
Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation

Dawei Gao∗
Alibaba Group

gaodawei.gdw@alibaba-
inc.com

Haibin Wang∗
Alibaba Group

binke.whb@alibaba-
inc.com

Yaliang Li
Alibaba Group

yaliang.li@alibaba-inc.com

Xiuyu Sun
Alibaba Group

xiuyu.sxy@alibaba-
inc.com

Yichen Qian
Alibaba Group

yichen.qyc@alibaba-
inc.com

Bolin Ding
Alibaba Group

bolin.ding@alibaba-
inc.com

Jingren Zhou
Alibaba Group

jingren.zhou@alibaba-
inc.com

ABSTRACT
Large language models (LLMs) have emerged as a new paradigm
for Text-to-SQL task. However, the absence of a systematical bench-
mark inhibits the development of designing effective, efficient and
economic LLM-based Text-to-SQL solutions. To address this chal-
lenge, in this paper, we first conduct a systematical and extensive
comparison over existing prompt engineering methods, including
question representation, example selection and example organiza-
tion, and with these experimental results, we elaborate their pros
and cons. Based on these findings, we propose a new integrated
solution, named DAIL-SQL, which refreshes the Spider leaderboard
with 86.6% execution accuracy and sets a new bar.

To explore the potential of open-source LLM, we investigate
them in various scenarios, and further enhance their performance
with supervised fine-tuning. Our explorations highlight open-source
LLMs’ potential in Text-to-SQL, as well as the advantages and dis-
advantages of the supervised fine-tuning. Additionally, towards
an efficient and economic LLM-based Text-to-SQL solution, we
emphasize the token efficiency in prompt engineering and compare
the prior studies under this metric. We hope that our work provides
a deeper understanding of Text-to-SQL with LLMs, and inspires
further investigations and broad applications.

PVLDB Reference Format:
Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding,
Jingren Zhou. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. PVLDB, 17(5): 1132-1145, 2024.
doi:10.14778/3641204.3641221

PVLDB Artifact Availability:
The source code has been made available at https://github.com/BeachWang/
DAIL-SQL.

∗Co-first authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 5 ISSN 2150-8097.
doi:10.14778/3641204.3641221

1 INTRODUCTION
Text-to-SQL, as one challenging task in both natural language pro-
cessing and database communities, maps natural language ques-
tions on the given relational database into SQL queries [8, 18].
Most previous work [17, 21, 22, 48, 56] focus on extracting the
question-to-SQL patterns and generalizing them by training an
encoder-decoder model with Text-to-SQL corpus. In recent years,
large language models (LLMs) have emerged as a new paradigm for
Text-to-SQL [24, 39, 47]. Notably, equipped with GPT-4 [28], Pour-
reza et al. [35] achieved the first place in Spider leaderboard [2] with
85.3% execution accuracy. Different from prior studies, the core
problem in LLM-based Text-to-SQL solution is how to prompt LLM
to generate correct SQL queries, namely prompt engineering. Such
prompt engineering involves question representations [6, 12, 31, 35],
examples selection [14, 26, 27], and example organization [14].

Text-to-SQL prompt engineering needs a systematic study.
Although prior studies have made remarkable progress, there still
lacks a systematic study for prompt engineering in LLM-based Text-
to-SQL solutions. Specifically, for question representation, most ex-
isting research textualize structured knowledge as schema, and fur-
ther add task instructions and foreign keys to form prompts [19, 27].
Besides, some studies [6, 27] represent tables as several “CREATE
TABLE” SQL statements, and prompt LLMs to answer the target
question in comments. However, even with similar representation,
their detailed task instructions can lead to significant performance
gap. For example, in OpenAI’s official Text-to-SQL demo [31], they
employ the pound sign “#” to differentiate prompt from response,
yielding an impressive performance [24]; If such a sign is removed,
the performance will significantly drop. Therefore, there are bur-
geoning demands for a systematic study over different representa-
tions and examine how to work well with LLMs. Regarding example
selection, a common practice is to encode the most similar exam-
ples in the same representation with the target question [6, 24, 27].
Nan et al. [27] further underline the importance of diversity in
example selection. While for organization, most prior studies repre-
sent examples with full information, including instruction, schema,
question and ground truth SQL queries. Besides, Guo et al. [14]
only keep SQL queries in the selected examples to guide the LLM
with less tokens. Together with different LLMs’ preferences, the
optimal selection and organization strategies in LLM-based Text-to-
SQL solution remain ambiguous. Therefore, a systematical study on

https://doi.org/10.14778/3641204.3641221
https://github.com/BeachWang/DAIL-SQL
https://github.com/BeachWang/DAIL-SQL
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3641204.3641221

prompt engineering, spanning different LLMs, question representa-
tions, example selection and organizations, is highly anticipated.

The potential of open-source LLMs is underexplored. Very
recently, open-source LLMs are constantly expanding and show
remarkable advancement in programming, mathematical reasoning,
and text generation tasks. However, previous Text-to-SQL research
primarily focuses on OpenAI LLMs, leaving open-source LLMs
unstudied. Besides, compared with OpenAI LLMs, open-source
ones generally have limited functionality in understanding context
and generating coherent response. Thus, a critical challenge for
open-source LLMs is to further enhance their performance in Text-
to-SQL, which can be achieved by supervised fine-tuning.

Prompt efficiency remains a challenging open question.
In LLM-based Text-to-SQL, another critical challenge is efficiency.
The reason is that most prior studies focus on OpenAI LLMs, and
calling their APIs are expensive, time-consuming and restricted
in rate limits [30], especially for in-context learning prompts with
multiple examples. However, the prior studies may not well tackle
this challenge. Specifically, based on the observed inverted-U shape
in execution accuracy with respect to prompt length, Chang et
al. [6] conjectures that LLMs may have a sweet spot in terms of
prompt length, but leaves exploring efficient prompt engineering a
challenging open question.

In light of above challenges, we focus on providing a comprehen-
sive, systematical and fair benchmark for LLM-based Text-to-SQL.
Specifically, our benchmark discusses both the effectiveness and
efficiency of various prompt engineering strategies, as well as the
feasibility of open-source LLMs. They are detailed as follows.

To provide a systematical and in-depth understanding of Text-to-
SQL prompt engineering, we empirically evaluate several strategies
from prior studies. First, we compare several typical question repre-
sentations in zero-shot scenario with different LLMs, and identify
their pros and cons. After that, we investigate example selection and
organization strategies in few-shot scenario. For example selection,
we compare different selection strategies and further verify the
hypothesis that LLMs learn from the mappings between question
and SQL skeleton. Regarding example organization, we explore
the option of displaying full information, solely SQL queries or
question-SQL pair.

After that, we highlight the potential of open-source LLMs in
both in-context learning and supervised fine-tuning. Specifically,
we empirically study various open-source LLMs with different
prompt engineering strategies, and observe the significant ben-
efits of increasing scale of LLMs and having a good alignment
[32]. To further enhance their performance, we fine-tune and eval-
uate open-source LLMs using various representations. With this
comparison, we demonstrate that similar to in-context learning,
representation strategy is also critical for supervised fine-tuning.
These explorations underline the potential of an effective solution
for Text-to-SQL. Moreover, after fine-tuning we also observe a
decrease in in-context learning capability, which requires further
study. We believe these explorations will benefit practical Text-to-
SQL applications.

Towards a more economic and efficient solution, we further eval-
uate different strategies in terms of token efficiency. Such evaluation
aims at searching for a cost-effective strategy, which is supposed
to achieve considerable performance with less tokens. To fulfill

such goal, we consider token efficiency in the whole process of
prompt engineering, including choices for question representation,
example selection and organization.

Last but not least, our integrated solution, named DAIL-SQL,
refreshes the Spider leaderboard with 86.6% execution accuracy,
and wins the first place. Compared with previous solutions, DAIL-
SQL encodes structure knowledge as SQL statements, selects ex-
amples based on their skeleton similarities and removes cross-
domain knowledge from examples for token efficiency. Before DAIL-
SQL, the state-of-the-art performance in the Spider leaderboard is
85.3% [35]. Therefore, our solution sets a new bar, and hope our
comprehensive study will inspire more further works.

Contribution Our main contributions and results are summa-
rized as follows:

• We systematically study prompt engineering for LLM-based
Text-to-SQL methods, including five question representa-
tions, two prompt components, four example selections,
and three example organizations on four LLMs. The study
sheds light on identifying suitable question representations
and key points to leverage the in-context learning capacity
of LLMs for Text-to-SQL task.

• To the best of our knowledge, we are the first to explore
open-source LLMs for both in-context learning and super-
vised fine-tuning for Text-to-SQL task. We provide insights
into the potential of the open-source LLMs by employing
SFT on them in Text-to-SQL task.

• We also empirically compare different prompts in terms
of cost efficiency, which provides practical guidance for
real-world Text-to-SQL applications.

• Last but not least, we propose a new solution, named DAIL-
SQL, which successes in leveraging the in-context learning
capacity of LLMs and achieving a balance between per-
formance and token efficiency. Notably, it refreshes the
Spider leaderboard with 86.6% execution accuracy, which
surpasses the best state-of-the-art solution by 1.3% with
much less token cost.

2 PRELIMINARY
Text-to-SQL aims at automatically translating natural language
questions into SQL queries. It bridges the gap between non-expert
users and database systems, greatly improves the efficiency of data
processing, and contributes to a wider range of applications such as
intelligent database service, automatic data analysis and database
question-answering. However, Text-to-SQL is still a quiet chal-
lenging task, due to the difficulty in fully understanding natural
language questions and generating correct SQL queries [18, 37].

Extensive studies of Text-to-SQL have been conducted in both
database and natural language processing communities. Some early
studies tackle Text-to-SQL task with pre-defined rules or query
enumeration [3, 38, 42], or treat it as a sequence-to-sequence task,
focusing on training machine learning models with an encoder-
decoder architecture [5, 34, 36]. With rapid advancement of deep
learning, numerous techniques are applied to help Text-to-SQL task,
such as attention mechanism [25], graph representation [17, 22, 36,
48, 51, 56], syntax parsing [15, 21, 41, 49], etc. One of the most

representative is BERT [10], which has been widely used in Text-to-
SQL and achieved SOTA performances at that time [4, 52]. Besides,
to narrow the gap between Text-to-SQL research and its real-world
deployment, numerous large-scale benchmark datasets have been
released, including WikiSQL [58], Spider [53], KaggleDBQA [20],
BIRD [23] etc. With these great efforts, the research communities
have made impressive progress in Text-to-SQL.

Recently, large language models (LLMs), such as GPT-4 [28] from
OpenAI and LLaMA [45] from Meta, have emerged as a milestone
for natural language processing and machine learning. Different
from general machine learning model, LLMs are pre-trained on
massive text corpus, which can perform various natural language
tasks. The basic operating principle is to gradually produce the next
word that has the highest probability based on the input prompt [54].
Therefore, to tackle Text-to-SQL task with LLMs, the core is to find
the optimal prompt, also known as prompt engineering [24, 27].

Specifically, according to number of examples provided in prompt,
prompt engineering are classified into two scenarios: zero-shot sce-
nario and few-shot scenario. In zero-shot scenario, no example
is provided, and the main challenge is to represent the natural
language question effectively, including incorporating relevant in-
formation such as the corresponding database schema [6, 12, 24, 47].
In this paper, the process of representing natural language questions
and relevant information is referred to as question representa-
tion. While in few-shot scenario, a limited number of examples
are available, thus besides question representation, we also need
to study how to select the most helpful examples and organize
them in the prompt appropriately. In natural language processing,
the above progress that LLMs learn from contextual examples is
named as in-context learning [11]. It enables LLMs to identify
explicit or inexplicit patterns from the input prompt, and generate
corresponding outputs. In this way, LLMs are capable of new tasks
during inference without any explicit task-specific training phase.
Recent studies [14, 26, 35] confirm the significant role of including
examples for effective in-context learning.

Although LLMs are demonstrated to be effective in both zero-
shot and few-shot scenarios in prior studies [6, 19, 24, 27, 43], their
performances can be further enhanced by supervised fine-tuning
(SFT), which enhances LLMs using additional task-specific train-
ing data to make it more suitable for specific downstream tasks.
In recent researches, supervised fine-tuning is used as a training
paradigms of Alignment, which aligns LLMs’ behavior to avoid
generating offensive, biased responses and hallucinations [29]. In
this paper, we will focus on enhancing LLMs’ Text-to-SQL capabili-
ties with supervised fine-tuning. It is worth noting that despite the
extensive research on prompt engineering for Text-to-SQL, there is
a scarcity of studies exploring the supervised fine-tuning of LLMs
for Text-to-SQL [43], leaving this area as an open question.

In summary, question representation, in-context learning, to-
gether with supervised fine-tuning are three essential knobs in
large language model based Text-to-SQL. In this paper, we will
provide a systematical study and discussion about them.

3 METHODOLOGY
As stated above, in this paper we focus on question representation,
in-context learning and supervised fine-tuning. In this section, we

Table 1: Question representations in existingworks, aswell as
their reported execution accuracy (EX) in zero-shot scenario.
The Instruction (INS), Rule Implication (RI) and Foreign Key
(FK) are possible components in a prompt. INS is the task
description, such as “Write a SQL to answer the question”.
RI is the guiding statement, such as “Complete sqlite SQL
query only and with no explanation”. FK is the foreign key
information of the database.

Question
Representation INS RI FK Ref. LLMs EX

(%)
BS 𝑃 ✗ ✗ ✗ [35] - -
TR 𝑃 ✓ ✗ ✗ [27] CODE-DAVINCI-002 69.0

OD 𝑃 ✓ ✓ ✗
[24] GPT-3.5-TURBO 70.1
[35] GPT-4 64.9

CR 𝑃 ✓ ✗ ✓

[27] CODE-DAVINCI-002 75.6
[6] CODE-DAVINCI-002 71.8
[6] GPT-3.5-TURBO 70.7

AS 𝑃 ✓ ✗ ✗ [44] - -

1 Table continents , columns = [ContId , Continent]
2 Table countries , columns = [CountryId , CountryName ,

↰

Continent]
3 Q: How many continents are there?
4 A: SELECT

Listing 1: Example of Basic Prompt

1 Given the following database schema:

2 continents: ContId , Continent
3 countries: CountryId , CountryName , Continent
4

5 Answer the following: How many continents are there?
6 SELECT

Listing 2: Example of Text Representation Prompt

provide formal definitions for these three problems, survey their
existing solutions systematically, and point out the potential issues
in existing techniques. To address these issues, we propose a new
Text-to-SQL prompt engineering method, named DAIL-SQL, which
refreshes the best performance in Spider leaderboard with 86.6%
execution accuracy.

3.1 Question Representation
In this section, we first discuss question representations under zero-
shot scenario for Text-to-SQL. Considering a target question 𝑞 in
natural language on certain database D, the target of question
representation is to maximize the possibility of LLMM generating
the correct SQL 𝑠∗ as follows:

max
𝜎

PM (𝑠∗ |𝜎 (𝑞,D)),

where function 𝜎 (·, ·) decides representation for target question 𝑞,
with the useful information from the schema of databaseD. Besides,
𝜎 (·, ·) also can include information such as instruction statement,
rule implication and foreign key.

Follow the above definition, we survey different choices of 𝜎 in
zero-shot scenario and choose four most representative ones from

1 ### Complete sqlite SQL query only and with no

↰

explanation

2 ### SQLite SQL tables , with their properties:

3 #

4 # continents(ContId , Continent)
5 # countries(CountryId , CountryName , Continent)
6 #

7 ### How many continents are there?
8 SELECT

Listing 3: Example of OpenAI Demostration Prompt

literature. In addition, we also include the question representation
used in Alpaca [44] since it’s popular in supervised fine-tuning.
Table 1 summarizes these five representation methods and lists
their reported details from their original papers.

• Basic Prompt (BS 𝑃). Basic Prompt [35] is a simple repre-
sentation shown in Listing 1. It is consisted of table schemas,
natural language question prefixed by “Q: ” and a response
prefix “A: SELECT ” to prompt LLM to generate SQL. In this
paper we named it as Basic Prompt due to its absence of
instructions.

• Text Representation Prompt (TR 𝑃). As shown in List-
ing 2, Text Representation Prompt [27] represents both
schema and question in natural language. Compared with
Basic Prompt, it adds instruction at the very beginning of
prompt to guide LLMs. In [27], it achieves 69.0% execution
accuracy on Spider-dev in zero-shot scenario.

• OpenAI Demostration Prompt (OD 𝑃). The OpenAI De-
mostration Prompt (Listing 3) is first used in OpenAI’s
official Text-to-SQL demo [31], and evaluated in [24, 35].
It’s consisted of instruction, table schemas, and question,
where all information are commented by pound sign “#”.
Compared with Text Representation Prompt, the instruc-
tion in OpenAI Demostration Prompt is more specific with
a rule, “Complete sqlite SQL query only and with no expla-
nation”, which we will further discuss in the Sec. 4.3 along
with experimental results.

• Code Representation Prompt (CR 𝑃). The Code Rep-
resentation Prompt [6, 27] presents Text-to-SQL task in
SQL syntax. Specifically, as shown in Listing 4, it directly
presents “CREAT TABLE” SQLs, and prompts LLM with
natural language question in comments. Compared with
other representations, CR 𝑃 stands out due to its ability to
provide comprehensive information necessary for database
creation, such as column types and primary/foreign keys.
With such a representation, [27] correctly predicts about
75.6% SQLs with LLM CODE-DAVINCI-002.

• Alpaca SFT Prompt (AS 𝑃). The Alpaca SFT Prompt is a
prompt designed for supervised fine-tuning [44]. As shown
in Listing 5, it prompts LLM to follow instruction and finish
task according to the input context in Markdown format.
We include it to examine its effectiveness and efficiency
in both prompt engineering and supervised fine-tuning
scenarios.

1 /* Given the following database schema: */

2 CREATE TABLE continents(
3 ContId int primary key ,
4 Continent text ,
5 foreign key(ContId) references countries(Continent)
6);
7

8 CREATE TABLE countries(
9 CountryId int primary key ,
10 CountryName text ,
11 Continent int ,
12 foreign key(Continent) references continents(ContId)
13);
14

15 /* Answer the following: How many continents are there?

↰

*/

16 SELECT

Listing 4: Example of Code Representation Prompt

1 Below is an instruction that describes a task , paired

↰

with an input that provides further context. Write a

↰

response that appropriately completes the request.

2

3 ### Instruction:

4 Write a sql to answer the question "How many continents

↰

are there?"
5

6 ### Input:

7 continents(ContId , Continent)
8 countries(CountryId , CountryName , Continent)
9

10 ### Response:

11 SELECT

Listing 5: Example of Alpaca SFT Prompt

As shown in Table 1, different representations are experimented
with different LLMs, and integrated in different frameworks, mak-
ing it difficult to compare them fairly and effectively. Additionally,
the specific roles played by individual components such as foreign
key information and rule implication remain unclear. Consequently,
it is essential to conduct a systematical study to better understand
question representations, and investigate their advantages and dis-
advantages through a fair comparison.

3.2 In-Context Learning for Text-to-SQL
The above question representation methods enable LLMs to directly
output desired SQLs by zero-shot learning. However, LLMs can
perform better for Text-to-SQL through in-context learning, in
which only a few examples are provided in the input prompts.
Therefore, in this subsection, we discuss the keys of in-context
learning, that are example selection and example organization. We
first give a formulation of in-context learning to ease the further
discussions.

In Text-to-SQL, given a set of triples Q = {(𝑞𝑖 , 𝑠𝑖 ,D𝑖)}, where
𝑞𝑖 and 𝑠𝑖 are natural language question and its corresponding SQL
query on database D𝑖 , the target of in-context learning for Text-
to-SQL is to maximize the possibility of LLM M generating the

correct SQL 𝑠∗ on the target question 𝑞 and database D as follows:
max
Q′,𝜎

PM (𝑠∗ |𝜎 (𝑞,D,Q′)),

s.t. |Q′ | = 𝑘 and Q′ ⊂ Q,
where function 𝜎 (·, ·, ·) decides representation for target question 𝑞,
with the useful information from the schema in databaseD and𝑘 ex-
amples selected fromQ. In this paper, we focus on cross-domain Text-
to-SQL, which means the target database D is not included among
the databases D𝑖 mentioned in Q., i.e., D ∉ {D𝑖 | (𝑞𝑖 , 𝑠𝑖 ,D𝑖) ∈ Q}.

In-context learning for Text-to-SQL involves selecting the most
helpful examples Q′ and deciding how to organize the information
of these selected examples into prompt. Next we discuss these two
sub-tasks: example selection and example organization.

3.2.1 Example Selection. We summarize various example selection
strategies in prior studies as follows.

• Random. This strategy randomly samples 𝑘 examples from
the available candidates. Previous works [14, 26, 27] have
adopted it as a baseline for example selection.

• Question Similarity Selection (QTS 𝑆). QTS 𝑆 [26] chooses
𝑘 examples with the most similar questions. Specifically, it
embeds both example questions in Q and the target ques-
tion 𝑞 with a pre-trained language model. Then it applies
a pre-defined distance measure, such as the Euclidean dis-
tance or negative cosine similarity, to each example-target
pair. Finally 𝑘NN algorithm is leveraged to select 𝑘 exam-
ples from Q that closely match the target question 𝑞.

• MaskedQuestion Similarity Selection (MQS 𝑆). For cross-
domain Text-to-SQL, MQS 𝑆 [14] eliminates the negative
influence of domain-specific information by replacing ta-
ble names, column names, and values in all questions with
a mask token, and then compute the similarities of their
embedding with 𝑘NN algorithm.

• Query Similarity Selection (QRS 𝑆). Instead of using the
target question 𝑞, QRS 𝑆 [27] aims to select 𝑘 examples that
are similar to target SQL query 𝑠∗. Specifically, it employs
a preliminary model to generate SQL query 𝑠′ using target
question 𝑞 and database 𝐷 , where this generated 𝑠′ can be
regarded as an approximation of 𝑠∗. Then it encodes queries
from examples into binary discrete syntax vectors accord-
ing to their keywords. After that, it chooses 𝑘 examples by
considering both similarity to the approximated query 𝑠′
and diversity among selected examples.

Above strategies focus on selecting examples using only target
question or query. However, according to prior studies [11], in-
context learning is essentially learning from analogy. In the case
of Text-to-SQL, the objective is to generate queries that match the
given questions, thus LLMs are supposed to learn the mapping
from questions to SQL queries. Therefore, we point out that during
example selection, taking both question and SQL queries into con-
sideration may benefit Text-to-SQL task. We will further discuss it
in Sec. 3.3.

3.2.2 Example Organization. The example organization plays a
pivotal role in determining what information of the above selected
examples will be organized into the prompt. We summarize exist-
ing strategies in prior studies into two categories, Full-Information

1 /* Given the following database schema: */

2 ${DATABASE_SCHEMA}
3 /* Answer the following: How many authors are there? */

4 SELECT count (*) FROM authors
5

6 /* Given the following database schema: */

7 ${DATABASE_SCHEMA}
8 /* Answer the following: How many farms are there? */

9 SELECT count (*) FROM farm
10

11 ${TARGET_QUESTION}

Listing 6: Example of Full-Information Organization.

1 /* Some SQL examples are provided based on similar

↰

problems: */

2 SELECT count (*) FROM authors
3

4 SELECT count (*) FROM farm
5

6 ${TARGET_QUESTION}

Listing 7: Example of SQL-Only Organization.

1 /* Some example questions and corresponding SQL queries

↰

are provided based on similar problems: */

2 /* Answer the following: How many authors are there? */

3 SELECT count (*) FROM authors
4

5 /* Answer the following: How many farms are there?. */

6 SELECT count (*) FROM farm
7

8 ${TARGET_QUESTION}

Listing 8: Example of DAIL Organization.

Organization and SQL-Only Organization, as demonstrated in List-
ing 6 and Listing 7. In these examples, ${DATABASE_SCHEMA}
represents the database schema, and ${TARGET_QUESTION} stands
for the question representation in Listing 4.

• Full-Information Organization (FI𝑂). FI𝑂 [6, 27] orga-
nizes examples in the same representation with the target
question. As shown in Listing 6, examples are structured
identically to the target question, and the only difference
is that instead of the “SELECT” token at the end, the se-
lected examples have the corresponding SQL queries after
“SELECT”.

• SQL-Only Organization (SO𝑂). SO𝑂 [14] includes only
SQL queries of the selected examples with a prefix instruc-
tion in the prompt, as demonstrated in Listing 7. Such or-
ganization aims at maximizing the number of examples
with limited token length. However, it removes the map-
ping information between questions and corresponding
SQL queries, and such information can be useful, which we
will demonstrate later.

In summary, FI𝑂 includes the full information of examples,
which ensures the quality; while SO𝑂 only keeps SQL queries to
accommodate more examples, which prefers the quantity. We won-
der if there exists a better trade-off between quality and quantity in
example organization , which can further benefit the Text-to-SQL
task.

3.3 DAIL-SQL
To address the aforementioned issues in example selection and
organization, in this subsection, we present a novel Text-to-SQL
method named DAIL-SQL. Due to limited space please refer to our
full version [13] for the pseudocode.

For example selection, inspired by MQS 𝑆 and QRS 𝑆 , we pro-
posed DAIL Selection (DAIL 𝑆), considering both questions and
queries to select candidates. Specifically, DAIL Selection first masks
domain-specific words in both target question 𝑞 and example ques-
tions 𝑞𝑖 in the candidate set Q. It then ranks the candidate examples
based on the Euclidean distance between the embeddings of masked
𝑞 and 𝑞𝑖 . Simultaneously, it calculates the query similarity between
the pre-predicted SQL query 𝑠′ and 𝑠𝑖 in Q. Finally, the selection
criterion prioritizes the sorted candidates by question similarity
with a query similarity greater than a predefined threshold 𝜏 . In
this way, the selected top 𝑘 examples have good similarity with
both question and query.

To preserve the mapping information between questions and
SQL queries and also improve the token efficiency, we propose a
new example organization strategy DAIL Organization (DAIL𝑂)
to trade-off in terms of quality and quantity. Specifically, DAIL𝑂

presents both questions 𝑞𝑖 and corresponding SQL queries 𝑠𝑖 , as
illustrated in Listing 8. As a compromise between FI𝑂 and SO𝑂 ,
DAIL𝑂 reserves the question-SQL mapping, and reduces the token
length of examples by removing token-cost database schema.

In DAIL-SQL, we adopt CR 𝑃 as our question representation. The
reason is that compared with other representations, CR 𝑃 contains
full information of the database, including primary and foreign
keys, which may offers more useful information for LLMs, such
as foreign keys for the prediction of “JOIN” clauses. Besides, pre-
trained on extensive coding corpora, LLMs could better understand
the prompt in CR 𝑃 without too much additional effort.

In summary, DAIL-SQL utilizes CR 𝑃 as the question represen-
tation, selects examples based on information from both question
and query, and organizes them to keep question-to-SQL mappings.
In such prompt design, LLMs could work better for Text-to-SQL
task, and in Spider leaderboard, the proposed DAIL-SQL refresh
the performance with 86.2% execution accuracy.

Note DAIL-SQL is a flexible LLM-based Text-to-SQL solution,
which can be further extended and integrated with other compo-
nents easily. For example, to improve the performance, we equip
DAIL-SQL with self-consistency [50], which achieves a perfor-
mance of 86.6% execution accuracy. Although self-consistency im-
proves the execution accuracy by 0.4%, it is very time consuming
and yields many times the cost of original DAIL-SQL. Therefore, in
this paper we still focus on DAIL-SQL.

3.4 Supervised Fine-Tuning for Text-to-SQL
To enhance the performance of LLMs in zero-shot scenario, the
popular option for existing Text-to-SQLmethods is in-context learn-
ing, which is discussed in above subsections. As an alternative yet
promising option, supervised fine-tuning is less explored so far.
Similar to supervised fine-tuning for various language task, we
can adopt it to the field of Text-to-SQL, and improve LLMs’ per-
formance on this downstream task. To further understand how

supervised fine-tuning works for Text-to-SQL, we first provide a
brief formulation as follows.

For Text-to-SQL, given a large language model M, a set of Text-
to-SQL training data T = {(𝑞𝑖 , 𝑠𝑖 ,D𝑖)}, where 𝑞𝑖 and 𝑠𝑖 are the
natural language question and its corresponding query on data-
base D𝑖 , the objective of supervised fine-tuning is to minimize the
following empirical loss:

min
𝜎,M∗

| T |∑︁
𝑖=1

LM∗ (𝜎 (𝑞𝑖 ,D𝑖), 𝑠𝑖),

where L is the loss function to measure the difference between
the generated query and the groundtruh query. Similar to ques-
tion representation, 𝜎 decides question representation with useful
information from the schema in database D. In this definition,
supervised fine-tuning for Text-to-SQL covers two sub-tasks, in-
cluding fine-tuning the given LLM M using supervised data T
in order to get the optimal LLM M∗, and searching for the opti-
mal question representation 𝜎 . Since question representations have
been discussed in Sec. 3.1, this section will primarily focus on data
preparation T and fine-tuning.

For general domain, each item in supervised data T = {(𝑝𝑖 , 𝑟𝑖)}
contains an input prompt 𝑝𝑖 and an expected respond 𝑟𝑖 from LLM.
To ensure consistency with the inference process, we employ a
supervised fine-tuning and generate prompt-response pairs from a
given Text-to-SQL dataset. Specifically, given a Text-to-SQL data
set T = {(𝑞𝑖 , 𝑠𝑖 ,D𝑖)}, we fine-tune the LLMs using the generated
tuning data by using target question and the given database as
prompt, and treating the desired query as response from LLM, i.e.,
T = {(𝑝𝑖 = 𝜎 (𝑞𝑖 ,D𝑖), 𝑟𝑖 = 𝑠𝑖)}. Once the data is ready, we can use
existing package to fine-tune the given LLM M through either full
fine-tuning [32] or parameter-efficient fine-tuning [16] depending
on the available computational resources. After fine-tuning, the
optimized LLM M∗ can be used to do inference, that is asking it
to generate queries through natural language questions. Note that
we utilize the same question representation 𝜎 in both fine-tuning
and inference processes. We will conduct a series of experiments
and discuss the great potential of supervised fine-tuning for Text-
to-SQL.

4 EXPERIMENT
In this section, we first introduce our experimental settings. Then
we conduct extensive comparisons with existing solutions in ques-
tion representation, in-context learning and supervised fine-tuning
respectively. After that, we further compare them in terms of token
efficiency to inspire more efficient solutions.

4.1 Setting
Dataset. We evaluate Text-to-SQL methods on two well recog-
nized datasets, Spider [53] and Spider-Realistic [9]. Spider is a
large-scale cross-domain Text-to-SQL dataset, which contains 8659
instances in training split and 1034 instances in development split
over 200 databases. Each instance is consisted of a natural language
question on a specific database and its corresponding SQL query. In
this paper, we use the development split Spider-dev for the purpose
of evaluation as the test split is not released. Spider-Realistic [9]
is a more challenging variant of Spider. It selects a subset of 508

GPT-4 GPT-3.5-TURBO TEXT-DAVINCI-003 Vicuna-33B
0

20

40

60

80

Ex
ac

t-s
et

-m
at

ch
 A

cc
. (

%
)

Basic Prompt (BS P)
Text Representation Prompt (TR P)
OpenAI Demostration Prompt (OD P)

Code Representation Prompt (CR P)
Alpaca SFT Prompt (AS P)
Average

GPT-4 GPT-3.5-TURBO TEXT-DAVINCI-003 Vicuna-33B
20

40

60

80

100

Ex
ec

ut
io

n
A

cc
. (

%
) Basic Prompt (BS P)

Text Representation Prompt (TR P)
OpenAI Demostration Prompt (OD P)

Code Representation Prompt (CR P)
Alpaca SFT Prompt (AS P)
Average

Figure 1: Results of different question representations on Spider-dev under zero-shot scenario.

GPT-4 GPT-3.5-TURBO TEXT-DAVINCI-003 Vicuna-33B
0

20

40

60

Ex
ac

t-s
et

-m
at

ch
 A

cc
. (

%
)

BS P w/ FK
TR P w/ FK

OD P w/ FK
AS P w/ FK

GPT-4 GPT-3.5-TURBO TEXT-DAVINCI-003 Vicuna-33B

40

60

80

Ex
ec

ut
io

n
A

cc
. (

%
) BS P w/ FK

TR P w/ FK
OD P w/ FK
AS P w/ FK

Figure 2: Ablation studies of foreign keys information on Spider-dev. The green arrow indicates an increase, and red arrow
indicates a decrease.

GPT-4 GPT-3.5-TURBO TEXT-DAVINCI-003 Vicuna-33B

20

40

60

Ex
ac

t-s
et

-m
at

ch
 A

cc
. (

%
)

TR P w/ Rule
OD P w/ Rule

CR P w/ Rule
AS P w/ Rule

GPT-4 GPT-3.5-TURBO TEXT-DAVINCI-003 Vicuna-33B

40

60

80

Ex
ec

ut
io

n
A

cc
. (

%
) TR P w/ Rule

OD P w/ Rule
CR P w/ Rule
AS P w/ Rule

Figure 3: Ablation studies of “with no explanation” rule implication on Spider-dev. The green arrow indicates an increase, and
red arrow indicates a decrease.

examples from Spider-dev and manually revises the questions while
keeping the SQL queries unchanged. For few-shot scenarios, we
utilize the training split of Spider as the example candidates when
testing with both Spider-dev and Spider-Realistic.

Metric. To make a fair comparison, we follow prior study [57]
to use exact-set-match accuracy (EM) and execution accuracy (EX).
The exact-set-match accuracy measures the matched SQL key-
words between the predicted SQL query and its corresponding
ground truth. The execution accuracy, on the other hand, com-
pares the execution output of the predicted SQL query with that
of the ground truth SQL query on some database instances. This
metric provides a more precise estimate of the model’s perfor-
mance since there may be multiple valid SQL queries for a single
given question. We use the existing released evaluation scripts
at https://github.com/taoyds/test-suite-sql-eval.

LLM. To ensure a fair comparison, for all the methods, we use the
samemaximal context length, that is 4096 for OpenAI LLM and 2048
for open-source LLM. During evaluation, we leave 200 tokens for
response generation. By default, we set the argument temperature

as 0 to eliminate the influence of randomness. Regarding post-
processing, we follow existing work to extract the first SQL query
in response and remove additional output. Formore implementation
details, please refer to our full version [13].

4.2 Question Representations
In this subsection, we evaluate the question representations pre-
sented in Sec. 3.1 under zero-shot scenario, employing four LLMs:
GPT-4, GPT-3.5-TURBO, TEXT-DAVINCI-003, and Vicuna-33B.

Fig. 1 presents the comparison of different question represen-
tations over Spider-dev. By comparing different representations,
we can observe that OD 𝑃 fits to all four LLMs and achieves 75.5%
execution accuracy with GPT-3.5-TURBO. In contrast, AS 𝑃 exhibits
poor performance with GPT-3.5-TURBO, TEXT-DAVINCI-003, and
Vicuna-33B, necessitating a suitable LLM to work well with. Unex-
pectedly, GPT-4 exhibits a preference for the simple BS 𝑃 derived
from Din-SQL [35], indicating that a powerful LLM can mitigate
the complexities associated with representation design. Besides,
by comparing the average performance for four LLMs, GPT-4 and
GPT-3.5-TURBO are more capable in the zero-shot scenario. Due to

https://github.com/taoyds/test-suite-sql-eval

Table 2: Evaluation on Spider-dev with different example selections. The organization is fixed to Full-Information Organization.

Few-shot Selection Question
Similarity

Query
Similarity

GPT-4 GPT-3.5-TURBO TEXT-DAVINCI-003 Vicuna-33B

EM EX EM EX EM EX EM EX
0-shot - - - 22.1 72.3 34.6 74.4 31.7 71.7 6.9 43.7

1-shot

Random 0.23 0.47 41.7 77.4 45.9 73.9 38.2 70.6 14.4 47.9
Question Similarity Selection 0.39 0.65 53.3 78.8 51.9 74.3 44.1 72.3 16.5 48.5
Masked Question Similarity Selection 0.57 0.80 58.2 79.1 57.4 76.0 47.9 75.0 21.4 48.7
DAIL Selection 0.56 0.95 62.1 80.2 59.5 75.5 51.9 76.9 22.8 49.2
Upper Limit 0.56 0.98 63.7 81.0 61.4 77.2 53.1 77.5 22.7 49.4

3-shot

Random 0.23 0.48 48.9 79.4 49.0 73.6 41.7 71.6 16.8 46.9
Question Similarity Selection 0.37 0.63 56.3 79.2 53.8 74.7 52.2 74.1 21.1 47.1
Masked Question Similarity Selection 0.54 0.78 66.1 81.5 61.1 77.3 59.7 77.0 27.7 52.3
DAIL Selection 0.53 0.94 69.1 81.7 63.9 77.8 64.4 79.5 30.7 53.6
Upper Limit 0.53 0.98 71.5 83.4 66.2 79.2 66.7 81.1 31.2 54.4

5-shot

Random 0.23 0.48 51.6 79.5 52.9 75.7 49.0 72.1 - -
Question Similarity Selection 0.36 0.61 58.2 79.9 55.9 75.1 54.8 73.2 - -
Masked Question Similarity Selection 0.52 0.77 66.8 82.0 62.3 77.9 64.7 78.6 - -
DAIL Selection 0.52 0.94 71.9 82.4 66.7 78.1 67.7 80.5 - -
Upper Limit 0.51 0.97 74.4 84.4 68.8 79.6 70.7 82.4 - -

the expensive cost of GPT-4, GPT-3.5-TURBO together with OD 𝑃

maybe a better choice for the zero-shot scenario. For less powerful
LLMs like TEXT-DAVINCI-003 and Vicuna-33B, OD 𝑃 and CR 𝑃 are
preferred.

To further investigate the different question representations,
we conduct ablation study to explore the effects of their invidual
components.

Foreign Key (FK). Foreign Key implies the relation among dif-
ferent relational tables, which might be helpful in Text-to-SQL task.
In our evaluation, only CR 𝑃 contains foreign key information. To
examine its effect, we add foreign key information into other rep-
resentations and evaluate them in Fig. 2. For OpenAI LLMs, we
observe that foreign key significantly improves the execution ac-
curacy of LLMs by 0.6% − 2.9%, except the combinations of TR 𝑃

with GPT-4 (−0.2%) and AS 𝑃 with TEXT-DAVINCI-003 (−0.4%).
However, the impact of foreign key for Vicuna-33B tends to be
unstable. Notably, the inclusion of foreign keys leads to a surpris-
ing improvement of 5.0% for the BS 𝑃 , but adversely affects the
performance of the OD 𝑃 and AS 𝑃 .

Rule Implication (RI). Inspired by the outperformance of OD 𝑃 ,
we explore the effect of rule implication. Specifically, OD 𝑃 implicate
LLMs to generate SQL queries “with no explanation” To examine
the effect of “with no explanation” rule in question representation,
we present an ablation study in Fig. 3. Specifically, we plot the
performance of different representations after including the “with
no explanation" implication and the change of accuracy. From Fig. 3
we observe adding this rule consistently booms the performance of
all LLMs in both exact-set-match and execution accuracy, with the
most significant improvements exceeding 6% and 3%, respectively.
While for OD 𝑃 , removing this rule incurs about 2.4% − 6.2% drop
in exact-set-match accuracy, and 1.3% − 2.4% drop in execution
accuracy, indicating the importance of this rule implication.

In summary, both the foreign key and the “with no explana-
tion” rule implication are beneficial for Text-to-SQL task. In our
evaluation, OD 𝑃 with foreign keys and GPT-3.5-TURBO are the

most effective and economic combination, which achieves 51.5%
exact-set-match accuracy and 78.4% execution accuracy.

4.3 In-Context Learning for Text-to-SQL
In few-shot scenario, we examine different example selection and or-
ganization strategies with GPT-4, GPT-3.5-TURBO, TEXT-DAVINCI-
003, and Vicuna-33B. To ensure a fair comparison, we adopt CR 𝑃

as the question representation for all the experiments in this sub-
section, due to its superior performance in one-shot preliminary
experiment as shown in our full version [13].

4.3.1 Example Selection. To verify the importance of both ques-
tion and query for example selection, we calculate question’s and
query’s Jaccard similarities between chosen examples and the target
instance, and report the averaged numbers under column question
similarity and query similarity in Table 2. Specifically, we remove
database-specific information from questions [48] and queries [21],
and calculate the Jaccard similaritis of the remained tokens. Be-
sides, we introduce Upper Limit for reference, which is similar
with DAIL Selection but utilizes the ground truth query 𝑠∗ rather
than the query generated by preliminary predictor. Notably, we do
not directly provide the ground truth to the LLMs, but just use the
ground truth query as a reference for selecting examples. To some
extent, Upper Limit indicates the upper bound of performance for
similarity based selection methods.

Table 2 shows the comparisons of different example selection
strategies in 1-, 3- and 5-shot scenarios on Spider-dev. By compar-
ing different selection strategies, it is demonstrated that DAIL 𝑆

generally outperforms other strategies. In 5-shot scenario, equipped
with GPT-4, DAIL-SQL achieves 82.4% execution accuracy. Besides,
in Table 2 we observe the increasing question and query similarity
corresponds to higher execution accuracy mostly, indicating the
importance of considering both question and query similarity. Note
DAIL 𝑆 ’s execution accuracy is still lower than Upper Limit. This

0 2 4 6 8
k-shot

72

74

76

78

80

82

84

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(a) GPT-4 on Spider-dev

0 2 4 6 8
k-shot

75

76

77

78

79

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(b) GPT-3.5-TURBO on Spider-dev

0 2 4 6 8
k-shot

70

72

74

76

78

80

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(c) TEXT-DAVINCI-003 on Spider-dev

0 2 4 6 8
k-shot

44

46

48

50

52

54

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(d) Vicuna-33B on Spider-dev

0 2 4 6 8
k-shot

68

70

72

74

76

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(e) GPT-4 on Spider-Realistic

0 2 4 6 8
k-shot

65

66

67

68

69

70

71

72

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(f) GPT-3.5-TURBO on Spider-Realistic

0 2 4 6 8
k-shot

60

62

64

66

68

70

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(g) TEXT-DAVINCI-003 on Spider-Realistic

0 2 4 6 8
k-shot

34

36

38

40

42

44

46

Ex
ec

ut
io

n
A

cc
. (

%
)

Full-Information
SQL-Only
DAIL

(h) Vicuna-33B on Spider-Realistic

Figure 4: Evaluation on Spider-dev with different example organizations. The selection is fixed to DAIL Selection.

discrepancy can be attributed to the lower query similarity, indicat-
ing the gap between the ground truth query and that generated by
the preliminary model.

4.3.2 Example Organization. To compare different example organi-
zation strategies, we evaluate Full-Information Organization, SQL-
Only Organization and DAIL Organization in few-shot scenario on
both Spider-dev and Spider-Realistic. Fig. 4 shows the comparison
results.

From Fig. 4(a) and Fig. 4(e), we can observe that GPT-4 benefits
from contextual examples steadily on both Spider-dev and Spider-
Realistic. With DAIL Organization, its execution accuracy increases
from 72.3% to 83.5% on Spider-dev and from 66.5% to 76.0% on
Spider-Realistic. While for GPT-3.5-TURBO and TEXT-DAVINCI-
003, adding examples may incur drop in execution accuracy due
to limited in-context learning capability. Regarding Vicuna-33B,
its performance consistently improves as the number of examples
increases in DAIL Organization. By comparing different organiza-
tion strategies, we observe that GPT-4 shows preference for DAIL
Organization in both Spider-dev and Spider-Realistic, suggesting
it can effectively learn the mapping from question-SQL pairs. For
GPT-3.5-TURBO (Fig. 4(b) and Fig. 4(f)), comparedwith its zero-shot
performance in Fig. 1, its enhancement in in-context learning is the
smallest among four LLMs, due to its weakness in in-context learn-
ing. For TEXT-DAVINCI-003, Full-Information Organization is far
beyond the other two strategies, especially with increasing example
number, as depicted in Fig. 4(c) and Fig. 4(g). Figures 4(d) and 4(h)
illustrate that in the case of Vicuna-33B, DAIL Organization outper-
forms SQL-Only Organization but falls short of the performance
achieved by Full-Information Organization. By comparing different
LLMs, we infer that for LLM with greater in-context learning capa-
bility, like GPT-4, benefits from DAIL Organization the most, while

the weaker LLMs require more information to learn from examples.
However, we emphasize DAIL Organization can be a good choice
to achieve higher performance, and the best execution accuracy in
our evaluation is achieved by DAIL Organization with GPT-4.

In summary, for example selection, our findings emphasize the
importance of the mapping from question to SQL query. Consid-
ering both question and query similarities simultaneously, DAIL 𝑆

outperforms other selection strategies in our evaluation. For exam-
ple organization, we show the effectiveness of DAIL𝑂 , and point
out its demands for potent LLMs. Finally, in our evaluation, we ob-
serve that our approach, DAIL-SQL, equipped with GPT-4, achieves
the highest performance with an execution accuracy of 83.5% on
Spider-dev and 76.0% on Spider-Realistic.

4.4 Supervised Fine-Tuning for Text-to-SQL
In this section, we investigate supervised fine-tuning in Text-to-SQL.
Due to the unaffordable cost of fine-tuning OpenAI LLMs, we focus
on open-source LLMs. Given the fact that very few existing work
adopt open-source LLMs and their performance remain unknown,
we first undertake a thorough evaluation for open-source LLMs,
employing various question representation, example selection and
organization strategies. After that, we fine-tune open-source LLMs
in Text-to-SQL and observe their enhancement in both zero-shot
and few-shot scenarios.

4.4.1 Open-source LLM. To investigate the potential of open-source
LLM, we choose LLaMA [45], and its aligned variants in varying
scales. They are detailed as follows. Note the aligned variants means
the LLM is aligned to be more helpful, harmless and honest [1], and
the suffix "-7B" means the LLM has 7 billions parameters, the same
meaning for "-13B" and "-33B".

Table 3: Zero-shot evaluation results on Spider-dev with different open-source LLMs. The best performances of pre-trained and
aligned LLM are in bold.

LLM BS 𝑃 TR 𝑃 OD 𝑃 CR 𝑃 AS 𝑃 Average
EM EX EM EX EM EX EM EX EM EX EM EX

Pre-trained

LLaMA-7B 6.5 9.6 3.1 4.9 3.6 9.0 4.8 16.3 1.3 5.9 3.9 9.1
LLaMA-13B 8.8 18.4 4.5 15.2 8.2 21.8 5.6 25.0 8.9 26.9 7.2 21.5
LLaMA-33B 9.6 26.7 12.0 25.9 13.6 36.4 12.2 42.8 13.8 38.1 12.2 34.0
Falcon-40B 0.3 11.7 0.2 0.9 0.3 7.6 0.1 21.9 0.0 5.0 0.2 9.4

Aligned

Vicuna-7B 7.5 15.6 1.2 9.9 6.2 21.5 5.6 24.0 0.9 5.4 4.3 15.3
Vicuna-13B 8.2 21.7 10.1 24.4 11.2 31.4 5.8 33.5 4.7 20.0 8.0 26.2
Vicuna-33B 10.8 28.9 18.3 37.1 19.1 42.7 6.9 43.7 8.6 30.6 12.7 36.6
LLaMA-2-CHAT-7B 14.3 23.4 7.2 15.5 6.3 12.3 12.2 25.5 5.0 20.5 9.0 19.4
LLaMA-2-CHAT-13B 18.8 32.6 15.4 30.5 11.1 22.3 20.7 40.0 16.9 36.2 16.6 32.3
LLaMA-2-CHAT-70B 21.8 46.2 11.9 33.9 21.4 45.5 12.4 44.0 8.4 28.6 15.2 39.6
CodeLLaMA-34B 27.8 65.5 15.9 40.3 25.8 65.3 24.3 68.5 22.4 61.5 23.2 60.2

• LLaMA-7B/13B/33B [45] is a collection of widely recog-
nized open-source LLMs, which are pre-trained on massive
corpus by Meta.

• Falcon-40B [33] is pre-trained solely on massive corpus
of refined web data.

• LLaMA-2-CHAT-7B/13B/70B [46] are up-to-date version
of LLaMA. They are both pre-trained and aligned, and out-
perform the previous version on most benchmarks.

• Vicuna-7/13/33B [7, 55] is a collection of open-source chat-
bot aligned from LLaMA with user-shared conversations.
Vicuna-13B [7] is declared to perform similar to OpenAI
ChatGPT and Google Bard, and outperforms LLaMA and
Alpaca in most scenarios.

• CodeLLaMA-34B [40] is fine-tuned from LLaMA-2-34B
with about 500B tokens of code data.

4.4.2 Zero-shot Scenario with Open-source LLM. Table 3 shows
their zero-shot performances on Spider-dev with different question
representations. Due to limited space, the performance on Spider-
Realistic refers to our full version [13]. Next, we provide several
analysis from aspects of question representations, model scale and
alignment as follows.

Effect of Question Representation. We can observe that the
best performances is achieved by CR 𝑃 with 68.5% execution ac-
curacy on Spider-dev. One possible reason is that CR 𝑃 tends to
stimulate the coding capability of LLMs. This effect is particularly
evident in CodeLLaMA-34B, which only achieve 40.3% execution
accuracy with natural language-based TR 𝑃 .

Effect of Model Scale. From the results we observe a positive
correlation between model scale and performance on Text-to-SQL
for both LLaMA and Vicuna. Specifically, the average execution
match accuracy of LLaMA shows a notable progression from 9.1% to
34.0% on Spider-dev, and Vicuna shows a similar upward trend from
15.3% to 36.6%. With the most parameter size, LLaMA-2-CHAT-70B
improves the average performance to 39.6%.

Effect of Alignment. From the results we observe that LLM
alignment can benefit Text-to-SQL. Specifically, with the same

model scale, Vicuna outperforms LLaMA by about 5% in execu-
tion accuracy on both Spider-dev and Spider-Realistic. For Falcon-
40B, it performs poorly with all representations, attributable to
the absence of dedicated code data in its training dataset. As a
comparison, with carefully collected code data in the alignment
stage, CodeLLaMA-34B exhibits a significant improvement in Text-
to-SQL task with similar model scale. Note that, CodeLLaMA-34B
also outperforms LLaMA-2-CHAT-70B by an average of 20.6% de-
spite having only half the parameter of LLaMA-2-CHAT-70B. This
highlights the crucial importance of the training corpus in LLMs.

In conclusion, having more parameters in LLMs may hold cer-
tain potential benefits to Text-to-SQL, but the training corpus (e.g.,
having task-specific training data) plays a more crucial role.

4.4.3 Few-shot Scenario with Open-source LLM. For few-shot sce-
nario, Fig. 5 shows the performance of LLaMA-33B and Vicuna-33B
with CR 𝑃 . We use DAIL Selection to select example as it is reported
as the best strategy in Sec. 4.3. From this Figure, we can see that
LLaMA-33B benefits more than Vicuna-33B, and achieves 36.4%
exact-set-match accuracy with 5-shot Full-Information Organiza-
tion examples. Regarding execution match accuracy, increasing
number of examples benefits Text-to-SQL in most cases. Besides,
among different organization strategies, Full-Information Organi-
zation outperforms other strategies in different k-shot scenarios,
which achieves 51.5% execution accuracy with Vicuna-33B. Please
refer to our full version [13] for more analysis in few-shot scenario.

Notably, in both zero-shot and few-shot scenarios, the open-
source LLMs are far behind OpenAI LLMs. We will try to further
enhance their performance with supervised fine-tuning.

4.4.4 Supervised Fine-tuning with Open-source LLM. To further
enhance Open-source LLMs’ performances, we explore supervised
fine-tuning for Text-to-SQL. Similar to in-context learning, it may
prefer different representations. Thus, we first fine-tune open-
source LLMs on zero-shot training samples with different repre-
sentations. Following the setting of supervised fine-tuning [32, 44],
we block the gradients from prompt and only update weights with
those from response (SQL queries). We use the train split in Spider,

0 1 2 3 4 5
k-shot

10

15

20

25

30

35

Ex
ac

t-s
et

-m
at

ch
 A

cc
. (

%
)

0 1 2 3 4 5
k-shot

44

46

48

50

Ex
ec

ut
io

n
A

cc
. (

%
)

LLaMA-33B, SO O

LLaMA-33B, DAIL O

LLaMA-33B, FI O

Vicuna-33B, SO O

Vicuna-33B, DAIL O Vicuna-33B, FI O

Figure 5: Few-shot evaluation with open-source LLMs on
Spider-dev.

LLaMA-7B LLaMA-2-CHAT-7B LLaMA-13B LLaMA-2-CHAT-13B

50

60

70

80

Ex
ec

ut
io

n
A

cc
. (

%
) Basic Prompt (BS P)

Text Representation Prompt (TR P)
OpenAI Demostration Prompt (OD P)

Code Representation Prompt (CR P)
Alpaca SFT Prompt (AS P)
Average

Figure 6: Zero-shot evaluation results on Spider-dev with
different fine-tuned open-source LLMs.

which contains 8659 training samples. More training details refer
to our full version paper [13].

Zero-shot Scenario. Fig. 6 shows the performance of supervised
fine-tuning with various LLMs and question representations in
zero-shot scenario. Compared with zero-shot performance before
fine-tuning in Table 3 , their performances are greatly enhanced.
By comparing different representations, Alpaca SFT Prompt show
obvious advantages in supervised fine-tuning as it is designed for
such scenario.

We also observe the gap among different representations and
model scales becomes narrow. The possible reason is that after fine-
tuning, LLMs learn to answer new Text-to-SQL questions without
task instruction and foreign keys. In this experiment, the best per-
formance on Spider is achieved by the combination of LLaMA-13B
and Alpaca SFT Prompt, whose execution accuracy is 68.6%. As for
larger LLM, the combination of LLaMA-33B and Code Representa-
tion Prompt achieves 69.1% execution accuracy.

In summary, supervised fine-tuning is quite beneficial for open-
source LLMs in Text-to-SQL. In zero-shot scenario, fine-tuned
LLaMA-13B and 30B are comparable to TEXT-DAVINCI-003.

Few-shot Scenario. After supervised fine-tuning, an important
issue is: Can we continue to enhance the performance of open-source
LLM by adding contextual examples? To answer this question, we
evaluate fine-tuned LLaMA-7B and 13B with 0, 1, 3 and 5-shot
prompts as shown in Table 4. We also add the evaluation results
of original LLaMA-7B and 13B for clear comparison. Unexpectedly,
the fine-tuned LLMs fail to learn from examples. Specifically, adding
contextual examples in test prompts incurs sudden decrease in both
exact-set-match and execution match accuracy, and adding more

Table 4: Few-shot evaluation results of supervised fine-tuned
LLMs on Spider-dev.

LLM Org. 0-shot 1-shot 3-shot 5-shot

EM EX EM EX EM EX EM EX

LLaMA
-7B

FI𝑂 3.1 13.0 23.4 30.1 23.7 30.3 24.7 30.9
SO𝑂 3.1 13.0 13.3 21.4 15.2 24.1 15.3 25.0
DAIL𝑂 3.1 13.0 18.5 25.4 22.1 28.1 22.6 29.3

+ SFT
FI𝑂 63.9 66.7 59.6 61.4 58.7 61.4 59.4 61.5
SO𝑂 63.9 66.7 59.8 62.3 58.8 61.1 59.5 62.2
DAIL𝑂 63.9 66.7 58.5 61.9 59.8 61.7 58.9 60.9

LLaMA
-13B

FI𝑂 2.4 20.3 21.6 33.8 27.3 38.1 28.5 38.8
SO𝑂 2.4 20.3 20.7 33.6 23.2 35.9 27.4 36.9
DAIL𝑂 2.4 20.3 13.2 30.0 15.5 32.3 16.2 32.4

+ SFT
FI𝑂 62.7 67.0 61.9 67.1 60.5 65.0 60.9 65.0
SO𝑂 62.7 67.0 61.9 66.2 60.1 64.6 60.2 65.2
DAIL𝑂 62.7 67.0 62.5 66.5 60.6 66.0 61.3 66.4

examples is also unhelpful. A possible reason is that LLM overfits
to zero-shot prompt, which makes examples unuseful.

In summary, open-source LLMs demonstrate significant poten-
tial for Text-to-SQL tasks, particularly in supervised fine-tuning.
Specifically, after fine-tuning, their performances are comparable to
TEXT-DAVINCI-003 in zero-shot scenario. However, unlike OpenAI
LLMs, fine-tuned LLMs fail to learn from contextual examples. The
question of preserving in-context learning ability after fine-tuning
remains to be explored in future studies.

4.5 Token Efficiency
Considering OpenAI LLMs are charged by token numbers, and
LLMs’ running time are proportional to token lengths, we under-
score token efficiency in prompt engineering, which aims to achieve
higher accuracy with less tokens. In this section, we review our
experiments on Spider-dev in terms of token efficiency (For more
efficiency analysis, please refer to our full version [13]). Specifically,
for both OpenAI and open-source LLMs, we experimentally study
the trade-off between execution accuracy and token numbers, and
the token number is mainly affected by question representation and
example organization. For example selection, we fix it as DAIL 𝑆 .
Besides, we also include several state-of-the-art Text-to-SQL meth-
ods in our comparison, including DIN-SQL [35], STRIKE [27] and
CBR-ApSQL [14].

Fig. 7 shows the comparison in terms of token efficiency. In zero-
shot scenario, compared with rule implication, prompt with foreign
keys generally achieve higher execution accuracy at the expense of
more tokens. In few-shot scenario, comparing different organization
strategies, FI𝑂 are very inefficient, whose tokens numbers are
several times that of DAIL𝑂 and SO𝑂 . Comparing DAIL𝑂 and
SO𝑂 , DAIL𝑂 together with GPT-4 achieve the highest accuracy of
83.5%, yet having similar token cost with SO𝑂 . Therefore, DAIL𝑂

are more efficient than SO𝑂 and FI𝑂 in terms of token.
Compared with other state-of-the-art solutions, DAIL-SQL out-

performs DIN-SQL and STRIKE in terms of both accuracy and
efficiency. While for CBR-ApSQL, it achieves 78.2% accuracy with
TEXT-DAVINCI-003, but still lower than the optimal performance
achieved by DAIL 𝑆 + FI𝑂 . Besides, for open-source LLM in Fig. 7(d),

200 400 600 800 1737
2560

9126
Avg. Token Num.

72

74

76

78

80

82

84

Ex
ec

ut
io

n
A

cc
. (

%
) 83.5

82.8

BS P

TR P

OD P

CR P

AS P

zero-shot
FK
RI

FI O

SO O

DAIL O

DIN-SQL

(a) GPT-4

200 400 600 800 1737
2560

8512
Avg. Token Num.

68

70

72

74

76

78

80

Ex
ec

ut
io

n
A

cc
. (

%
) 78.4 78.1

79.0

78.6

BS P

TR P

OD P

CR P

AS P

zero-shot
FK
RI

FI O

SO O

DAIL O

STRIKE

(b) GPT-3.5-TURBO

200 400 600 800 1737
2560

Avg. Token Num.

61

64

67

70

73

76

79

Ex
ec

ut
io

n
A

cc
. (

%
) 80.5

79.5
78.2

BS P

TR P

OD P

CR P

AS P

zero-shot
FK
RI

FI O

SO O

DAIL O

CBR-ApSQL

(c) TEXT-DAVINCI-003

200 600 1000
1400

1800
Avg. Token Num.

30

40

50

60

70

Ex
ec

ut
io

n
A

cc
. (

%
)

BS P

TR P

OD P

CR P

AS P

FI O

SO O

DAIL O

Fine-tuned LLM
Open-source LLM

(d) Open-source LLM

Figure 7: Token efficiency of different representations in Spider-dev for LLMs. We utilize different colors to represent different
question representations and different shapes to denote different example organizations as well as the usage of foreign
key information and rule implication. In particular, the overlap of shapes is used to indicate the usage of both foreign key
information and rule implication. The rings stand for the prompts in zero-shot scenario and the stars stand for the previous
SOTA results of few-shot methods in LLMs.

the LLMs fine-tuned on Text-to-SQL are much more efficient. How-
ever, as discussed in Sec. 4.4, adding examples is unhelpful for
open-source LLMs, and even reduces their token efficiency.

In summary, token efficiency is a critical metric for real-world
applications of LLMs on Text-to-SQL. In light of this, our approach,
DAIL-SQL, offers a compelling solution that combines high execu-
tion accuracy with improved token efficiency. This makes it highly
practical and suitable for real-world applications.

5 DISCUSSION
Based on our experiments, we can have some empirical insights:

• For question representation, Code Representation Prompt
and OpenAI Demostration Prompt are recommended, and
other information such as foreign key and rule implication
can be very helpful.

• For example selection, the similarities of both natural lan-
guage question and SQL query are important. These two
similarities together are a good indicator for designing ef-
fective selection strategy.

• For example organization, if the adopted LLM is powerful
enough, like GPT-4, presenting them question and SQL
query pairs is an effective yet efficient choice. Otherwise,
presenting them full information examples is suggested.

• For open-source LLM, having more parameters in LLMs
benefits to Text-to-SQL task, but the training corpus plays
a more crucial role. Besides, supervised fine-tuning is nec-
essary and has considerable potential in Text-to-SQL task.

There are also some limitations in this paper. We fine-tune open-
source LLMs with only the Spider training set, and additional Text-
to-SQL data would further enhance LLMs. Besides, the databases in
Spider and Spider-Realistic may be not large enough, and we believe
some new challenges in effectiveness and efficiency will emerge
if there are a mass of tables in Text-to-SQL task. Furthermore, the
current evaluationmetric prioritizes correctness over efficiency, and
promoting LLM to generate efficient SQL among correct alternatives
remains an important, unexplored question. We will keep working
on these limitations and open questions.

6 CONCLUSIONS
In this paper, we conduct a systematical study on LLM-based Text-
to-SQL from aspects of prompt engineering and supervised fine-
tuning.We point out that existing in-context learning techniques for
Text-to-SQL neglect the mapping between questions and queries,
as well as the trade-off between example quality and quantity. To
address these issues, we proposed DAIL-SQL, which refreshes the
Spider leaderboard with 86.6% execution accuracy and ranks the
first place. Regarding supervised fine-tuning, we demonstrate the
great potentials of open-source LLMs for Text-to-SQL, underline
the importance of training corpus and model scaling, and point out
the degeneracy of in-context learning capability after fine-tuning.
Further, we conduct an observation over existing solutions in terms
of efficiency.All of these are open challenges and opportunities for
future study. We hope that our work can provide a comprehen-
sive study about Text-to-SQL, give some guidelines for real-world
applications, and help people advance its frontiers.

REFERENCES
[1] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom

Henighan, Andy Jones, Nicholas Joseph, Benjamin Mann, Nova DasSarma, Nel-
son Elhage, Zac Hatfield-Dodds, Danny Hernandez, Jackson Kernion, Kamal
Ndousse, Catherine Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A General Language Assistant as
a Laboratory for Alignment. CoRR abs/2112.00861 (2021).

[2] LILY Group at Yale University. 2018. Spider 1.0, Yale Semantic Parsing and
Text-to-SQL Challenge. https://yale-lily.github.io/spider.

[3] Christopher Baik, Zhongjun Jin, Michael J. Cafarella, and H. V. Jagadish. 2020.
Duoquest: A Dual-Specification System for Expressive SQL Queries. In Proceed-
ings of the 2020 International Conference on Management of Data. 2319–2329.

[4] Ursin Brunner and Kurt Stockinger. 2021. ValueNet: A Natural Language-to-
SQL System that Learns from Database Information. In 37th IEEE International
Conference on Data Engineering. 2177–2182.

[5] Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang, Zijian Li, and Zhihao
Liang. 2018. An Encoder-Decoder Framework Translating Natural Language
to Database Queries. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence. 3977–3983.

[6] Shuaichen Chang and Eric Fosler-Lussier. 2023. How to Prompt LLMs for Text-
to-SQL: A Study in Zero-shot, Single-domain, and Cross-domain Settings. CoRR
abs/2305.11853 (2023).

[7] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with
90%* ChatGPT Quality. https://lmsys.org/blog/2023-03-30-vicuna/

[8] Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Recent Advances in Text-to-
SQL: A Survey of What We Have and What We Expect. In Proceedings of the 29th
International Conference on Computational Linguistics. 2166–2187.

[9] Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2021. Structure-Grounded Pretraining for
Text-to-SQL. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
1337–1350.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 4171–4186.

[11] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, Lei Li, and Zhifang Sui. 2023. A Survey for In-context Learning.
CoRR abs/2301.00234 (2023).

[12] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Lu Chen, Jinshu
Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT. CoRR
abs/2307.07306 (2023).

[13] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2023. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. CoRR abs/2308.15363 (2023).

[14] Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng Wang, Zhihua Wen, Kang
Yang, and Ting Wang. 2023. A Case-Based Reasoning Framework for Adaptive
Prompting in Cross-Domain Text-to-SQL. CoRR abs/2304.13301 (2023).

[15] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. In Proceedings of the 57th Conference of the
Association for Computational Linguistics. 4524–4535.

[16] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In The 10th International Conference on Learning Representa-
tions.

[17] Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin, Yanyang Li, Bowen Li,
Jian Sun, and Yongbin Li. 2022. S2SQL: Injecting Syntax to Question-Schema
Interaction Graph Encoder for Text-to-SQL Parsers. In Findings of the Association
for Computational Linguistics. 1254–1262.

[18] George Katsogiannis-Meimarakis and Georgia Koutrika. 2023. A Survey on Deep
Learning Approaches for Text-to-SQL. VLDB J. 32, 4 (2023), 905–936.

[19] Anirudh Khatry, Joyce Cahoon, Jordan Henkel, Shaleen Deep, K. Venkatesh
Emani, Avrilia Floratou, Sumit Gulwani, Vu Le, Mohammad Raza, Sherry Shi,
Mukul Singh, and Ashish Tiwari. 2023. From Words to Code: Harnessing Data
for Program Synthesis from Natural Language. CoRR abs/2305.01598 (2023).

[20] Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. KaggleD-
BQA: Realistic Evaluation of Text-to-SQL Parsers. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing. 2261–2273.

[21] Haoyang Li, Jing Zhang, Cuiping Li, andHong Chen. 2023. RESDSQL: Decoupling
Schema Linking and Skeleton Parsing for Text-to-SQL. In 37th AAAI Conference
on Artificial Intelligence. 13067–13075.

[22] Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei
Huang, Wenyu Du, Luo Si, and Yongbin Li. 2023. Graphix-T5: Mixing Pre-trained

Transformers with Graph-Aware Layers for Text-to-SQL Parsing. In 37th AAAI
Conference on Artificial Intelligence. 13076–13084.

[23] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma,
Guoliang Li, Kevin Chen-Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin
Li. 2023. Can LLM Already Serve as A Database Interface? A BIg Bench for
Large-Scale Database Grounded Text-to-SQLs. CoRR abs/2305.03111 (2023).

[24] Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu. 2023. A Comprehensive
Evaluation of ChatGPT’s Zero-Shot Text-to-SQL Capability. CoRR abs/2303.13547
(2023).

[25] Hu Liu, Yuliang Shi, Jianlin Zhang, Xinjun Wang, Hui Li, and Fanyu Kong. 2023.
Multi-hop Relational Graph Attention Network for Text-to-SQL Parsing. In
International Joint Conference on Neural Networks. 1–8.

[26] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2022. What Makes Good In-Context Examples for GPT-3?. In Pro-
ceedings of Deep Learning Inside Out: The 3rd Workshop on Knowledge Extraction
and Integration for Deep Learning Architectures. 100–114.

[27] Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang,
Arman Cohan, and Dragomir Radev. 2023. Enhancing Few-shot Text-to-SQL
Capabilities of Large Language Models: A Study on Prompt Design Strategies.
CoRR abs/2305.12586 (2023).

[28] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
[29] OpenAI. 2023. Introducing ChatGPT. https://openai.com/blog/chatgpt. Last

accessed on 2023-07-24.
[30] OpenAI. 2023. Rate limits. https://platform.openai.com/docs/guides/rate-limits/

overview. Last accessed on 2023-07-24.
[31] OpenAI. 2023. SQL translate. https://platform.openai.com/examples/default-sql-

translate. Last accessed on 2023-07-24.
[32] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, LukeMiller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training Language Models to Follow Instructions with Human Feedback. In
NeurIPS.

[33] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru,
Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb Dataset for Falcon LLM: Outperform-
ing Curated Corpora with Web Data, and Web Data Only. CoRR abs/2306.01116
(2023).

[34] Octavian Popescu, Irene Manotas, Ngoc Phuoc An Vo, Hangu Yeo, Elahe Kho-
rashani, and Vadim Sheinin. 2022. Addressing Limitations of Encoder-Decoder
Based Approach to Text-to-SQL. In Proceedings of the 29th International Confer-
ence on Computational Linguistics. 1593–1603.

[35] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed
In-Context Learning of Text-to-SQL with Self-Correction. CoRR abs/2304.11015
(2023).

[36] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Yu Cheng, Chenghu Zhou,
Xinbing Wang, Quanshi Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
Relational Structures into Pretrained Seq2Seq Model for Text-to-SQL. In Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing.
3215–3229.

[37] Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying
Geng, Rongyu Cao, Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022. A Sur-
vey on Text-to-SQL Parsing: Concepts, Methods, and Future Directions. CoRR
abs/2208.13629 (2022).

[38] Abdul Quamar, Vasilis Efthymiou, Chuan Lei, and Fatma Özcan. 2022. Natural
Language Interfaces to Data. Found. Trends Databases 11, 4 (2022), 319–414.

[39] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluating
the Text-to-SQL Capabilities of Large Language Models. CoRR abs/2204.00498
(2022).

[40] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton-
Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code. CoRR
abs/2308.12950 (2023).

[41] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 9895–9901.

[42] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi
Dalmia, Greg Stager, Ashish R. Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++: Natural Language Querying for Complex Nested
SQL Queries. Proc. VLDB Endow. 13, 11 (2020), 2747–2759.

[43] Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha,
Pengcheng Yin, and Tomas Pfister. 2023. SQL-PaLM: Improved Large Language
Model Adaptation for Text-to-SQL. CoRR abs/2306.00739 (2023).

https://yale-lily.github.io/spider
https://lmsys.org/blog/2023-03-30-vicuna/
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/guides/rate-limits/overview
https://platform.openai.com/docs/guides/rate-limits/overview
https://platform.openai.com/examples/default-sql-translate
https://platform.openai.com/examples/default-sql-translate

[44] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[45] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. CoRR
abs/2302.13971 (2023).

[46] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem
Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael, Smith Ranjan, Subramanian Xiaoqing, Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. LLAMA2:
Open Foundation and Fine-Tuned Chat Models. CoRR (2023).

[47] Immanuel Trummer. 2022. CodexDB: Synthesizing Code for Query Processing
from Natural Language Instructions Using GPT-3 Codex. Proceedings of the VLDB
Endowment 15, 11 (2022), 2921–2928.

[48] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. 7567–7578.

[49] LihanWang, Bowen Qin, Binyuan Hui, Bowen Li, Min Yang, BailinWang, Binhua
Li, Jian Sun, Fei Huang, Luo Si, and Yongbin Li. 2022. Proton: Probing Schema
Linking Information from Pre-trained Language Models for Text-to-SQL Parsing.
In The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
1889–1898.

[50] XuezhiWang, JasonWei, Dale Schuurmans, Quoc V. Le, EdH. Chi, SharanNarang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. In The Eleventh International
Conference on Learning Representations.

[51] Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. 2018.
SQL-to-Text Generation with Graph-to-Sequence Model. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. 931–936.

[52] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 8413–8426.

[53] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R.
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 3911–3921.

[54] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large
Language Models. CoRR abs/2303.18223 (2023).

[55] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-
Bench and Chatbot Arena. CoRR abs/2306.05685 (2023).

[56] Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun Wang, and Changshan Li.
2022. HIE-SQL: History Information Enhanced Network for Context-Dependent
Text-to-SQL Semantic Parsing. In Findings of the Association for Computational
Linguistics. 2997–3007.

[57] Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic Evaluation for Text-to-SQL
with Distilled Test Suites. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. 396–411.

[58] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

	Abstract
	1 Introduction
	2 Preliminary
	3 Methodology
	3.1 Question Representation
	3.2 In-Context Learning for Text-to-SQL
	3.3 DAIL-SQL
	3.4 Supervised Fine-Tuning for Text-to-SQL

	4 Experiment
	4.1 Setting
	4.2 Question Representations
	4.3 In-Context Learning for Text-to-SQL
	4.4 Supervised Fine-Tuning for Text-to-SQL
	4.5 Token Efficiency

	5 Discussion
	6 Conclusions
	References

