes. However,

SQL queries tend to cover join predicates that need to know the

joint distribution information among multiple attributes. Usually,

the distributions of different attributes are not independent. It is

difficult and impractical to directly derive the joint distribution from

the marginal distributions. To address this issue, we design the data-

encoder module that makes use of attentions, to establish a bridge

between the marginal distributions and the joint distribution.

The data-encoder takes as input the DB states𝑿 and feeds it into

a 𝒏enc-stacked layers. Each layer is identical and has two sub-layers.
The first is the multi-head self-attention sub-layer Nsa which takes

the same inputs of keys, values and queries—three matrices equal

to 𝑿 or the output of the last layer, and outputs another 𝑇 -element

set �̃�𝑖 . On top of Nsa, the feed-forward sub-layer FF uses stacked
fully connected networks and nonlinear activation functions, e.g.,
ReLU, to map �̃�𝑖 into the data representation set 𝒁 ′

𝑖
. Besides, to

address the degradation problem and ease the model training, we

employ a residual connection [24] around each sub-layer, followed

by layer normalization [5], following the settings in [53]. Thus,

the output of each sub-layer is LayerNorm(𝑽 + sub-layer(𝑽)). The
sub-layer is either Nsa or FF. The analytic expression of the output

representations 𝒁 ′
is described as follows.

𝒁 ′ = 𝒁 ′𝑛enc , where 𝒁
′
0
= 𝑿 , and ∀1 ≤ 𝑖 ≤ 𝑛enc,

�̃� 𝒊 = LayerNorm
(︁
𝒁 ′𝑖−1 + Nsa (

keys⏟⏞⏞⏟
𝒁 ′𝑖−1 ,

values⏟⏞⏞⏟
𝒁 ′𝑖−1 ,

queries⏟⏞⏞⏟
𝒁 ′𝑖−1)

)︁
,

𝒁 ′𝑖 = LayerNorm(�̃�𝑖 + FF(�̃�𝑖)),with FF(𝑽) = ReLU(𝑾𝑽 + 𝒃)
Finally, the output matrix 𝒁 ′

will be linearly projected to the

representation matrix 𝒁 ∈ R𝑇×𝑑𝑞 . This projection is to align the

dimensionality of 𝒁 with that of the query featurization 𝒒.
The keys, values and queries in the attention layers are the same

set. They are either the DB states 𝑿 or the output of the previous

stacked layer. This setting makes each element in the output set

of a layer attend to all outputs in the previous layer and thus at-

tend to all DB states. More importantly, the self-attention layer

quantitatively ‘calculates’ the relevance between a pair of elements

from any two histograms. It is noteworthy that each element of a

histogram describes the local distribution of an attribute. There-

fore, the data-encoder module is able to more effectively discover

the implicit connections between any pair of DB states, and thus

exhibits behavior in relation to the joint distribution of multiple

attributes in the output set. Compared to other neural network

architectures like multilayer perceptron (MLP) [23], self-attention

Table 2: The overall picture of ALECE’s two modules, given DB states 𝑿 and SQL query featurization 𝒒

Data-encoder (Self-attention) Query-analyzer (Data-query cross attention)
Input source What to learn? Output Input source What to learn? Output
Keys: 𝑿
Values: 𝑿
Queries: 𝑿

Relevance among the DB states 𝑿 ,

and thus the joint distribution inf-

ormation of multiple attributes.

Another vector set 𝒁 cov-

ering joint distribution

information of attributes

Keys: 𝒁
Values: 𝒁
Queries: 𝒒

Relevance between 𝒒 with the ele-

ments in 𝒁 , showing which parts

of data are more important.

Final ‘answering’ vector 𝒚 wh-

ich will be directly turned into

the cardinality estimate c.

could yield more interpretability and have higher representative

abilities. Through self-attention layers, we create links among all

DB states, or equivalently, all attributes in the database. After fine-

tuning the parameters of the self-attention and feed-forward layers,

the relationship information helpful to the cardinality estimation

task is implicitly covered and encoded into the output 𝒁 of the data-

encoder module. This information will be processed and utilized in

the query-analyzer module.

4.4 Query-analyzer
The query-analyzer module attempts to discover and measure the

relevance, through data-query cross attention layers, between the

SQL query and each element of 𝒁 , the output of the data-encoder
module covering joint distribution information among attributes.

This module is also a stacked structure composed of 𝒏ana identi-
cal layers. Similar to the data-encoder module, each layer here is

composed of a multi-head attention sub-layer and a fully connected

sub-layer. Also, residual connections are employed around each

sub-layer, followed by layer normalization. Unlike the data-encoder

module, the input sets of key-value pairs and queries to the ‘data-

query’ attention sub-layer here are not from the same place. We

use 𝒁 , the output of the data-encoder module, as both the input

key and value matrices, while the query set here comes from either

the query featurization or the output of the previous layer. It is

noteworthy that the input query set and the output set of each

attention sub-layer have only one 𝑑𝑞-dim element.

The data-query attention sub-layer establishes a bridge between

the queries and the data. It individualize each SQL query featuriza-

tion and presents different ‘answers’ by enhancing the influences

of some parts of the input key-value pair set 𝒁 , while diminishing

other parts. Learning which part of the data is more important

depends on the relations between queries and keys, and this is

measured with the attention functions. Suppose a SQL query con-

tains join predicate 𝑅1 .𝐴
1

1
= 𝑅2 .𝐴

2

2
and filter predicate 𝑅1 .𝐴

1

2
> 1,

and the attributes 𝑅1 .𝐴
1

1
, 𝑅2 .𝐴

2

2
and 𝑅1 .𝐴

1

2
are numbered 𝑖 , 𝑗 and

𝑘 , respectively. The data-query attention sub-layer will pay more

attention to the part of the vectors in the set 𝒁 that are relevant

to 𝒙𝑖 , 𝒙 𝑗 and 𝒙𝑘 . The effect of particular attention can be realized

through suitable parameters of different layers in both modules.

After accessing 𝒚, the output of the final query-analyzer layer,
we use a simple linear regression layer LR to calculate a scalar value

as the cardinality estimate c. The process of accessing c with the

input of 𝒁 and 𝒒 is described as follows.

c = LR(𝒚), where 𝒚 = 𝒚𝑛ana ,𝒚0
= 𝒒, and ∀1 ≤ 𝑖 ≤ 𝑛ana, (3)

𝒚′𝑖 = LayerNorm
(︁
𝒚𝑖−1 + Ndq (

keys⏟⏞⏞⏟
𝒁 ,

values⏟⏞⏞⏟
𝒁 ,

queries⏟⏞⏞⏟
𝒚𝑖−1)

)︁
,

𝒚𝑖 = LayerNorm(𝒚′𝑖 + FF(𝒚′𝑖))

4.5 Training of ALECE
Fine-tuning the parameters of ALECE requires a training dataset of

which each element is a 3-tuple (𝒒𝑖 ,𝑿𝑖 , c′𝑖), where 𝒒𝑖 is the query
featurization of a SQL query 𝒒𝑖 and 𝑿𝑖 is the associated DB states

of the dynamic database. By executing 𝒒𝑖 on the database of which

the DB states is 𝑿𝑖 , we will get the true cardinality c′
𝑖
, which will

be used as the label. In practice, we will take the logarithm of c′
𝑖
to

make the range of the labels not too large. Collecting the training

dataset is not difficult. Usually, we only need to collect the feedback

of executed queries on a dynamic database. Then, we will get the

training dataset with three lists X = [𝑿𝑖], 𝑸 = [𝒒𝑖] and c′ = [c′
𝑖
].

They will be split into batches to train our ALECE.

We use the mean-weighted-squared-error functionMWSE tak-

ing input of the batch card predictions c𝒃 and the true cards c′
𝒃

as well as their weights𝒘𝒃 with batch size 𝐵 as the loss function,

i.e., MWSE(c𝒃 , c′𝒃) =
1

𝐵

∑︁𝐵
𝑖=1𝑤𝑖 (c𝑖 − c′𝑖)

2
. The parameters of the

linear regression layer, the attention and feed-forward sub-layers

in both modules are trained by gradient descent with batches in

an end-to-end fashion. Here, the value𝑤𝑖 is proportional to that of

log c𝑖 . In particular,𝑤𝑖 =
log c𝑖∑︁
𝑗 log c𝑗

. We use the weight𝑤𝑖 in the loss

function because it is usually beneficial to emphasize the queries

with larger true cardinalities as their execution times tend to be

longer. The procedure of training ALECE using the these lists X,

𝑸 and c′ is detailed in Algorithm 1.

Algorithm 1: Train-ALECE
Input :Three data lists: X = [𝑿 𝑖], 𝑸 = [𝒒𝒊], c′ = [c′𝑖]

The maximum number of training epochs𝑀𝑒

Output :Well-trained ALECE

1 Compute the weight vector 𝒘 = [𝑤𝑖] according to c′.
2 for 𝑖 ← 0 to𝑀𝑒 do
3 Train-Epoch(X,𝑸, c′,𝒘)
4 if ALECE performs better on validation set then
5 Assign current parameters to ALECE.

6 return ALECE whose parameters are fine-tuned.

7 Function Train-Epoch(X,𝑸, c′, 𝒘):
8 Shuffle and split X,𝑸, 𝒄, 𝒘′ , generate 𝑛𝐵 equal-size batches

[(X𝑏 ,𝑸𝑏 , c′𝑏),𝒘𝑏], 𝑏 = 1, · · · , 𝑛𝐵 .

9 for 𝑏 ← 0 to 𝑛𝐵 do
10 Compute the vector c𝑏 with Eq (3).

11 Compute theMWSE loss given c𝑏 , c′𝑏 and 𝒘𝑏 , and apply

gradient descent to tune model parameters.

In practice, a training dataset is split into two parts: the first

part is the three data lists used to fit the parameters in the learning

process (lines 7-10); the second part is used as the validation set to

choose best parameters for ALECE and avoid overfitting (lines 4-5).

Also, we will apply the early stopping strategy [44], to stop the

training process when the error on the validation set grows.

5 ANALYSIS OF ALECE
In this section, we discuss why ALECE is suitable for dynamic

workloads and further analyze its properties.

5.1 ALECE on Dynamic Workloads
It is critical for databases to process dynamicworkloads, i.e.,mixture

of queries and data manipulation operations. This requires a DBMS’

query optimizer to be able to accurately predict the cardinalities of

the (sub-)queries performed on a continuously changing database.

To reduce the related overhead, the DBMS regularly maintains its

cardinality estimators instead of modifying it immediately after

each update. Between two model-maintaining time points, the car-

dinality estimator model is usually fixed but still expected to make

accurate estimates.

The traditional histogram-based cardinality estimators [12, 21,

43, 47] currently used in systems like PostgreSQL [20] make simple

and often unreasonable assumptions, like the mutual independence

of attributes. Their estimates are inaccurate, especially when the

data is dynamic. This renders it difficult for the optimizer to choose

good query plans. Existing learned cardinality estimation methods

either do not support dynamic workloads [65] or need to completely

re-build the model at model-maintaining time points [26, 63, 67].

This process is often too time-consuming to be feasible.

Compared to existingmethods [26, 63, 67], the training of ALECE

is efficient. Also, it is easily maintained: it can be incrementally up-

dated at model-maintaining time points. Moreover, its architecture

design is reasonable and suitable for processing dynamic workloads.

It is noteworthy that the SQL queries and underlying data are de-

coupled in ALECE such that ALECE can learn something whenever

the DB states 𝑿 or the query featurization 𝒒 in the training dataset

changes. Thus, ALECE is able to avoid overfitting certain datasets.

Instead, it applies the attention mechanisms on its two modules to

learn the properties of the data distribution which ‘generates’ the

underlying data, and how these properties influence the cardinality

of a SQL query. It is able to reasonably approximate c(𝒒,DB), the
true but implicit mapping among the queries, dynamic data and

cardinalities. When either the query featurization or DB states, or

both of them, get changed, ALECE can still output accurate re-

sults. Our experimental results indicate that ALECE achieves good

performance even if there is distribution discrepancy between the

training and testing data.

A straightforward baseline without attentions. It is mentioned

in Section 3.3 that the DB states will be dynamically modified when

data is inserted to/deleted from the database. This renders it possi-

ble to use a stable well-trained model to predict the cardinalities of

queries on a dynamic workload. As the dimensions of DB states and

query featurizations are fixed, we can also adopt a straightforward

method without attentions to process them. For example, for each

pair of data featurizations 𝑿𝑖 and query featurization 𝒒𝑖 , we flatten
the matrix 𝑿𝑖 into a vector and concatenate the vector with 𝒒𝑖 to
generate another vector 𝒗𝑖 . Subsequently, 𝒗𝑖 and the associated

layer are fed into a common supervised neural network like mul-

tilayer perceptron (MLP) [23]. However, a straightforward neural

network like MLP is usually not powerful enough to discover the

implicit relations between SQL queries and the underlying data.

Its performance heavily relies on the similarity between the dis-

tributions of training and testing datasets. When the workload is

static, i.e., the database data never changes, straightforward meth-

ods perform well. However, the cardinality estimator model needs

to use the current training data it observes to make predictions for

‘future’ data. The distribution of future DB states may be highly

different from that of the current data. In contrast, the application

of the attention mechanisms in our ALECE make it possible to

make accurate estimates even when the distributions of the under-

lying data change. Experimental results in Section 6 show the great

advantages of ALECE over MLP on processing dynamic workloads.

5.2 Overhead of ALECE and Its Extension
Several other good properties make ALECE more practical and

attractive as a cardinality estimation method in modern DBMS’s

query optimizers. First, the storage and training overhead of ALECE

is affordable. On the one hand, the sizes of ALECE on the three

datasets in our experiments are both smaller than 23 MB. On the

other hand, training ALECE from scratch requires less than 12

minutes. Also, the estimation latency of ALECE is less than 11 ms.

These overheads make ALECE able to process real world workloads.

Second, different from FLAT [67] and DeepDB [26], ALECE di-

rectly estimates the cardinality instead of the selectivity of a SQL

query. To get the cardinality, the selectivity estimation methods

usually needs to estimate the size of the corresponding join table

with sampling-based techniques [66]. However, when multiple re-

lations are involved, the statistical variance often becomes large

and results in highly inaccurate estimates.

Last but more importantly, ALECE establishes a general frame-

work that is not limited to cardinality estimation tasks. By replacing

COUNT(∗) with with other aggregation functions, the special ag-

gregate analytic queries of Format (2) can be further transformed

to more general ones. As a matter of fact, ALECE can be easily

extended to approximate the results of more general aggregate

analytic queries. When processing queries with other kinds of ag-

gregate functions, we only need to make slight modifications to

the data and query featurizations, including featurizing the extra

aggregate functions and optional GROUP BY clauses in the query

featurizations, and incorporating more data description informa-

tion specific to the aggregate queries. We left the support of the

general aggregate analytic queries for future work.

6 EXPERIMENTAL STUDIES
This section reports the experiments that compare ALECE with

selected alternatives. All methods are implemented in Python 3.9

and evaluated on a Linux server with a 96-core Xeon(R) Platinum

8163 CPU and 376GB memory. The implementation of ALECE is

open [1]. Due to space limit, we present additional experimental

results and analyses in Section C in the extended version [36].

6.1 Experimental Settings
Datasets. We use three real datasets to evaluate all models.

• STATS contains 8 relations (users, posts, postLinks, postHistory,
comments, votes, badges, tags) with 43 attributes [2]. There are

1,029,842 records in total. An existing open workload with 146

queries are marked as ‘testing queries’. They are associated with

2,603 sub-queries. We created another 1000 different queries with

sub-queries, which are used as the training and validation data.

• Job-light is a subset of the IMDB dataset [3]. It contains 6 rela-

tions (cast_info, movie_info, movie_companies, movie_keyword,
movie_info_idx, title) with 14 attributes. There are 62,118,470

records in total. The testing query set contains 208 queries, asso-

ciated with 3,248 sub-queries. Similarly, another 2,000 queries as

well as their sub-queries are created for training the models.

• TPCH (1 GB) [4] is a widely-used benchmark dataset of a suite

of business oriented relations (customer, lineitem, nation, orders,
part, partsupp, region and supplier). We remove the string type

‘comment’ attribute from each relation as it is not supported by

ALECE or other methods. We use the remaining 46 attributes.

There are 8,661,245 records in total. We randomly create 123 test-

ing queries and 1,554 testing sub-queries for evaluation. Another

2,000 queries and their sub-queries are used for training.

The join information among relations in these datasets are shown

in Fig. 5 in the extended version [36]. All joins in the queries on the

Job-light dataset are PK-FK joins, while the queries on the other

datasets involve more complex many-to-many joins.

Dynamic workloads. For each dataset, we create three different

dynamic workloads, each of which is a random mix of inserts,

deletes, updates and query statements. These workloads are differ-

entiated according to the ratios among the numbers of inserts,

deletes and updates, and the distributions of the inserted records:

• Insert-heavy: #inserts : #deletes : #updates = 2 : 1 : 1.

• Update-heavy: #inserts : #deletes : #updates = 1 : 1 : 2.

• Dist-shift is a special Insert-heavy workload but having skewed
distribution of the inserted records. In particular, the inserted

records are selected intentionally such that their first attributes’

values are the first 30% smallest among all data.

To generate a dynamic workload, we randomly select about
2

3
of

the records as the initial datasets to bulk load all the relations. Sub-

sequently, the insert and update statements in a dynamic workload

will insert the remaining
1

3
of the records to the database, while the

delete and update statements will remove or change some records.

For simplicity and clarity, we assume that each delete or update

statement only influences one record. These statements are equally

split into two parts: the former ‘training’ part and the latter ‘evalu-

ation’ part. To ensure that ALECE learns from enough features, we

make three copies of the training queries and their sub-queries and

randomly mix them with the training part. The training part of the

workload is used as the training dataset for building all cardinality

estimation methods. Note that the true cardinalities of the queries

in the training part are also available to all methods.

The way of mixing testing queries with the data manipulation

statements in the evaluation part are slightly different. For each

testing query, we pack it up with its sub-queries together. Then,

those packs are shuffled and randomly mixed with data manipula-

tion statements in the evaluation part. Also, we’d like to know how

cardinality estimators perform when a certain amount of data in

the database changes. Thus, it is assumed that when each testing

query is executed, the associate changing rate 𝜌 of the underlying

database data is larger than a pre-defined threshold. We use 𝐻 to

denote the set of all records in the database after executing all the

statements in the training part. Given any query𝑞𝑖 in the evaluation

part, suppose 𝐵𝑖 is the set of all records in the database when 𝑞𝑖 is

executed, and the numbers of inserts, deletes and updates from the

evaluation part so far are Ii, Di and Ui, respectively. The changing

rate 𝜌𝑖 is defined as 𝜌 (𝑡) = |𝐻△𝐵𝑖 |
|𝐻 | =

Ii+Di+2Ui
|𝐻 | , where △ denotes

the symmetric difference operation of two sets. When there is no

ambiguity, the subscript 𝑖 is omitted.

Both training and testing queries are randomly generated. In

particular, to generate a query, we run a series of Bernoulli tests with

𝑝=0.5 to determine which relations appear. Then, we enumerate all

possible subsets of the join conditions among the selected relations

such that they can be connected by these join conditions. One of

the subsets is randomly selected as the join predicate set 𝑱 . The
attributes in the filter predicates 𝑭 and their operators (≤, ≥, etc)

are determined with the analogous Bernoulli tests. The right hand

side values of the filter predicates are randomly sampled from the

initial dataset.

Competitors.We include the following representative methods:

• PG is the simplest 1D histogram based cardinality estimation

method used in PostgreSQL [20].

• Uni-Samp [37] uniformly samples a set of tuples with a given

probability 𝑝 for each relation. The cardinality estimate of a query

𝑞 equals 𝑁𝑞/𝑝𝑚 where 𝑁𝑞 is the number of returned tuples by

executing 𝑞 on the sample sets and𝑚 is the number of involved

relations in 𝑞. We tune the value of 𝑞 to make Uni-Samp’s storage

overhead or latency is comparable to that of the other methods.

The values of the sampling ratio 𝑝 for the STATS, Job-light and

TPCH datasets are set to 0.1, 0.06 and 0.04, respectively.

• DeepDB [26] is based on a Sum-Product-Network (SPN) [42].

It learns a pure data-driven model to capture the data’s joint

probability distribution. Following the same settings in [26], we

set the RDC independence threshold to 0.3 and split each SPN

node with at least 1% of the input data.

• FLAT [67] improves SPN based on factorize-sum-split-product

network (FSPN) [62], a graphical model, to adaptively model the

joint probability density function of attributes. It is data-driven.

• NeuroCard [63] is a data-driven method, extending Naru [64]

into the multi-table case, while Naru is a Deep Auto-Regression

(DAR) [19] based cardinality estimation algorithm for a single

table. The sampling size of the NeuroCard model is set to 8,000,

following the settings in the paper.

• FactorJoin [59] combines classical join-histogrammethods with

learned single table cardinality estimates into a factor graph.

• MLP [46] is the baseline neural network based method intro-

duced in Section 5.1.

• MSCN [32] is a multi-set convolutional network which adopts

the information from both queries and data.

• NNGP [65] adopts the Neural Network Gaussian Process (NNGP)

model [34] to learn from queries as well as their true cardinalities

in a supervised manner.

In addition, we also include the comparison with the results gener-

ated by true cardinalities. This Optimal method measures the best

performance a method can achieve.

These competitors are chosen because they have better overall

performance over other statistical and learned cardinality estima-

tors. The comparisons are reported in benchmark and evaluation

papers [22, 51] and other existing works like [60, 63, 67]. Table 3

summarizes the properties of all methods. The better performance

is indicated in bold.

Table 3: Properties of different methods

Method Data-

driven

Query-

driven

Building

time

Space

overhead

Suitable for dy-

namic workload

PG [20] ✓ × small low ×
Uni-Samp [37] ✓ × small medium ×
DeepDB [26] ✓ × medium medium ×
FLAT [67] ✓ × large high ×
NeuroCard [63] ✓ × medium medium ×
FactorJoin [59] ✓ × medium small ×
MLP [46] × ✓ small low ×
MSCN [32] ✓ ✓ small small ×
NNGP [65] × ✓ small medium ×
ALECE (ours) ✓ ✓ small medium ✓

Table 4: Overall performance of cardinality estimation models on dynamic workloads

Data Model

Insert-heavy Update-heavy
E2E

Time(S)

Q-error P-error Size

(MB)

Building

Time(Min)

Latency

(ms)

E2E

Time(S)

Q-error P-error

50% 90% 95% 99% 50% 90% 95% 99% 50% 90% 95% 99% 50% 90% 95% 99%

STATS

PG 7, 790 190 1.4·105 1.1·106 1.8·107 2.60 25.44 41.23 243 - - - 4, 337 524 43, 096 3.7·105 1.1·107 1.78 19.52 29.01 178

Uni-Samp 6, 646 1.35 12.47 >10
10

>10
10

2.71 16.77 21.65 201 3.34 0.02 239 6, 002 1.27 9.3·109 >10
10

>10
10

1.10 12.86 33.19 153.11

NeuroCard >30, 000 17.37 1, 388 7, 402 3.0·105 2.38 39.18 824 84, 415 90.76 23.69 32.42 22, 193 18.49 1, 252 6, 784 3.1·105 2.10 31.75 347 11, 730

FLAT >30, 000 12.77 1, 979 12, 897 8.6·105 2.22 70.08 2, 202 8, 738 210.33 53.77 13.67 24, 319 16.00 2, 376 17, 811 9.4·105 2.20 29.76 724 1.4·105
FactorJoin >30, 000 22.62 2, 593 31, 936 1.6·106 2.35 66.12 876 8, 384 1.64 0.42 1.33 >30, 000 23.76 2, 939 36, 198 2.4·106 2.75 115 912 4, 409

MLP >30, 000 2.4·106 >10
10

>10
10

>10
10

7.35 491 2, 294 6, 887 8.63 3.11 3.17 >30, 000 2.3·106 >10
10

>10
10

>10
10

6.66 502 3, 025 11, 584

MSCN 27, 758 20.09 2, 870 17, 037 2.6·105 2.46 87.23 736 8, 738 1.61 11.87 1.02 25, 766 18.89 2, 382 16, 947 1.8·106 2.56 64.64 246 46, 721

NNGP 12, 883 9.88 827 4, 652 2.6·105 1.41 5.31 27.33 3, 588 32.44 0.89 32.66 11, 985 8.15 567 3, 639 2.5·105 1.52 5.62 13.81 2, 753
ALECE 2, 901 1.29 5.07 11.54 62.52 1.07 1.34 1.59 2.32 22.31 9.25 8.25 2, 402 1.42 5.06 10.40 44.69 1.08 1.45 2.13 2.86
Optimal 2, 871 1 1 1 1 1 1 1 1 - - - 2, 349 1 1 1 1 1 1 1 1

Job-

light

PG 6, 128 1.59 7.14 20.85 223 1.10 1.32 1.48 2.89 - - - 4, 747 1.67 6.20 14.09 70.13 1.10 1.39 1.64 3.06

Uni-Samp 6, 401 1.23 2.59 6.53 >10
10

1.08 1.85 2.79 146 23.95 0.52 163 4, 491 1.33 3.61 7.50 >10
10

1.12 1.71 2.26 3.67

DeepDB 26, 636 11.31 663 6, 328 5.4·105 1.66 13.71 26.01 49.57 11.52 11.93 11.92 23, 190 10.64 628 4, 883 8.8·105 1.50 11.81 27.71 135

NeuroCard 27, 744 14.73 978 6, 766 4.7·105 1.81 12.40 37.25 144 42.93 9.11 15.90 16, 553 13.49 1, 000 6, 489 1.5·106 1.60 15.10 25.94 50.68

FLAT 23, 876 11.22 626 5, 786 4.4·105 1.66 13.98 27.26 89.67 11.10 17.83 3.96 22, 531 10.13 490 4, 221 1.1·106 1.42 12.87 34.54 195

FactorJoin 16, 665 25.14 3, 456 27, 938 2.5·106 1.52 5.45 10.23 47.09 4.66 26.22 1.33 13, 071 27.31 6, 134 36, 155 2.2·106 1.42 4.83 9.43 22.75
MLP 5, 610 4.30 23.14 59.37 2, 411 1.13 1.70 2.10 3.12 6.19 2.68 2.28 5, 351 5.59 62.02 138 1, 441 1.17 2.02 2.88 4.09

MSCN 26, 665 24.42 1, 809 9, 217 1.4·105 2.07 20.98 28.58 106 1.56 33.37 0.77 29, 118 26.77 1, 448 7, 980 1.5·105 2.59 19.87 61.18 257

NNGP 15, 430 4.5·108 >10
10

>10
10

>10
10

3.57 8.39 11.97 24.47 32.44 0.83 29.86 4, 959 4.99 59.86 190 50, 036 1.20 2.05 2.99 4.96
ALECE 5, 168 1.14 2.08 3.85 14.82 1.07 1.24 1.32 1.77 22.25 7.73 7.28 3, 839 1.09 1.93 3.63 16.28 1.07 1.23 1.29 1.57
Optimal 5, 063 1 1 1 1 1 1 1 1 - - - 3, 792 1 1 1 1 1 1 1 1

TPCH

PG 3, 230 1.35 4.88 7.90 16.16 1.44 1.57 1.59 1.62 - - - 2, 385 1.33 5.01 6.87 14.64 1.41 1.56 1.59 1.62
Uni-Samp >30, 000 1.22 2.94 >10

10
>10

10
1.81 2.22 45.60 514 23.29 0.17 24.52 >30, 000 1.30 3.41 >10

10
>10

10
1.75 19.35 50.34 211

NeuroCard 10, 616 43.43 7, 071 27, 735 3.5·105 3.75 10.91 22.48 106 704.98 34.38 34.77 6, 562 45.73 5, 896 20, 931 1.2·105 3.16 11.04 16.49 245

FLAT 11, 428 46.04 12, 236 70, 383 8.4·107 3.56 10.91 25.71 1, 182 168.65 41.42 10.06 7, 864 42.32 7, 328 26, 470 3.7·105 3.56 15.82 21.70 425

MLP 7, 261 51, 475 1.4·107 3.5·107 4.7·109 4.71 14.11 22.74 36.09 8.63 3.57 3.62 8, 342 79, 317 3.7·107 9.1·107 >10
10

5.12 17.63 32.74 63.39

MSCN 7, 718 36.36 6, 709 26, 744 4.4·105 3.58 15.11 25.71 387 1.58 23.43 0.79 8, 353 41.66 5, 457 21, 433 1.7·105 3.80 14.86 25.69 472

NNGP 18, 618 1.3·109 >10
10

>10
10

>10
10

5.56 47.40 59.18 99.55 32.44 0.92 41.76 3, 128 25.88 432 986 4, 968 1.54 7.98 10.90 20.66
ALECE 3, 233 1.15 2.29 3.37 8.86 1.43 1.57 1.60 1.62 22.34 11.62 10.35 2, 380 1.25 2.11 2.95 10.87 1.41 1.56 1.59 1.62
Optimal 3, 227 1 1 1 1 1 1 1 1 - - - 2, 378 1 1 1 1 1 1 1 1

Evaluation Metrics.We use three metrics to evaluate all methods:

• E2E time is the total execution time of all queries in the evalua-

tion part of a workload, in which we feed the query optimizer the

estimated cardinalities of all relevant sub-queries. Those estima-

tion results are acquired using cardinality estimation methods.

It is the most important evaluation metric as it directly connects

to the query optimizer and objectively shows if a cardinality

estimation method could help improve the query performance

of a DBMS. This type of evaluation requires an improved bench-

mark over the existing work [22]. This benchmark can integrate

the estimation results by an external method to PostgreSQL. We

show its details in Section B in the extended version [36].

• P-error [22] measures the gap between the optimal query plan

and the generated plan based on the estimated cardinalities, with-

out executing the given query. In particular, given a query 𝒒, a
query plan 𝑃 and the set c of estimated/true cardinalities of 𝒒’s
all sub-queries, the DBMS will output an estimated cost C(𝑃, c)
with a cost function C. By feeding the query optimizer c𝑇 , the set
of true cardinalities of 𝒒’s all sub-queries, we can get the optimal

plan 𝑃𝑇 for 𝒒. Similarly, a cardinality estimation method A out-

puts for 𝒒 a set c𝐸 which results in another query plan 𝑃𝐸 . Then,

P-error(A, 𝒒) = C(𝑃
𝐸 ,c𝑇)

C (𝑃𝑇 ,c𝑇) , where the denominator C(𝑃𝑇 , c𝑇) is
the optimal execution cost, and the numerator C(𝑃𝐸 , c𝑇) is the
cost by feeding the true cardinalities of sub-queries to the query

plan generated by method A. In other words, C(𝑃𝐸 , c𝑇) is the
actual execution cost of 𝒒 if method A is adopted.

• Q-error [39] measures the distance between the estimated car-

dinality 𝑃 and the true cardinality 𝑇 of a query. In particular,

Q-error(𝑃,𝑇) = max(𝑇
𝑃
, 𝑃
𝑇
).

• Storage overhead is the memory size used by a method.

• Building time indicates the offline training time of query-driven

methods or construction time of data-driven methods.

• Estimation latency is the average estimation time per sub-

query used by a cardinality estimation method.

As the optimizer only requires the cardinality estimates of the sub-

queries, our evaluations also involve the testing sub-queries only.

Parameter Settings.We use a 40-bin-histogram for each attribute,

i.e., 𝑑𝑥 = 40. The values of 𝑛enc and 𝑛ana, i.e., the number of stacked

attention layers in the data-encoder and query-analyzer, respec-

tively, are both set to 4. To train our ALECE, we use an Adam

optimizer [31] with a learning rate of 0.01 and a batch size of 128.

6.2 Performance on Dynamic Workloads
For each dynamic workload, we build all methods using the data

in the training part to make estimates for the testing sub-queries

in the evaluation part. The featurizations of the training queries

and sub-queries as well as the corresponding DB states and true

cardinalities in the training part form the training data. We use the

training data to train the query-driven models including ALECE,

MLP, MSCN and NNGP. The data-driven models, namely DeepDB,

NeuroCard, FLAT and FactorJoin, are built with the database data

after all the statements in the training part of the workload are

executed. This setting is compatible with real world scenarios as

the cardinality estimation models are updated at regular intervals.

In our experiments, the associated changing rate 𝜌 of each testing

query is larger than 20%. In other words, when testing queries are

executed, at least 20% of the underlying data are changed, compared

to the database when cardinality estimators are built.

The estimation results by different methods will be fed into our

improved benchmark to compare the end-to-end query times (E2E

times) of all methods on dynamic workloads. To investigate the

performance gap between these methods and the optimal, we also

feed the true cardinalities to the benchmark to get the optimal

execution time. We do not compare with DeepDB on the STATS

and TPCH datasets since it supports PK-FK joins only. The open

implementation of Factorjoin is hard-coded for the STATS and

Job-light datasets and does not support the TPCH dataset. Thus,

Factorjoin is not tested on this dataset. Besides the E2E time, we also

record the Q-error and P-error distributions, building time, storage

overhead and latency of all methods on different workloads. These

results are shown in Table 4. The storage overhead, building time

and latency results on the Update-heavy workloads are similar to

the counterparts on the Insert-heavy workloads and thus omitted.

End-to-end evaluations. Referring to Table 4, ALECE has clear

advantages on the E2E time over the other methods. On the one

hand, compared to PostgreSQL’s built-in cardinality estimator,

ALECEmakes query execution up to 2.7× faster. Its E2E time is only

slightly larger than that of PG on TPCH’s Insert-heavy workload.

However, there is almost no gap between the performance of PG

and Optimal on this workload. Compared to Optimal, ALECE only

results in at most 2.2% extra E2E time. Considering the superiority

of ALECE on theseworkloads, we confidently claim that ALECE per-

forms much better than the built-in estimator in PostgreSQL and

is able to greatly improve the query execution performance on

dynamic workloads. On the other hand, in addition to ALECE, only

MLP and Uni-Samp outperform PG on few workloads. The E2E

time of DeepDB, NeuroCard, FLAT, FactorJoin and NNGP is larger

than that of PG in all cases. Compared to Optimal, these meth-

ods results in more than double of E2E time on most workloads.

These results indicate that these existing methods cannot make

satisfactory estimates for DBMS on the dynamic workloads.

The P-error comparisons demonstrate that ALECE results in ef-

fective query executions from another angle. The P-errors of ALECE

on most queries are close to 1. In other words, with ALECE’s out-

puts, most queries can be executed almost as fast as if they are

optimized with true cardinalities. At the 95% quantile, ALECE out-

performs PG, Uni-Samp, DeepDB, NeuroCard, FLAT, FactorJoin,

MLP, MSCN and NNGP, in terms of P-error, by up to 26, 32, 21,

518, 1,385, 551, 1,443, 463 and 37 times, respectively. All these show

that ALECE achieves large superiority over the competitors on

helping PostgreSQL process queries more efficiently.

It is noteworthy that ALECE has clearer advantages on the

STATS dataset with more complex join patterns. This reflects that

our ALECE is able to grasp the implicit relations between complex

join patterns and the underlying data significantly better than the

alternatives. Besides, ALECE outperforms MLP in terms of E2E

time and P-error. The main structure difference of ALECE and MLP

is reflected on the adoption of attentions in ALECE’s modules. This

verifies the positive effects of the attention mechanisms in extract-

ing useful information from underlying data and SQL queries.

Estimation Accuracy. Table 4 also reports on the Q-error distribu-
tions of all methods. In general, ALECE clearly outperforms PG on

all three datasets. This verifies that the independence assumption in

PG is not reasonable for some scenarios. ALECE still performs best

among all methods in all cases. At most quantiles, ALECE results

in the smallest maximum Q-error. The median Q-error of ALECE

in all cases are all close to 1, the optimal value. At the 95% quantile,

the Q-error of ALECE in all cases is smaller than 10. In contrast,

none of the other methods can reach this level of performance.

Also at the 95% quantile, Uni-Samp, DeepDB, NeuroCard, FLAT,

FactorJoin, MLP, MSCN and NNGP result in up to or more than

10
9×, 84×, 1,643×, 8,220×, 104×, 3,480×, 104×, 7,927×, 104× larger

Q-error than that of ALECE. At other quantiles, these methods are

still incomparable with ALECE. These results show that ALECE is

more accurate and able to discover the implicit relationships among

attributes and those between queries and attributes. Another inter-

esting thing is that smaller Q-error does not necessarily result in

smaller E2E time, which is claimed in the existing work [40] and

shown by the comparisons among NNGP, DeepDB and NeuroCard,

etc, on the Job-light dataset. An inaccurate estimate for a single

sub-query tends to generate bad query plans and large execution

time. It is necessary to ensure accurate estimates for all sub-queries.

Model Construction Efficiency. Referring to Table 4, the train-

ing cost of ALECE is small. It requires less than 10, 8 and 13 min-

utes to fine-tune its parameters for the STATS, Job-light and TPCH

datasets, respectively. In contrast, DeepDB, NeuroCard, FLAT and

MSCN consume more construction time. Although Uni-Samp and

Factorjoin require less construction time in some cases, their E2E

time, P-error and Q-error performance are much worse. Compared

to ALECE, MLP and NNGP have simpler structures and thus they

need less time to train. However, their representation abilities are

not so powerful as that of ALECE. The overwhelming advantage

of ALECE on E2E time illustrates the necessity of a more complex

structure and slightly more training time.

In terms of latency, Uni-Samp achieves the worst performance.

FactorJoin, MLP and MSCN require the least average time, less than

10 ms, on making an estimate. ALECE’s latency is slightly larger but

smaller than the others. Considering the fact that executing a query

on all datasets takes more than 10 seconds on average, estimation

latency of less than 10 ms is not crucial in the overall picture.

Storage Overhead.The storage overhead of the query-drivenmeth-

ods is smaller than that of the data-driven ones in general. The

query-driven methods only need to maintain a fixed number of

parameters whose sizes are usually much smaller than the ‘data

summaries’ held by the data-driven methods, e.g., the SPN or FSPN

in DeepDB and FLAT, respectively. FactorJoin and MSCN incur

the smallest memory costs. ALECE consumes more memory than

MLP and NNGP due to its more complex structure. Compared to

NeuroCard and FLAT, ALECE saves up to 75.4% and 89.4% memory

cost on the STATS dataset, respectively. ALECE results in a little

more memory cost than FLAT and DeepDB on the Job-light dataset.

Considering the fact that modern computers usually have large

memories and ALECE performs better in terms of E2E time, P-error

and Q-error, the extra storage overhead pays off highly.

6.3 Effect of Distribution Shifting
To investigate if ALECE still works well when the distribution of

the underlying data greatly changes, we carry out experiments

to compare the different methods on the Dist-shift workload. It

is noteworthy that the evaluation part of the Dist-shift workload

covers highly skewed insert statements. Table 5 reports the E2E

time, Q-error and P-error distribution comparisons among ALECE,

PG, NeuroCard, MSCN, NNGP and Optimal. Those competitors are

chosen because they have better overall performance on the Insert-
heavy and Update-heavyworkloads. Due to space limit, the storage

overhead, building time and latency comparisons are omitted. These

results are similar to the counterparts on the other two workloads.

Referring to Table 5, the overall Q-error and P-error performance

of all methods on the Dist-shift workloads are worse than the coun-

terparts on the Insert-heavy workloads. This is reasonable because

compared to the data upon which these methods are built, the distri-

bution of the underlying data is greatly shifted when testing queries

are executed. Nevertheless, ALECE still achieves the best E2E time

Table 5: Performance of methods on Dist-shift workloads

Data Model

E2E

Time(S)

Q-error P-error

50% 90% 95% 99% 50% 90% 95% 99%

STATS

PG 8, 432 189 1.4·105 1.1·106 1.9·107 2.60 25.50 42.65 300

Uni-Samp 7, 524 1.32 >10
10

>10
10

>10
10

1.19 12.62 38.63 87.59

NeuroCard 27, 252 14.30 996 5, 051 3.9·105 2.08 25.69 108 3, 318

MSCN 26, 697 20.08 2, 802 15, 576 4.9·105 2.75 46.51 465 83, 452

NNGP 10, 537 9.47 785 4, 370 2.4·105 1.45 7.19 25.19 3, 318
ALECE 6, 876 1.40 5.46 11.75 118.36 1.07 1.38 1.71 11.18
Optimal 6, 770 1 1 1 1 1 1 1 1

Job-

light

PG 5, 608 1.58 6.12 14.22 76.30 1.10 1.32 1.48 2.89

Uni-Samp 5, 906 1.44 3.46 10.78 >10
10

1.16 1.68 1.90 3.28

NeuroCard 17, 720 14.15 822 4, 799 3.5·105 1.81 12.40 37.25 144

MSCN 25, 157 28.54 1, 592 5, 261 99, 178 2.06 15.01 27.77 84.35

NNGP 11, 698 4.6·108 >10
10

>10
10

>10
10

3.50 7.90 11.24 23.38
ALECE 4, 763 1.16 2.23 4.34 16.22 1.07 1.24 1.32 1.77
Optimal 4, 708 1 1 1 1 1 1 1 1

TPCH

PG 3, 377 1.23 3.94 5.85 10.28 1.10 1.39 1.64 3.06

Uni-Samp >30, 000 1.29 3.24 >10
10

>10
10

1.79 2.28 62.54 301

NeuroCard 11, 362 44.65 9, 151 34, 541 2.8·105 1.60 15.10 25.94 50.68

MSCN 7, 062 41.62 6, 571 28, 837 2.4·105 3.64 9.17 22.00 202

NNGP 18, 244 1.4·109 >10
10

>10
10

>10
10

5.54 46.30 59.12 99.12
ALECE 3, 230 1.18 2.66 4.46 11.23 1.07 1.23 1.29 1.57
Optimal 3, 226 1 1 1 1 1 1 1 1

on all datasets. It needs up to 18.5% less time than PG to execute all

testing queries. Its E2E time on all three workloads is close to the

optimal results and much smaller than that of other competitors. In

terms of Q-error and P-error, ALECE also performs best. At the 95%

quantile, the largest Q-error and P-error of ALECE are 11.75 and

1.71, respectively. In contrast, the other competitors’ Q-error and

P-error are at least 2.48 and 1.44 times larger, respectively. All these

demonstrate that ALECE is less sensitive to the distribution shifting

and able to make accurate estimates even when the distributions of

the underlying data changes significantly.

7 RELATEDWORK
Data-driven Cardinality Estimators. Data-driven methods aim

to describe the underlying data with statistical or machine learning

models. The simple yet efficient 1-D Histogram [47] is used in many

well-known DBMS like PostgreSQL. It assumes all attributes are

mutually independent and maintains a 1-D (cumulative) histogram

for each attribute. To address the problem of unreasonable indepen-

dence assumption, M-D Histogram based methods [12, 21, 43, 54]

build multi-dimensional histograms to model attribute dependency.

Although suchmethods improve the accuracy, the decomposition of

the joint attributes is still lossy. Also, they hardly work for queries

with complex joins. Sampling-based methods [9, 10, 32, 35, 45] ad-

dress join queries but they risk high variance and sampling failure

when the data distribution or query is complex. Bayesian network

(BN) based methods [11, 17, 52] use a directed acyclic graph to

model the dependence among attributes, assuming that each at-

tribute is conditionally independent of the remaining attributes

given its parents’ distributions. BayesCard [60] revitalizes BN using

probabilistic programming to improve its inference and model con-

struction speed. Recently, machine learning techniques are adopted

in data-driven methods. Deep autoregressive models are adopted in

Naru [64] and NeuroCard [63] to decompose the joint distribution

of attributes to a product of conditional distributions. DeepDB [26]

is built upon Sum-Product Network (SPN) [42] which approximates

the joint distribution using several local and simple PDFs. FLAT [67]

improves SPN by adopting a factorize-split-sum-product network

(FSPN) [62] to adaptively decompose the joint distribution accord-

ing to the attribute dependence level.

Query-driven Cardinality Estimators. Such estimators focus

on modeling the relationships between queries and their true car-

dinalities. The feedbacks of past queries are utilized to correct

and self-tune histograms [8, 15, 28, 48] and update statistical sum-

maries [49, 57]. LW-XGB and LW-NN [14] formulate the cardinality

estimation as a regression problem and apply gradient boosted trees

and neural networks for regression, respectively. UAE-Q [61] ap-

plies the deep auto-regression models and differentiable progressive

sampling via the Gumbel-Softmax trick to learn hidden information

from queries. The KDE-based join estimators [29] combine kernel

density estimation (KDE) with a query-driven tuning mechanism

to estimate multivariate probability distributions of a relation and

cardinalities of joins. Fauce [38] and NNGP [65] assume a query’s

cardinality follows a Gaussian distribution and adopt Deep Ensem-

ble [33] and neural network Gaussian process [34] to predict the

distribution’s mean and variance.

A few works also consider both data and SQL queries. Wu et.
al. [58] propose a unified deep autoregressive model utilizing both

data as unsupervised information and queryworkload as supervised

information. Kipf et. al. [32] concatenate basic relation information

and query features together and use a multi-set convolutional neu-

ral network to process them and make estimates. Negi et. al. [41]
propose techniques to build sample tables on the join keys and

use neural networks to extract information from queries. How-

ever, these methods require either samples over joined attributes

which results in high sampling overhead, or unrenewable featuriza-

tion/samples over static data which are not applicable for dynamic

database. Also, compared to ALECE, these methods do not explain

the links among data, queries and true cardinalities. Besides, Negi’s

work [41] supports PK-FK joins only. Dutt et. al. [14] use neural
networks and tree-based ensembles to extract information from

data and queries to solve the problem of selectivity estimation on a

single relation. Thus, their approach does not support joins. In addi-

tion, Han et. al. [22] propose an end-to-end evaluation benchmark

for cardinality estimators. Our used benchmark is an improved

version of it. Sun et. al. [51] make a comprehensive comparison of

the existing cardinality estimators.

8 CONCLUSION AND FUTUREWORK
In this work, we design ALECE, a versatile learned cardinality esti-

mation model, that makes accurate and high-quality estimates for

SQL queries. Based on two delicatemethods to featurize the underly-

ing database data and the SQL queries, respectively, ALECE adopts

the attention mechanisms in its two modules to understand the

implicit relations between data and queries. The self-attention layer

in the data-encoder module figures out the links among all data-

base attributes. The query-analyzer takes the input of the query

featurization and the output of the data-encoder, and puts attention

on the more important parts of the data. Extensive experimental

results show that ALECE clearly outperforms the state-of-the-art

alternatives in terms of multiple evaluation metrics.

For future work, it is interesting to extend ALECE to more gen-

eral aggregate analytic queries by replacing COUNT(∗) with other

aggregate functions. Also, it is relevant to explore if better data and

query featurization methods exist. Moreover, it makes sense to use

other types of attention functions in ALECE.

REFERENCES
[1] https://github.com/pfl-cs/ALECE.

[2] https://relational.fit.cvut.cz/dataset/Stats.

[3] http://homepages.cwi.nl/~boncz/job/imdb.tgz.

[4] https://www.tpc.org/tpc_documents_current_versions/current_specifications5.

asp.

[5] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-

tion. arXiv preprint abs/1607.06450 (2016). http://arxiv.org/abs/1607.06450

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In ICLR.
[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In

NeurIPS.
[8] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-

mensional Workload-Aware Histogram. In SIGMOD. 211–222.
[9] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1999. On Random

Sampling over Joins. In SIGMOD. 263–274.
[10] Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation. In

SIGMOD. 759–774.
[11] C. K. Chow and C. N. Liu. 1968. Approximating discrete probability distributions

with dependence trees. IEEE Trans. Inf. Theory 14, 3 (1968), 462–467.

[12] Amol Deshpande, Minos N. Garofalakis, and Rajeev Rastogi. 2001. Independence

is Good: Dependency-Based Histogram Synopses for High-Dimensional Data. In

SIGMOD. 199–210.
[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In NAACL-HLT. 4171–4186.
[14] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,

and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using

Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057.
[15] Dennis Fuchs, Zhen He, and Byung Suk Lee. 2007. Compressed histograms with

arbitrary bucket layouts for selectivity estimation. Inf. Sci. 177, 3 (2007), 680–702.
[16] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.

2017. Convolutional Sequence to Sequence Learning. In ICML. 1243–1252.
[17] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estimation

using Probabilistic Models. In SIGMOD. 461–472.
[18] Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:

Extensibility and Efficient Search. In ICDE. IEEE Computer Society, 209–218.

[19] Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra.

2014. Deep AutoRegressive Networks. In ICML, Vol. 32. 1242–1250.
[20] PostgreSQL Global Development Group. 1996. PostgreSQL.

https://www.postgresql.org. (1996). Accessed: 2022-10-28.

[21] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeni-

coni. 2000. Approximating Multi-Dimensional Aggregate Range Queries over

Real Attributes. In SIGMOD. 463–474.
[22] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,

Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren

Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A

Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–
765.

[23] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR. 770–778.
[25] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will

Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching Machines to Read

and Comprehend. In NeurIPS. 1693–1701.
[26] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-

tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from

Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.
[27] Raghav Kaushik, Jeffrey F. Naughton, Raghu Ramakrishnan, and Venkatesan T.

Chakaravarthy. 2005. Synopses for query optimization: A space-complexity

perspective. ACM Trans. Database Syst. 30, 4 (2005), 1102–1127.
[28] Andranik Khachatryan, Emmanuel Müller, Christian Stier, and Klemens Böhm.

2015. Improving Accuracy and Robustness of Self-Tuning Histograms by Sub-

space Clustering. IEEE Trans. Knowl. Data Eng. 27, 9 (2015), 2377–2389.
[29] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating

Join Selectivities using Bandwidth-Optimized Kernel Density Models. Proc. VLDB
Endow. 10, 13 (2017), 2085–2096.

[30] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. 2017. Structured

Attention Networks. In ICLR.

[31] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR.
[32] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and

Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with

Deep Learning. In CIDR.
[33] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple

and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In NIPS.
6402–6413.

[34] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pen-

nington, and Jascha Sohl-Dickstein. 2018. Deep Neural Networks as Gaussian

Processes. In ICLR.
[35] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggrega-

tion via Random Walks. In SIGMOD. 615–629.
[36] Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.

ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on

Dynamic Workloads (Extended). arXiv preprint abs/2310.05349 (2023). https:

//arxiv.org/abs/2310.05349

[37] Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. 2021. Combining

Aggregation and Sampling (Nearly) Optimally for Approximate Query Process-

ing. In SIGMOD. 1129–1141.
[38] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and

Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. 14, 11 (2021), 1950–1963.

[39] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad

Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993.

[40] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,

Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality

Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032.
[41] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam

Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven

Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533.

[42] Hoifung Poon and Pedro M. Domingos. 2011. Sum-Product Networks: A New

Deep Architecture. In UAI. 337–346.
[43] Viswanath Poosala and Yannis E. Ioannidis. 1997. Selectivity Estimation Without

the Attribute Value Independence Assumption. In VLDB. 486–495.
[44] Lutz Prechelt. 2012. Early Stopping - But When? In Neural Networks: Tricks of the

Trade - Second Edition. Lecture Notes in Computer Science, Vol. 7700. Springer,

53–67.

[45] YuanQiu, YileiWang, Ke Yi, Feifei Li, BinWu, and Chaoqun Zhan. 2021. Weighted

Distinct Sampling: Cardinality Estimation for SPJ Queries. In SIGMOD. 1465–
1477.

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Internal Repre-
sentations by Error Propagation. 318–362.

[47] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.

Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database

Management System. In SIGMOD. 23–34.
[48] Utkarsh Srivastava, Peter J. Haas, Volker Markl, Marcel Kutsch, and Tam Minh

Tran. 2006. ISOMER: Consistent Histogram Construction Using Query Feedback.

In ICDE. 39.
[49] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO

- DB2’s LEarning Optimizer. In VLDB. 19–28.
[50] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. 2015. End-

To-End Memory Networks. In NeurIPS. 2440–2448.
[51] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Car-

dinality Estimation: A Design Space Exploration and A Comparative Evaluation.

Proc. VLDB Endow. 15, 1 (2021), 85–97.
[52] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2011. Lightweight

Graphical Models for Selectivity EstimationWithout Independence Assumptions.

Proc. VLDB Endow. 4, 11 (2011), 852–863.
[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In NeurIPS. 5998–6008.
[54] Hai Wang and Kenneth C. Sevcik. 2003. A multi-dimensional histogram for

selectivity estimation and fast approximate query answering. In CASCON. 328–
342.

[55] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Nor-

malizing Flow based Cardinality Estimator. Proc. VLDB Endow. 15, 1 (2021),

72–84.

[56] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.

2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640–1654.

[57] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi

Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.

Proc. VLDB Endow. 12, 3 (2018), 210–222.
[58] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both

Data and Queries for Cardinality Estimation. In SIGMOD. 2009–2022.

https://github.com/pfl-cs/ALECE
https://relational.fit.cvut.cz/dataset/Stats
http://homepages.cwi.nl/~boncz/job/imdb.tgz
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2310.05349
https://arxiv.org/abs/2310.05349

[59] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel

Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join

Queries. Proc. ACM Manag. Data 1, 1 (2023), 41:1–41:27.
[60] Ziniu Wu and Amir Shaikhha. 2020. BayesCard: A Unified Bayesian Framework

for Cardinality Estimation. CoRR abs/2012.14743 (2020). https://arxiv.org/abs/

2012.14743

[61] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai

Zeng, and Jingren Zhou. 2022. A Unified Transferable Model for ML-Enhanced

DBMS. In CIDR.
[62] Ziniu Wu, Rong Zhu, Andreas Pfadler, Yuxing Han, Jiangneng Li, Zhengping

Qian, Kai Zeng, and Jingren Zhou. 2020. FSPN: A New Class of Probabilistic

Graphical Model. CoRR abs/2011.09020 (2020). https://arxiv.org/abs/2011.09020

[63] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,

and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.

VLDB Endow. 14, 1 (2020), 61–73.
[64] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi

Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.

2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019),
279–292.

[65] Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, Rui Li, and Hao Zhang. 2022. Light-

weight andAccurate Cardinality Estimation byNeural NetworkGaussian Process.

In SIGMOD. 973–987.
[66] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random

Sampling over Joins Revisited. In SIGMOD. 1525–1539.
[67] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,

Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method

for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502.

https://arxiv.org/abs/2012.14743
https://arxiv.org/abs/2012.14743
https://arxiv.org/abs/2011.09020

	Abstract
	1 Introduction
	2 Preliminaries and Problem
	2.1 Cardinality Estimation Problem
	2.2 Overview of ALECE

	3 Featurizations of Data and Queries
	3.1 Data Featurization
	3.2 Query Featurization
	3.3 Discussions

	4 Design of ALECE
	4.1 Motivations and ALECE Overview
	4.2 Attentions in ALECE
	4.3 Data-encoder
	4.4 Query-analyzer
	4.5 Training of ALECE

	5 Analysis of ALECE
	5.1 ALECE on Dynamic Workloads
	5.2 Overhead of ALECE and Its Extension

	6 Experimental Studies
	6.1 Experimental Settings
	6.2 Performance on Dynamic Workloads
	6.3 Effect of Distribution Shifting

	7 Related Work
	8 Conclusion and Future Work
	References

