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ABSTRACT
Efficient query optimization is crucial for database management

systems. Recently, machine learning models have been applied in

query optimizers to generate better plans. Despite such learned

query optimizers have shown superiority in some benchmarks, un-

predictable performance regressions prevent them from being truly

applicable. To be more specific, while a learned query optimizer

commonly outperforms the traditional query optimizer on aver-

age for a workload of queries, its performance regression seems

inevitable for some queries due to model under-fitting and difficulty

in generalization. In this paper, we propose a system called Eraser
to resolve this problem. Eraser aims at eliminating performance

regressions while still attaining considerable overall performance

improvement. To this end, Eraser applies a two-stage strategy to

estimate the model accuracy for each candidate plan, and helps

the learned query optimizer select more reliable plans. The first

stage serves as a coarse-grained filter that removes all highly risky

plans with feature values that are seen for the first time. The second

stage clusters plans in a more fine-grained manner and evaluates

each cluster according to the prediction quality of learned query

optimizers for selecting the final execution plan. Eraser can be

deployed as a plugin on top of any learned query optimizer. We

implement Eraser and demonstrate its superiority on PostgreSQL

and Spark. In our experiments, Eraser eliminates most of the re-

gressions while bringing very little negative impact on the overall

performance of learned query optimizers, no matter whether they

perform better or worse than the traditional query optimizer. Mean-

while, it is adaptive to dynamic settings and generally applicable to

different database systems.
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1 INTRODUCTION
Query optimization plays a crucial role in database management

systems. The goal of query optimizer is to find an optimal execution

plan that minimizes a user-specified cost metric, e.g., the query exe-

cution time or resource usage. Traditional query optimizers rely on

a cost-based model that estimates the cost of execution plans based

on simple statistics and experience-driven rules [32]. However, the

estimated costs are often shown to have large errors [11, 14, 20, 35],

due to unrealistic independence assumptions or over-simplified

models, which heavily degrade the generated plan quality.

Recently, there has been an active line of works using learned

optimizers to improve query optimization [5, 24, 25, 27, 41, 42, 45].

These optimizers apply machine learning (ML) models to learn from

data and/or queries to generate better execution plans. The pipeline

of a learned query optimizer often includes two main steps. First,

it generates a number of candidate plans P𝑄 by some exploration

strategy. Second, all candidate plans 𝑃 ∈ P𝑄 are fed into an ML

model to predict its cost 𝐶 (𝑃). The plan 𝑃𝑟 ∈ P𝑄 that minimizes

the predicted cost is selected to execute.

Challenges of Learned Query Optimizer. Despite the promis-

ing results of learned query optimizers have been shown in the liter-

ature [10, 24, 45], they still suffer inevitable drawbacks that prevent

them from being truly applicable. Specifically, the executed plans

selected by the learned query optimizer may be worse, sometimes

even seriously worse, than the traditional native query optimizer.

This phenomenon is called performance regression, and has been

observed in all learned query optimizers [5, 24, 25, 27, 41, 42, 45].

The learned models can not accurately predict the exact cost of

some data due to numerous reasons, such as the inherent difficulty

of the learning problem [20, 26, 45], the low generalization ability of

the prediction model on new data, the under-fitting on training data

due to insufficient training data, loss of features, noisy labels and

inappropriate model training methods. Due to such intrinsic draw-

backs, the performance regressions of learned query optimizers

seem inevitable, no matter how we improve the models in learned

query optimizers. This is very harmful, or even unacceptable, to

database systems which require high stability.
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In the literature, there exists very little work on eliminating the

performance regression, especially on learned query optimizer [46].

[21] and [18] propose methods to enhance the robustness in dy-

namic settings by updating models in the proper time. They are

post-processing methods but do not detect and eliminate regression

before query execution. [42] tries to reduce the regression using

the ensemble methods [4, 13, 19, 36, 39], but it is time-consuming

and often falsely filters some truly good plans. As far as we know,

until now, this problem has not been well solved.

Our Contributions. In this paper, we try to tackle this problem in

a novel way. Notably, the benefits and risks of the learned models

always come together. Our goal is not to eliminate any possible

regression (which degenerates to the traditional query optimizer),

but to eliminate it to a low level while still attaining considerable

performance improvement. To this end, we design a system called

Eraser, which can be deployed as an external plugin on top of any

existing learned query optimizer. Eraser can be tuned to eliminate

its performance regression while bringing minimal impact on its

performance benefit.

The key to eliminate the performance regression is to identify

whether the predicted cost is accurate for each candidate plan. Based

on this, we can filter out all highly risky candidate plans but reserve

those with high prediction accuracy for plan selection. However,

learning the exact prediction accuracy is very challenging, which

is as difficult as learning the accurate cost of each plan [11, 14, 20,

26, 35]. In Eraser, we try to simplify the learning tasks while still

preserving enough knowledge for plan identification.

Specifically, Eraser adopts a two-stage strategy for plan identifi-

cation. The first stage serves as a coarse-grained filter that qualita-

tively removes all highly risky plans. We observe that the prediction

models are very likely to performworse on planswith feature values

not occurring in the training data, due to their low generalization

ability. These plans are called unexpected plans. To detect how the

model behaves w.r.t. each feature value, we design an unexpected
plan explorer to divide the unexpected plan space into a number of

subspaces, each with one or more unseen feature values. Then, we

generate plans in a small number of representative subspaces. Based

on the model evaluation results on these plans, we can classify all

subspaces into precise and imprecise. All candidate plans fall into

the imprecise subspace would be filtered.

In the second stage, we learn a segment model to process the

remaining plans in a more fine-grained manner. We observe that

the performance of the prediction model is highly skewed, since it is

under-fitting for some plans. To this end, the segment model groups

plans into a number of clusters and associates each cluster with a

reliability interval reflecting the quality of the estimation results.

Based on the reliability interval, we design a plan selection method

to balance the risk of regressions and the loss of benefits. Both the

unexpected plan explorer and the segment model are lightweight.

Through comprehensive evaluations, we find that when the

learned query optimizer performs worse, i.e., even 1.1× to 2.9×
than the traditional query optimizer, Eraser can help to improve

its performance to be comparable with the traditional query op-

timizer. When the learned query optimizer performs better than

the traditional query optimizer, Eraser makes little influence on

its performance. Eraser is adaptive to balance regression risks

and improvement impacts to attain the best overall performance

in both static and dynamic settings. Meanwhile, Eraser exhibits

good generality to different underlying learned query optimizers

in [5, 42, 45] and different DBMSes, i.e., PostgreSQL and Spark [43].

Our main contributions are summarized as follows:

1) We propose a general framework subsuming existing learned

query optimizers. Based on this, we rigorously define the perfor-

mance regression elimination problem on the learned query opti-

mizer.

2)We design Eraser, a system that can be deployed on top of any

learned query optimizer to eliminate its performance regression

while preserving its performance benefit.

3) We conduct extensive experiments to evaluate the perfor-

mance of Eraser in different settings.

2 PRELIMINARIES
In the traditional query optimizer, such as the one in PostgreSQL,

for any input SQL query𝑄 , all candidate plans are often enumerated

using dynamic programming. Then, a basic cost model is applied for

plan selection. It relies on estimated cardinality, which is often gen-

erated by simple statistical methods such as histogram or sampling,

and experience-driven rules to predict the cost of each candidate

plan. Let 𝐶 (𝑃) and 𝐶 (𝑃) denote the exact and estimated cost of

query plan 𝑃 , respectively. The cost 𝐶 (𝑃) is a user-specified metric,

e.g., execution time or I/O throughput, regarding the efficiency of

executing 𝑃 . Finally, the plan 𝑃𝑏 with the minimum estimated cost

is returned for execution.

Recently, a number of learned query optimizers [5, 24, 25, 41,

42, 45] are proposed to provide instance-level query optimization.

Their procedures can be generalized into a unified framework with

two main steps. For the input query 𝑄 , a learned query optimizer

first generates a set of candidate plans P𝑄 = {𝑃0, 𝑃1, . . . , 𝑃𝑘 } using
some plan exploration strategies. Then, a learned risk model 𝑀𝑟 ,

i.e., a complex ML-based model, is applied for plan selection. 𝑀𝑟

can predict the goodness of each plan in P𝑄 in terms of 𝐶 (𝑃). The
best plan 𝑃𝑟 ∈ P𝑄 minimizing 𝐶 (𝑃) is selected for execution. We

note that different learned query optimizers, including Neo [25],

Balsa [41], Bao [24], HyperQO [42], Lero [45], PerfGuard [5] and

some other works [12, 16, 26, 28, 33, 47], apply different plan ex-

ploration strategies and risk models, but they can all be subsumed

under this framework. Due to space limits, we defer the details to

Appendix A in the full version [40].

Problem Statement. The plan 𝑃𝑟 selected by the above learned

query optimizer is often shown to have a better performance than

𝑃𝑏 . However, it may suffer a heavy performance regression on some

queries due to numerous reasons: 1) the candidate set P𝑄 does not

contain plans better than 𝑃𝑏 ; 2) the risk model can not generalize

well on new data/workload, especially in dynamic settings; and

3) the risk model is under-fitting on the training data owing to

loss of features, noisy labels, insufficient training data, bad hyper-

parameters or inappropriate training optimizers.

Let Pr𝑄 be the distribution of all SQL queries occurring for a data-

base. Let Q be a workload where each query𝑄 ∈ Q occurs with the

probability Pr𝑄 . Formally, a learned query optimizer learned_opt in
our framework generates an execution plan 𝑃𝑟 for a query 𝑄 ∈ Q

𝑃𝑟 ← learned_opt(P𝑄 , 𝑀𝑟 )



by enumerating candidate plans P𝑄 and selecting the best one

based on a learned risk model 𝑀𝑟 . In practice, the risk model 𝑀𝑟

is often trained on a workloadW ⊆ Q, so the regression is often

more serious for query 𝑄 ∈ Q −W.

Our goal is to find other plans to replace 𝑃𝑟 with fewer or no re-

gressions before execution. Here, we assume the plan 𝑃𝑏 output by

the native traditional query optimizer is in P𝑄 . A performance elim-

ination method perf_elim can be interpreted as a plugin function

(in any learned optimizer learned_opt) which filters out unreliable

candidates and selects a different plan 𝑃 ′𝑟

𝑃 ′𝑟 ← perf_elim(learned_opt(·),P𝑄 , 𝑀𝑟 ).
Let R and B denote the overall performance regression and

benefit over all queries in Q, respectively. They are computed as

R =
∑︁

𝑄∈Q: 𝐶 (𝑃𝑟 )>𝐶 (𝑃𝑏 )
(𝐶 (𝑃𝑟 ) −𝐶 (𝑃𝑏 )) (1)

and

B =
∑︁

𝑄∈Q: 𝐶 (𝑃𝑟 )≤𝐶 (𝑃𝑏 )
(𝐶 (𝑃𝑏 ) −𝐶 (𝑃𝑟 )). (2)

Let R′ and B′ denote the overall performance regression and ben-

efit by replacing all selected plans 𝑃𝑟 with 𝑃 ′𝑟 in Eq. (1) and Eq. (2),

respectively. After the replacement, there may exist a positive im-

pact on the performance regression and simultaneously a negative

impact on the performance benefit. Obviously, R − R′ and B − B′
represent the decline in the performance regression and benefit,

respectively. We aim at finding a performance elimination method

perf_elim that is able to eliminate regressions but brings little im-

pact on the benefits. Formally, our problem is stated as follows:

Performance Regression Elimination Problem
Input: a learned query optimizer learned_optwith its risk model

𝑀𝑟 trained on a workloadW ⊆ Q and a parameter 𝜆 ≥ 0 ;

Output: a performance elimination method perf_elim such that

R′ − R + 𝜆(B − B′) is minimized.

Here, 𝜆 balances the decline on the regression (R − R′) and the

loss of the benefit (B−B′). A small value of 𝜆, e.g., 𝜆 = 0.8 in our ex-

periments, emphasizes filtering out risky plans, even at the expense

of removing some good plans. It can be applied when the learned

risky models are not very accurate due to scarce training data or

varied workloads. Whereas, a large value of 𝜆 encourages perf_elim
to improve the benefit by reserving more plans. We recommend

using it when the learned models are more accurate with suffi-

cient training data and stable workloads. Due to space limits, we

reserve the discussion on tuning hyper-parameter 𝜆 in Appendix B

and the analysis of existing solutions for eliminating performance

regressions in Appendix C in the full version [40].

3 SYSTEM OVERVIEW
The fundamental reason arising the performance regression is that

the risk model can not accurately predict the cost of some plans,

due to the lack of generalization ability and/or model under-fitting.

Thus, the key to eliminate the performance regression is to identify

the prediction accuracy for each plan, so that we can filter out all

highly risky plans and only reserve those with high prediction accu-

racy for plan selection. However, existing learned query optimizers
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Figure 1: The system architecture and pipeline of Eraser.
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Figure 2: Prediction quality (reliability) of the risk model
in Lero on plans of the TPC-H benchmark. All plans in the
high-dimensional feature space are mapped onto the two-
dimensional space using the t-SNE method in [37].
often provide very little knowledge on the prediction accuracy of

plans. Meanwhile, it is very difficult (or even impossible) to learn

the exact prediction accuracy of each plan, which is as challenging

as learning the accurate cost of each plan [24, 26, 42].

To this end, we design other tasks that are much easier but

still preserve enough information to identify truly good plans. We

design a system, called Eraser, to eliminate regression of learned

query optimizer. The architecture, as well as its pipeline, is shown

in Figure 1.

Notably, Eraser could be deployed on top of any learned opti-

mizer, as long as it satisfies our proposed framework in Section 2,

to eliminate its performance regression while reserving the perfor-

mance improvement. Given a query 𝑄 , we first collect the plan 𝑃𝑏
generated by the traditional query optimizer and candidate plans

P𝑄 produced by the plan exploration strategy in the learned query

optimizer. Later, Eraser adopts a two-stage strategy to identify

another plan 𝑃 ′𝑟 to execute. Its main idea is discussed as follows.

Main Idea of the Strategy in Eraser.We have some basic obser-

vations on the prediction quality of risk models. We illustrate

them by an example in Figure 2. Specifically, we employ the t-

SNE [37] method to map plans in the TPC-H benchmark [7] onto

a two-dimensional space. Each dimension is a snapshot of some

dimensions in the plan feature space. Then, we mark all plans

whose reliability (a metric of the prediction quality, see details in

Section 5.3) is larger than or no more than the threshold 0.7 (se-

lected by our expert knowledge) in red and green color, respectively.

Notice that, the phenomenon shown in Figure 2 arises from the

intrinsic drawbacks of most ML models. Thus, it is also applicable

to other learned query optimizers and benchmarks. We find that:



1) Figure 2(a) shows the performance on plans for queries 𝑄 ∈
Q−W. We call these plans unexpected plans as they contain feature
values not occurring in the training data. Obviously, the risk model

performs badly on most of the unexpected plans, due to its low

generalization ability. Therefore, in the first stage, we design an

unexpected plan explorer to systematically investigate the space

of all unexpected plans to quantitatively evaluate the performance

of the risk model. Based on it, we could filter all highly risky plans in

P𝑄 at the front in a coarse-grained manner, which largely reduces

the burden of downstream procedures.

2) Figure 2(b) illustrates the performance on remaining plans for

queries 𝑄 falls intoW and a small portion of unexpected plans

where the risk model could generalize well. At this time, the per-

formance of the risk model is highly skewed. The plans naturally
form different clusters. Some of them contain purely accurate or

inaccurate plans, but some clusters, e.g., the cluster in the left bot-

tom, contain a mixture of both accurate and inaccurate plans. This

is because the risk model does not have enough capacity to fit well

on all plans. It is under-fitting for some subspaces of plans. To

distinguish them, we apply a segment model to cluster plans in a

more fine-grained manner. Meanwhile, we associate each cluster

of plans with an interval of reliability, which reflects the range of

the prediction quality of the risk model on these plans.

Based on the reliability interval, we could further filter some

unpromising plans with low prediction accuracy. We design a plan

selection method in Eraser to select the final execution plan 𝑃 ′𝑟 .
This method could balance the benefit of improvements and the risk

of regressions. For example, in a conservation scenario, we only

reserve plans with high reliability, which may miss some improve-

ment opportunities but could reduce the regression to a very low

level. In an aggressive scenario, we could relax the risk constraint to

pursue more possible improvements. After the plan 𝑃 ′𝑟 is executed
by the query execution engine, we collect its execution statistics to

periodically update the plan exploration strategy and risk model

in the original learned query optimizer, and simultaneously the

unexpected plan explorer and segment model in Eraser.
In the following content, we introduce the technical details of

the unexpected plan and the segment model (together with the plan

selection method) in Section 4 and Section 5, respectively.

4 UNEXPECTED PLAN EXPLORER
In this section, we present the details on investigating the space of

unexpected plans. We propose a method that hierarchically divides

these unexpected plans into a number of subspaces according to the

domain of features. Then, we select a small number of unexpected

plan subspaces and generate some plans in each subspace. Based

on these plans, we know how well the risk model performs in any

unexpected plan subspace. In the following, Section 4.1 introduces

the basic plan encoding method. Section 4.2 describes the main

framework of our space division method. Then, Section 4.3 and

Section 4.4 discuss two key techniques applied in our framework.

4.1 Plan Encoding Method
In this paper, we consider the SQL query 𝑄 in the following form:

SELECT ∗ FROM 𝑇1, . . . ,𝑇𝑚WHERE 𝐽1, . . . 𝐽𝑚−1 AND 𝐸1, . . . , 𝐸𝑛 .

Here, each 𝑇1≤𝑖≤𝑚 refers to a table in the database, each 𝐽1≤ 𝑗≤𝑚−1
stands for a join relation, e.g., equal or non-equal join, between

any two columns in tables, and each 𝐸1≤ℓ≤𝑛 represents a filtering

predicate on a column. Notice that we do not consider any feature

related to the projection columns and nested SQL queries. However,

our proposed encoding and division methods can be easily extended

to support these queries.

A physical plan 𝑃 of 𝑄 can be represented as a binary tree struc-

ture, as the example shown in Figure 3. In the plan tree, each leaf

node has a scan operation on a table with its filtering predicate,

and each inner node has a join operation with the join relation

across two tables. Notably, the information of query 𝑄 is losslessly

contained in the plan 𝑃 .

Feature Selection. In the literature work [24, 25, 41, 42, 45], the

query plans are featured as vectors and fed into the risk model for

cost prediction. We conceptually divide frequently-used features

into two types: the plan-level features and the data-level features.

The plan-level features, such as the join relations, filtering predi-

cates and operator types, affect the execution behaviors of plans

on the database execution engine. The data-level features, such as

the estimated cardinality and data distribution, provide additional

statistical information to measure the execution cost. The learned

query optimizers require sufficient information to predict the plan

execution time. Therefore, they apply both plan-level and data-level

features to characterize the execution behavior and cost of plans.

However, the goal of Eraser is different. It aims at clustering the

plans and then evaluating the prediction accuracy of the learned

models on each cluster of plans. (refer to details in Section 4.2 and

Section 5). Thus, the plan-level features are more important as

they are more comprehensive to distinguish different plans in a

macro-view. Since Eraser does not require predicting the execution
cost, the data-level features are not very necessary. By our expert

knowledge, we consider the following widely used features:

1) join and scan type: two categorical features indicating the types
of all join and scan operators used in the query plan. For exam-

ple, assume that the DBMS supports three types of join operators,

namely merge_join (MJ), hash_join (HJ) and nested_loop_join (LJ),

then the value of the join type has seven different values, where

each corresponds to a non-empty subset of {MJ, HJ, LJ }. For the plan

shown in Figure 3, the value of the join type is {MJ, HJ}. Notice that,

we only consider the scan type and can support the scan operator

on any number of columns.

2) join relations: a vector encoding the existence of join relations

occurred in the query plan. The set of all possible join relations

across any two tables is provided by users or found by an auto-

exploration method proposed in [44]. We use a binary variable to

encode the existence of each join relation in the vector.

3) filtering predicate: a vector encoding the filtering condition on

each column (attribute). Specifically, we represent the predicate on

each column 𝐶 in a canonical form 𝑙 ≤ 𝐶 ≤ 𝑢 and record the two

endpoints 𝑙 and 𝑢 in the vector. Let 𝑙𝑏 and 𝑢𝑏 denote the lower and

upper bound of 𝐶 , respectively. Other forms of the predicates can

be equivalently converted into this form as

(𝐶 ≤ 𝑢) → (𝑙𝑏 ≤ 𝐶 ≤ 𝑢), (𝐶 ≥ 𝑙) → (𝑙 ≤ 𝐶 ≤ 𝑢𝑏),
(𝐶 < 𝑢) → (𝑙𝑏 ≤ 𝐶 ≤ 𝑢 − 𝜖), (𝐶 > 𝑙) → (𝑙 + 𝜖 ≤ 𝐶 ≤ 𝑢𝑏),
(𝑙 < 𝐶 < 𝑢) → (𝑙 + 𝜖 ≤ 𝐶 ≤ 𝑢 − 𝜖), where 𝜖 → 0

+ .
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In our implementation, we divide the domain of each continuous

attribute to a number of small intervals, so 𝜖 can be set to a value

smaller than the range of each divided interval.

4) structure: a categorical variable indicating the shape of the

plan tree. Each value corresponds to a specific form of the plan

ignoring the physical operator type and filtering predicates on all

nodes (as they have been encoded in other features). For example,

Figure 3 lists several possible structures, e.g., bushy tree, left-deep

and right-deep, on plans joining 4 tables.

A complete example of our plan encoding is shown in Figure 3.

Notice that, our plan encoding method is independent of the risk

model. Meanwhile, it is flexible enough to be extended to support

other new features to enhance the capability of Eraser. Specifi-
cally, for each new plan-level or data-level feature, we model it as a

categorical or continuous variable. Then, we process all categorical

features, such as GROUP BY and ORDER BY operators, in a similar

way to the join type feature. For all features with continuous values,

we process them in a similar way to the filtering predicate. It is

important to highlight that the features of Eraser are independent
of the learned query optimizer. Thus, even if certain features can-

not be covered by Eraser, it still has the capability to effectively

eliminate regressions.

The effectiveness of our selected features is verified by the ex-

perimental results in Section 6. We also note that the impact of

each plan-level feature may be different for Eraser. It is worth
investigating which subset of features plays the most important

role in distinguishing plans. However, this topic falls within the

realm of feature engineering and goes beyond the scope of this

paper. We reserve it as an important direction in our future work.

4.2 Division Method Framework
Next, we consider how to investigate the performance of the risk

model over unexpected plans. To balance efficiency and accuracy,

we propose a very general framework. It hierarchically divides the

plan space into a number of subspaces and generates plans in some

representative subspaces to evaluate the model performance.

Without loss of generality, let 𝐹1, 𝐹2, . . . , 𝐹𝑛 denote a number of

features of query plans encoded by us. For each feature 𝐹𝑖 , we denote

its domain as 𝐷𝑖 . Let 𝑆𝑖 and𝑈𝑖 denote all values of 𝐹𝑖 occurring and

unseen in the training workloadW, respectively. For a plan 𝑃 , if 𝑃

contains any unseen value 𝑑𝑖 ∈ 𝑈𝑖 of any feature 𝐹𝑖 , we call 𝑃 an

unexpected plan. Obviously, the feature spaceU of all unexpected

plans isU = (𝐷1 × 𝐷2 × · · · × 𝐷𝑛) − (𝑆1 × 𝑆2 × · · · × 𝑆𝑛).
Each point 𝑝 = (𝑑1, 𝑑2, . . . , 𝑑𝑛) ∈ U refers to all plans having

value𝑑𝑖 for feature 𝐹𝑖 . To investigate the model performance on any

unexpected plan, we need to evaluate the performance of the risk

model on each point. However, this is very costly as the unexpected

plan space contains |U| = ∏
𝑖 |𝐷𝑖 | −

∏
𝑖 |𝑆𝑖 | points. For continuous

features such as the filtering predicate, their domains are divided

into a number of small intervals, and |𝐷𝑖 | refers to the number of

divided intervals. This size grows exponentially w.r.t. the number of

features and |𝐷𝑖 − 𝑆𝑖 | is very large for some attributes, i.e., filtering

predicates.

To address this problem, we design a new algorithm by selecting

a small number of representative unexpected plans. Our method

arises from two fundamental observations:

1) We observe that if the risk model in the learned query opti-

mizer can not perform well on plans with only one single unseen

value 𝑑𝑖 ∈ 𝑈𝑖 of feature 𝐹𝑖 , it is highly likely to perform worse

on plans with unseen values on more features. This is reasonable

as the bad performance implies that the model does not acquire

enough knowledge to process value 𝑑𝑖 on 𝐹𝑖 , even with the help of

other features 𝐹 𝑗 where 𝑗 ≠ 𝑖 . At this time, providing other unseen

values 𝑑 𝑗 to the model would certainly not contribute, but degrade

its performance.

2) The risk model may have similar prediction accuracy for

nearby value𝑑𝑖 , 𝑑
′
𝑖
∈ 𝐷𝑖 of the continuous feature 𝐹𝑖 . This is because

these plans may have similar actual values and estimated values.

This implies that we can group nearby unseen values together to

further reduce the evaluation cost.

Algorithm Description. Based on these observations, we present

our method in the Algorithm Plan_Space_Division. Notably, our di-
vision method splits each feature independently. For each feature 𝐹𝑖
with its unseen domain𝑈𝑖 , we split𝑈𝑖 into a number of smaller and

disjoint subset𝑈 1

𝑖
,𝑈 2

𝑖
, . . . ,𝑈 𝑘

𝑖
and call the Procedure Recur_Split to

recursively divide each subset (line 5 in the Algorithm). In general,

we apply three methods for division (line 10 in the Procedure). For

domain𝑈𝑖 with categorical value, if |𝑈𝑖 | is smaller than a threshold,

we set each subset𝑈
𝑗
𝑖
to contain a singleton value in𝑈𝑖 ; otherwise,

we randomly split each value𝑈𝑖 into two subsets 𝑈
1

𝑖
and𝑈 2

𝑖
. For

domain 𝑈𝑖 with continuous value, we binary split 𝑈𝑖 into two sub-

sets 𝑈 1

𝑖
and 𝑈 2

𝑖
with equal size. Obviously, the division of 𝑈𝑖 forms

a hierarchical structure. We can control the splitting granularity to

balance the evaluation efficiency and accuracy.

The Recur_Split process terminates if |𝑈 𝑗
𝑖
| is smaller than a user-

specified threshold (line 1). For each 𝑈
𝑗
𝑖
without further splitting,

we then generate a number of plans falling into this subspace,

namely 𝑆1 × · · · × 𝑆𝑖−1 ×𝑈 𝑗
𝑖
× 𝑆𝑖+1 × · · · × 𝑆𝑛 . Then, we evaluate

the risk model performance using these plans (lines 2–3). If the

model can not perform well, we mark all points 𝑝 in the unexpected

plan space U whose feature value of 𝐹𝑖 falling into 𝑈
𝑗
𝑖
, namely

𝑝 ∈ 𝐷1 × · · · × 𝐷𝑖−1 ×𝑈 𝑗
𝑖
× 𝐷𝑖+1 × · · · × 𝐷𝑛 , as imprecise (line 5

by our first observation). Otherwise, we mark all points 𝑝 in the

evaluated subspace as precise (line 7).

Note that, for each 𝑈
𝑗
𝑖
, we examine all points in the subspace

𝑆1 × · · · × 𝑆𝑖−1 × 𝑈 𝑗
𝑖
× 𝑆𝑖+1 × · · · × 𝑆𝑛 altogether. Since each 𝑈

𝑗
𝑖



contains at least one element in𝑈𝑖 , the number of the subspaces is

at most

∑
𝑖 |𝑈𝑖 |, which is much less than the number of all points

(

∏
𝑖 |𝐷𝑖 | −

∏
𝑖 |𝑆𝑖 |) in the space. Meanwhile, as we only need to

examine the performance of risk models on each subspace, we do

not need to generate a large number of plans. In our experiments,

we show that we only need to generate a small number of queries

to evaluate model performance. In the following, we introduce

our implementations on generating plans for evaluation in each

subspace (in Section 4.3) and evaluating the model performance (in

Section 4.4).

4.3 Plan Generation Method
We design a method to manually generate a number of new plans

having unseen value on one feature in four steps. Remarkably, we

use the hints on DBMS to control the join/scan operators used in

the plan and the join order between tables. They are supported by

popular DBMS such as PostgreSQL, MySQL and SQL Server. We

can set the hint command to enable/disable certain operators, e.g.,

enable only merge_join and hash_join, or specify the join order,

e.g., join 𝑇𝑎 with 𝑇𝑏 then 𝑇𝑎 with 𝑇𝑐 , before the plan generation.

The process is as follows:

• First, we obtain a join form as the template for query generation.

For each join relation 𝐹𝑖 , if the generated unexpected plan space

requires the only unseen value occurring in 𝑑𝑖 of 𝐹𝑖 , we pick

its value 𝑑𝑖 from 𝑈𝑖 . Otherwise, the value 𝑑𝑖 of 𝐹𝑖 must contain

seen values, so we randomly sample 𝑑𝑖 ∈ 𝑆𝑖 . We continue the

following steps if the obtained join form is valid across tables.

• Second, we attach filtering predicates on each column (attribute).

For each filtering predicate 𝐹𝑖 , we also pick 𝑑𝑖 from𝑈𝑖 if 𝐹𝑖 is the

required unseen value. Otherwise, we randomly sample 𝑑𝑖 ∈ 𝑆𝑖
such that the two endpoints 𝑙 and𝑢 satisfy 𝑙 ≤ 𝑢. Then, we obtain

a valid query 𝑄 for further plan generation.

• Third, we specify the structure of the generated plan 𝑃 of 𝑄 .

Similarly, we pick a possible structure shape 𝑑𝑖 from 𝑈𝑖 if the

structure 𝐹𝑖 is the required unseen value. Otherwise, we ran-

domly sample a seen structure shape 𝑑𝑖 ∈ 𝑆𝑖 for 𝑄 . Then, we

randomly select a join order between tables in 𝑄 according to 𝑑𝑖
and set the hint into DBMS according to the join orders.

• Fourth, we restrict the set of available join/scan types. If the

join/scan type 𝐹𝑖 is required to be unseen, we pick 𝑑𝑖 from 𝑈𝑖 .

Otherwise, we randomly select a seen set 𝑑𝑖 ∈ 𝑆𝑖 of join/scan

types for 𝑃 . Then, we set the hint on available operators into

DBMS based on 𝑑𝑖 .

After that, we ask the native query optimizer to generate the plan

𝑃 for query 𝑄 and collect such plans for model evaluation.

4.4 Model Performance Evaluation
After obtaining a number of generated unexpected plans in each

subspace, we then consider how to evaluate the performance of

the risk model. In the literature work, the risk model can be either

a pointwise regression model [24, 42] or a pairwise classification

model [5, 45]. We process it in different ways.

If the risk model is pointwise, it takes a plan 𝑃 as input and

predicts its estimated time 𝐶 (𝑃) to approximate the exact time

Algorithm Plan_Space_Division(𝐹1, . . . , 𝐹𝑛 , 𝐷1, . . . , 𝐷𝑛 ,𝑈1, . . . ,𝑈𝑛 )
1: for each 1 ≤ 𝑖 ≤ 𝑛 do
2: 𝑆𝑖 ← 𝐷𝑖 −𝑈𝑖
3: end for
4: for each feature 𝐹𝑖 do
5: Recur_Split(𝐹𝑖 ,𝑈𝑖 , 𝐷1, . . . , 𝐷𝑛 , 𝑆1, . . . , 𝑆𝑛 )
6: end for

Procedure Recur_Split(𝐹𝑖 ,𝑈𝑖 , 𝐷1, . . . , 𝐷𝑛 , 𝑆1, . . . , 𝑆𝑛 )
1: if |𝑈𝑖 | is smaller enough according to feature 𝐹𝑖 then
2: generate plans falling into 𝑆1 × · · · × 𝑆𝑖−1 ×𝑈 𝑗

𝑖
× 𝑆𝑖+1 × · · · × 𝑆𝑛

3: evaluate model performance using generated plans

4: if the model perform bad then
5: mark all points 𝑝 ∈ 𝐷1 × · · · × 𝐷𝑖−1 ×𝑈 𝑗

𝑖
× 𝐷𝑖+1 × · · · × 𝐷𝑛 as imprecise

6: else
7: mark all points 𝑝 ∈ 𝑆1 × · · · × 𝑆𝑖−1 ×𝑈 𝑗

𝑖
× 𝑆𝑖+1 × · · · × 𝑆𝑛 as precise

8: end if
9: else
10: divide𝑈𝑖 into disjoint subset𝑈 1

𝑖
,𝑈 2

𝑖
, . . . ,𝑈𝑘

𝑖

11: for each𝑈 𝑗
𝑖
where 1 ≤ 𝑗 ≤ 𝑘 do

12: Recur_Split(𝐹𝑖 ,𝑈 𝑗
𝑖
, 𝐷1, . . . , 𝐷𝑛 , 𝑆1, . . . , 𝑆𝑛 )

13: end for
14: end if

𝐶 (𝑃). We define the accuracy metric 𝑒 (𝑃) of the plan 𝑃 as

𝑒 (𝑃) = min( |𝐶 (𝑃)
𝐶 (𝑃) − 1|, UB) (3)

Here, the UB is an upper bound to prevent severe prediction bias of

a part of plans to dominate the average error ratio. We set it to 2 by

a grid search method in our experiments. We compute the average

ratio 𝑒 (𝑃) of all unexpected plans generated for the subspace. We

always have 𝑒 (𝑃) ∈ [0,UB]. We mark the subspace as precise if

𝑒 (𝑃) is less than a threshold 𝛼 and imprecise otherwise. Notice

that, the hyper-parameter 𝛼 is tuned to be proportional to the input

parameter 𝜆, as large 𝛼 can filter out more risky plans.

When the risk model is pairwise, it takes a pair of plans 𝑃, 𝑃 ′

and outputs a binary label to indicate which plan is better. For such

models, we directly apply the pairwise accuracy w.r.t. the relative

order to measure the model performance. Specifically, for each plan

𝑃 in the subspace, we consider all other plans 𝑃 ′ and collect pairs

of plans (𝑃, 𝑃 ′). We then compute 𝑒 (𝑃) as the proportion of pairs

where the risk model accurately finds the better plan. We mark the

subspace using a threshold 𝛼 on the average value 𝑒 (𝑃) in the same

way.

5 SEGMENT MODEL AND PLAN SELECTION
After filtering all unexpected plans where the risk model is highly

likely to perform badly, we next discuss how to process the remain-

ing plans in the whole place space in this section. At this time,

we need to process each plan in a more fine-grained manner to

filter unpromising plans. By our observations, the performance of

the risk model is different for different regions in the plan space.

Therefore, we design a segment model to cluster plans according to

model performance and associate each cluster with the reliability

interval for plan selection. We introduce the segment model de-

sign and training details in Section 5.1 and Section 5.2, respectively.

Then, Section 5.3 presents the method for plan selection.

5.1 Segment Model Design
We discuss how to design the segment model in this subsection,

including the loss function and the model structure.

Loss Function. Formally, let 𝑠 be a possible segment model that

divides the plan space into multiple non-overlapping subspaces
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Figure 4: The example of the segment model.The left part is the plan classification process based on their structure. The middle
part is the plan featurizer. The right part is a forest, where each tree represents the clustering model for a specific structure.

G = {𝐺1,𝐺2, . . . ,𝐺𝑘 }. Recall thatR andB (orR′ andB′) denote the
regression and benefit before (or after) applying our segment model

and plan selection method (discussed in Section 5.3). By Section 2,

our goal is, after clustering the remaining plans, to balance the risk

of regressions and the benefit of improvements in the plan selection

stage. To this end, we train the segment model with the following

loss function.

𝐿(𝑠) = log(R′−R)+𝜆(B−B′))+𝜆1 |G|+𝜆2
∑︁
𝑖

max(𝜎−|𝐺𝑖 |, 0) . (4)

Here, the first term is our goal on minimizing the performance

regression elimination problem (see Section 2). The second term

penalizes the clustering granularity on the number of groups. The

third term penalizes the number of plans in each group where 𝜎 > 0

is a hyper-parameter to restrict the minimum number of plans in

each group. We do not encourage too many clusters and too few

plans in each group to avoid over-fitting.

Model Structure. We have several fundamental requirements for

the segment model. First, it should be lightweight as the segment

model would be frequently retrained when the risk model is signif-

icantly updated. Second, the behavior of the segment model should

be deterministic and better to be explainable. This is because the

behavior of the deepmodel is often uncertain [38]. As we try to elim-

inate its performance regression, it is better not to bring additional

uncertainty w.r.t. downstream models. Otherwise, it is difficult to

analyze whether the additional error of the segment model would

reduce or enlarge the regression. To this end, we pursue a tradi-

tional statistical model rather than a deep model, whose training

cost is often higher and behavior is often highly uncertain.

Our learning task resembles the classification process of the

decision tree, which recursively splits the training data according

to their labels using different features. We borrow this idea to design

our segment model with two critical differences.

First, training our segment model is an unsupervised task. The

decision tree is split to minimize the classification error. Whereas,

our splitting criteria is to minimize the loss function in Eq. (4). The

details are elaborated in the following Section 5.2.

Second, the structure of the plan tree is very diversified, which

makes it difficult to be encoded as a vector having a fixed length.

To address this problem, existing deep models [24, 25, 45] encode

the feature of each node and then generate the tree-level encoding

using a convolution operation [27]. Obviously, this method is not

applicable to our segment model. Another possible way is to com-

press all node-level vectors into a tree-level vector using a bit-wise

sum or mean value [8]. However, this would lose the structural

information. In our design, we maintain a forest where each tree

focuses on clustering plans having a specific form of structure. This

structure is defined as the simplified logical plan tree, which con-

sists of logical operators (e.g., join and scan), while ignoring the

specific physical operator type (e.g., hash join or seq scan), filtering

predicates, and other details. It is important to note that “ignoring”

is only applied to define the plan structure. We will apply these

features to build our segment model.

Figure 4 illustrates an example of our segment model, where

we list several possible plan structures in the left part. The feature

vector of each plan shown in the middle part is obtained by concate-

nating the encoding vector on all nodes. Specifically, for all inner

nodes with join operation, we encode the join operator type and the

join relation as categorical variables. For all leaf nodes with scan

operation, we encode the scan operator type and the scanned table

as categorical variables. Meanwhile, we also encode the filtering

predicate, which includes the column, the operator type and the

filtering value. For each type of tree structure, we build the decision

tree model using the encoded plans as shown in the right part.

5.2 Model Training
We train the segment model using the set of plans P𝑆 . It contains
all candidate plans for the queries 𝑄 in the training workloadW,

i.e.,

⋃
𝑄∈W (P𝑄 ∪ {𝑃𝑏 }). Thus, P𝑆 is a snapshot of the remaining

plans filtered by the unexpected plan explorer. For each kind of plan

structure, the tree-based segment model is constructed in the same

manner. We present the model training method in the Algorithm

Model_Construction. First, we collect all plans P𝑁 ⊆ P𝑆 with this

kind of structure (line 2) and maintain it in the root node (line 3).

Then, the algorithm calls the Procedure Model_Train() to build the

decision tree in a recursive manner (line 4).

Specifically, in the Procedure Model_Train(), let 𝑓𝑖 denote the
𝑖-th feature in the plan’s encoding vector. Let 𝑓𝑖, 𝑗 denote the 𝑗-th

value of the feature 𝑓𝑖 . For each possible 𝑓𝑖, 𝑗 , we split P𝑁 into P𝐿
and P𝑅 on the left and right child according to 𝑓𝑖, 𝑗 and compute

the loss (lines 2–3). That is, we select another execution plan 𝑃 ′𝑟
to replace the original execution plan 𝑃𝑟 using the plan selection

method (discussed in Section 5.3) based on this tree structure. Then,

we compute the new regression R′ and the new benefit B′ using
all plans 𝑃 ′𝑟 . We select the best splitting feature value 𝑓 ∗

𝑖, 𝑗
that mini-

mizes the loss function defined in Eq. (4) (line 5). It is applied to split

the set of plans P𝑁 (lines 6–7). If 𝑓𝑖 is a categorical variable, P𝐿



AlgorithmModel_Construction(P𝑆 )
1: for each kind of structure do
2: collect P𝑁 ⊆ P𝑆 with this kind of structure

3: set P𝑁 to be the root node of the decision tree

4: Model_Train(𝑓1, 𝑓2, . . . , 𝑓𝑡 , P𝑁 )
5: end for

ProcedureModel_Train(𝑓1, 𝑓2, . . . , 𝑓𝑡 , P𝑁 )

1: for each 𝑓𝑖,𝑗 do
2: split P𝑁 into P𝐿 and P𝑅 by 𝑓𝑖,𝑗
3: compute the loss using the current tree structure

4: end for
5: find the feature value 𝑓 ∗

𝑖,𝑗
with the minimum loss

6: get P𝐿 and P𝑅 by 𝑓 ∗
𝑖,𝑗

7: set P𝐿 and P𝑅 to be the left and right child of P𝑁
8: if | P𝐿 | is less than the pre-defined threshold then
9: set P𝐿 to be a leaf node

10: else
11: Model_Train(𝑓1, 𝑓2, . . . , 𝑓𝑡 , P𝐿 )
12: end if
13: if | P𝑅 | is less than the pre-defined threshold then
14: set P𝑅 to be a leaf node

15: else
16: Model_Train(𝑓1, 𝑓2, . . . , 𝑓𝑡 , P𝑅 )
17: end if

contains all plans having value 𝑓 ∗
𝑖, 𝑗

on feature 𝑓𝑖 . Otherwise when 𝑓𝑖

is a continuous variable, P𝐿 contains all plans whose feature value

of 𝑓𝑖 is no more than 𝑓 ∗
𝑖, 𝑗
. Then we set P𝑅 = P𝑁 − P𝐿 . After that,

the procedure works in a recursive manner. It splits all plans in the

parent node into two children each time using the best splitting

feature value (lines 11 and 16). To avoid over-fitting, we terminate

the splitting process when the number of plans on the current node

is less than a pre-defined threshold (lines 8 and 13), typically, 5% of

the training data size.

Remarkably, the three features, i.e., column, operator and filter-

ing predicate, are dependent. That is, different columns (attributes)

would have different filtering operators and predicates. We add a

constraint that the filtering operators and predicate can only be

selected as the splitting condition if the corresponding column has

been applied for the split in the ancestors.

5.3 Plan Selection Method
Based on the segment tree model, we introduce how to select a final

execution plan in this subsection. According to how the risk model

is designed in existing learned query optimizer [5, 24, 25, 41, 42, 45],

we process it in different ways.

When the risk model is a pointwise regression model, for each

candidate plan 𝑃 , we try to find the corresponding tree model for

𝑃 according to its plan structure. If we have not trained a model

for such a structure, it implies we have very limited knowledge of

it, so we safely skip plan 𝑃 to avoid risk or accept plan 𝑃 to attain

potential benefit. Otherwise, in this model, there must exist a leaf

node having plans P𝐿 such that 𝑃 is assigned into P𝐿 . We define

a reliability value 𝑟 (𝑃) for each plan 𝑃 . We prefer to utilize 𝑟 (𝑃)
to reflect the error ratio between estimated and actual cost. Thus,

we directly define 𝑟 (𝑃) = min(𝐶 (𝑃 )
𝐶 (𝑃 ) ,UB). The UB serves a similar

purpose as in 𝑒 (𝑃). Then, we filter plans according to the reliability
interval of plans in P𝐿 .

Specifically, let 𝑑 (P𝐿) = max𝑃∈P𝐿 𝑟 (𝑃) −min𝑃∈P𝐿 𝑟 (𝑃) denote
the width of the reliability interval of plans in P𝐿 . If 𝑑 (P𝐿) is
smaller than a user-specified threshold 𝛽 , it indicates the reliability

of plans in P𝐿 are very similar. By our observations in Figure 2(b),

at this time, the plans in P𝐿 have similar levels of accuracy, i.e., they

may all be accurately or inaccurately learned together. Therefore,

we trust this reliability value. Let 𝑟 (P𝐿) be the average reliability
value of plans in P𝐿 . We correct the predicted cost𝐶 (𝑃) to𝐶′ (𝑃) =
𝐶 (𝑃)/𝑟 (𝑃). Otherwise, when 𝑑 (P𝐿) is larger than 𝛽 , it indicates the

range of the reliability value is not tight. At this time, it implies

that this group of plans may not have similar accuracy levels, such

as the cluster in the left bottom in Figure 2(b). Therefore, we filter

this candidate plan 𝑃 as we do not have confidential information

to correct its estimated cost. After the correction, we select all

remaining plans 𝑃 with the minimum𝐶′ (𝑃) to execute. Users could
adjust the threshold 𝛽 to balance the potential benefit and regression

risk.

When the risk model is a pairwise classification model, it takes

a pair of plans 𝑃, 𝑃 ′ and outputs which plan is better in terms of

their cost. At this time, if we can not find the trained model for any

of them, we also skip comparing 𝑃 and 𝑃 ′ to avoid risk. Otherwise,

we find the segment model, as well as the leaf node P𝐿 and P′
𝐿

for plans 𝑃 and 𝑃 ′, respectively. Then, we collect all pairs of plans
(𝑃1, 𝑃2) such that 𝑃1 ∈ P𝐿 and 𝑃2 ∈ P′𝐿 . Let 𝑟 (P𝐿,P

′
𝐿
) denote

the portion of pairs that the risk model can accurately find the

better plan. 𝑟 (P𝐿,P′𝐿) can also indicate the confidence of the risk

model on these plans. Similarly, we trust the risk model if 𝑟 (𝑃, 𝑃 ′) is
larger than a user-specified threshold 𝛽 . At this time, we think plan

𝑃 surpasses 𝑃 ′ if the risk model predicts plan 𝑃 to be better and

vice versa. Otherwise, we do not trust the risk model and ignore

the comparison results between 𝑃 and 𝑃 ′. Finally, the plan 𝑃 that

surpasses the most number of other plans is selected to execute.

6 EVALUATION RESULTS
In this section, we conduct experiments to comprehensively in-

vestigate the performance of our Eraser system. Specifically, our

experiments aim to answer the most crucial questions as follows:

• When Eraser is deployed on top of the existing learned query

optimizer, how much performance regression can it eliminate,

and howmuch impact it may cause to the benefit? (in Section 6.2)

• Can Eraser adapt well in dynamic settings? (in Section 6.3)

• How much contribution does each component in Eraser make

in eliminating performance regression? (in Section 6.4)

• What is the impact of the parameters 𝜆, 𝛼 and 𝛽? (in Section 6.5

and Section 6.6)

6.1 Experimental Setup
Baselines.We use three representative learned query optimizers

in our experiments. Specifically, HyperQO [42] and Lero [45] are

two learned query optimizers using pointwise and pairwise risk

models, respectively. HyperQO applies the ensemble method to

eliminate regression. They have been shown to perform better than

Bao [24]. Besides, Lero is shown to perform better than Balsa [41].

Therefore, we do not apply Bao, Balsa and Neo [25] (which performs

even worse than Bao) in our experiments. PerfGuard [5] is a

learned query optimizer that supports any plan generation strategy.

We also use Lero’s plan exploration strategy to generate plans for

PerfGuard. We implement HyperQO, Lero and PerfGuard using



source code in [1], [2], and [3], respectively. Notably, these learned

query optimizers are primarily designed forPostgreSQL. Therefore,
we deploy all of them on the native query optimizer of PostgreSQL.

For each learned query optimizer, we deploy Eraser on top of

it. We denote the resulting query optimizer as HyperQO-Eraser,
Lero-Eraser and PerfGuard-Eraser, respectively.
Benchmarks.We evaluate the performance of all query optimizers

on four benchmarks widely used in the literature [24, 25, 42, 45].

We summarize their statistical information in Appendix D [40] due

to space limitations. Each benchmark contains a number of tables

and query templates with various types of joins. We generate a

training and testing workload for each benchmark. In each work-

load, each time we randomly pick a query template, and then attach

some randomly generated predicates to it. Notably, for TPC-H and

TPC-DS, we select 14 and 49 templates in all the templates for query

generation. The other templates contain complex features such as

nested SQL queries or views that are not supported by HyperQO

or Lero. The TPC-DS benchmark is mainly used for experiments

on a distributed database Spark. The remaining ones are used for

experiments on PostgreSQL (in Section 6.2 to Section 6.5). In ad-

dition, to demonstrate the effectiveness of Eraser for eliminating

performance regression in a more fine-grained manner. We have

introduced two new test sets, FAST-IMDB and SLOW-IMDB, which

consist of the top 30% and last 30% SQL queries, respectively, ob-

tained by sorting the full test set based on the execution time of

plans generated by PostgreSQL.

Evaluation Methods and Metrics. Following [24, 45], we evalu-
ate all learned query optimizers in two scenarios. In the first sce-

nario, we evaluate their stable performance. At this time, the learned

query optimizers are trained on a number of training queries. Then,

we investigate their performance on the test workload with the sta-

ble learned models. In the second scenario, we simulate a real-world

environment to test its online performance. At this time, all learned

query optimizer starts with randomly initialized models. Then, the

learned query optimizer processes each training query online one

by one and retrains its model using all observed queries after see-

ing every 100 queries. In our experiments, we report the average

end-to-end (e2e) plan execution time of each query, which includes

the plan generation and selection time of the original learned query

optimizer, the plan examination and selection time of Eraser and

the physical plan execution time.

Parameters. For HyperQO, Lero and PerfGuard, we use the same

default hyper-parameters in the original paper. For our Eraser, we
set the input parameter 𝜆 = 0.8 on all benchmarks. This choice

makes the best trade-off between regression and improvement

to attain the lowest overall execution time. In each benchmark,

we generate 200 queries to evaluate model performance to filter

unexpected plans. We tune the hyper-parameters 𝛼 for filtering

unexpected plans and 𝛽 for filtering unreliable plans in Eraser
using grid search to attain the best overall performance.

Environments.All experiments are conducted on a Linuxmachine

with an Intel(R) Xeon(R) Platinum 8163 CPU running at 2.5 GHz,

96 cores, 768GB DDR4 RAM and 2TB SSD. Eight NVIDIA Tesla

V100-SXM2 GPUs are equipped for model training and inference.

The version of PostgreSQL is 12.1, which is configured with 4GB

shared buffers.

6.2 Performance of Eraser
6.2.1 Performance with Stable Models. We train each learned query

optimizer on the 25%, 50%, 75% and 100% data of each training work-

load and then test it on the test workload, respectively. This can

reflect the generalization ability of learned query optimizers on

queries with unseen feature values. Figure 5 shows the average exe-

cution time of all queries in the test workloads in three benchmarks.

We have the following observations:

1) Performance regressions commonly occur in learned query

optimizers, especially when the test workloads contain queries with

unseen feature values. For example, Lero, HyperQO and PerfGuard

all perform much worse than PostgreSQL unless they witness 100%

of the training data on IMDB. This indicates that eliminating the

performance regression is crucially important to improve the sta-

bility of the learned query optimizer. Meanwhile, the ensemble

method in HyperQO can not ensure to eliminate regression. The

reasons are analyzed in Appendix B in the full version [40]

2) By deploying our Eraser, almost all of the performance re-

gressions are eliminated. In all cases, when the original learned

query optimizer performs worse than PostgreSQL, Eraser can help

to improve its performance to be comparable or slightly better than

PostgreSQL. This indicates that Eraser can filter most of the un-

promising plans that are falsely predicted and selected by the risk

models in learned query optimizers.

3) When the learned query optimizers perform well, Eraser
brings very little negative impact on the performance. In all cases

when the original learned query optimizer performs better than

PostgreSQL, its execution time makes little difference, sometimes

even better, when deployedwith Eraser. This indicates that Eraser
can learn enough information to match our desired goal.

6.2.2 Extra Cost of Eraser. Table 1 shows the extra cost of Eraser
and learned query optimizers. Specifically, the extra costs incurred

by learned query optimizers include the time to generate candidate

plans and select the best one using risk models. The extra costs

incurred by Eraser include the time to examine and select plans us-

ing unexpected plan explorer and segment model components. We

note that Eraser only consumes very little extra time, i.e., 0.17𝑚𝑠

to 24𝑚𝑠 per query. In comparison to the end-to-end plan execution

time, the percentage is less than 0.001% (on TPC-H) to 0.5% (on

IMDB), which is negligible. The model training time and training

data collection time of Eraser are much smaller than the learned

query optimizers. The training data collection time of Eraser is

used to collect the execution time of the generated plans for the

unexpected plan explorer component. It is important to note that

this data collection is only performed once for each benchmark and

is independent of the learned query optimizers. Meanwhile, the

training data collection and model training are performed offline

in the background using idle resources. This makes little impact on

the online query performance. The memory cost of Eraser is less

than 0.3MB, which is totally affordable for the DBMS. Therefore,

the time and space cost to apply Eraser is very small.

6.2.3 Performance Analysis for Fast and Slow Queries. We demon-

strate the effectiveness of Eraser for eliminating performance regres-

sion in a more fine-grained manner by evaluating the performance

of these optimizers on the FAST-IMDB and SLOW-IMDB test sets.
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Figure 5: Performance of learned query optimizer with stable models.

0.25 0.5 0.75 1.0
FAST-IMDB

0.00

0.05

0.10

0.15

0.20

0.25

E2
E 

Ex
ec

ut
io

n 
T

im
e 

(s
) (

O
n 

A
ve

ra
ge

)

0.25 0.5 0.75 1.0
SLOW-IMDB

5

10

15

20

25

30

E2
E 

Ex
ec

ut
io

n 
T

im
e 

(s
) (

O
n 

A
ve

ra
ge

)

Figure 6: Performance on fast and slow queries.
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(a) IMDB with 25% training data
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(b) IMDB with 50% training data
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(c) IMDB with 75% training data
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(d) IMDB with 100% training data

Figure 7: Performance of Lero-Eraser on queries with different levels of regression.

Table 1: The cost of Eraser and learned query optimizers.
The columns labeled “w. Eraser” and “w.o. Eraser” indicate
whether or not Eraser is deployed on top of a learned query
optimizer. All risk models of learned query optimizers are
trained on 25% training data.

IMDB STATS TPC-H

Metric

Learned Query

Optimizer w. Eraser w.o. Eraser w. Eraser w.o. Eraser w. Eraser w.o. Eraser

E2E Execution

Time (ms)

(On Average)

Lero 4,237 7,802 12,228 13,421 3,469 3,500

HyperQO 4,101 5,858 11,271 12,917 4,507 4,500

Perfguard 4,198 4,699 12,240 19,783 3,460 3,428

IMDB STATS TPC-H

Metric

Learned Query

Optimizer Eraser Learned QO Eraser Learned QO Eraser Learned QO

Extra Time

Cost (ms)

(On Average)

Lero 24 201 4.5 28.8 4.1 16.5

HyperQO 2.4 34.2 0.9 12.2 0.17 21.9

Perfguard 2.0 176.8 15.3 37.9 11.1 27.3

Training

Time (s)

Lero 14.8 199 5.9 118 3.46 132

HyperQO 14.3 3157 3.45 1467 2.5 2550

Perfguard 13.2 147 4.6 89 3.4 87

Data

Collection

Time (Min)

Lero 26 260 34 1,343 63 2,106

HyperQO 26 733 34 300 63 685

Perfguard 26 / 34 / 63 /

Model

Size (MB)

Lero 0.27 1.35 0.13 1.22 0.02 1.23

HyperQO 0.28 16.7 0.14 16.29 0.01 6.5

Perfguard 0.27 16 0.08 1.3 0.02 1.3

Each learned query optimizer is trained with different proportions

of the IMDB training data, and the results are presented in Figure 6.

We have the following observations:

1) Performance regression often occurs when the learned query

optimizer is not trained on the full 100% training set. This suggests

that the risk model is easy to make imprecise predictions when the

test and training sets are not from the same distribution. Conse-

quently, an approach that can effectively eliminate performance

regression is crucial.

2) Eraser demonstrates its ability to eliminate a significant por-

tion of performance regression in both FAST-IMDB and SLOW-

IMDB test sets. These results indicate that Eraser is not sensitive
to the complexity of SQL queries and is suitable for a wide range

of diverse SQL workloads.

By showcasing these fine-grained experiments, we provide strong

evidence of the effectiveness of Eraser in mitigating performance

regression and its suitability for optimizing various SQL queries.

6.2.4 Analysis of Regression Elimination. To present more details,

we present the effects of Eraser on queries with different levels

of regression. On the IMDB benchmark, we divide all test queries

𝑄 with regressions according to the ratio of the regression time,

i.e., (𝐶 (𝑃𝑟 ) −𝐶 (𝑃𝑏 ))/𝐶 (𝑃𝑏 ). The results of Lero and Lero-Eraser
that are trained on 25%, 50%, 75% and 100% of the IMDB training

data are shown in Figure 7. Notice that the goal of Eraser is to

balance the regression and the improvement to attain the best

overall performance on all queries. Therefore, when models are

trained using different volumes of data, Eraser will automatically

adapt and exhibit varying behaviors:

1) In Figure 7 (a), (b) and (c), the model in the learned query

optimizer is trained on the part of the training data. Thus, the model

will encounter a number of plans having unseen feature values

during the testing stage, and select a large number of plans with

heavy regression. For such a scenario, the overall performance of

the learned query optimizer is worse than the baseline PostgreSQL.

At the time, Eraser will focus more on filtering these unexpected

plans with high risks to ensure the learned query optimizer keeps

comparable performance with PostgreSQL. The number of filtered

plans is 57, 59 and 54 in Figure 7 (a), (b) and (c), respectively.

2) In Figure 7 (d), the model is trained on all data, and the over-

all performance of the learned query optimizer is better than the

baseline. At this time, Eraser would be more concerned with bal-

ancing the regression elimination and impact on the improvement.

Therefore, it only filters a small number of queries, i.e., only 28 in

Figure 7 (d), to avoid affecting the overall performance. As a result,

some query plans with large regression ratios may not be filtered

by Eraser. For example, Eraser chooses to retain all plans that

have a regression ratio exceeding 100%. Notably, in our Eraser
method, we remove all plans in a subspace together (see technical

details of the unexpected plan explorer in Section 4 and segment

model in Section 5). Therefore, removing these plans with signifi-

cant regressions may also result in the removal of other more plans

in the same subspace with substantial performance benefits. As a



result, Eraser prefers to retain all plans in the subspace. Notably,

although Eraser keeps more queries with large regression ratios,

the overall performance of the learned query optimizer becomes

better. This adaptiveness ensures Eraser to make the best trade-off

to attain better overall performance.

6.2.5 Performance Curve since Deployment. We show the perfor-

mance curve since deployment in the online evaluation scenario.

Figure 8 shows the performance of all learned query optimizers on

IMDB and TPC-H. The results on STATS are similar. We make the

following observations:

1) When the learned query optimizer consistently performs

worse than PostgreSQL, e.g., HyperQO and PerfGuard on IMDB,

Eraser can help to eliminate the regressions and attain compa-

rable performance w.r.t. PostgreSQL. On the contrary, when the

learned query optimizer consistently performs better than Post-

greSQL, e.g., PerfGuard on TPC-H, Erasermakes very little impact

on its performance. Once again, this verifies its effectiveness.

2) In other cases, the learned query optimizer can perform better

than PostgreSQL after only seeing enough training queries, e.g.,

Lero on TPC-H and IMDB. Eraser can still eliminate the regression

at the very early stage and bring non-negative, even possible good

(e.g., Lero on TPC-H), impact at the later stage. This once again

verifies the adaptiveness of Eraser to risk models with different

performances in different stages.

Meanwhile, we find that in both evaluation scenarios, Eraser
can work well on different learned query optimizers with different

risk models. This is due to the models in Eraser are totally inde-

pendent of the underlying systems, so they are applicable to any

learned query optimizer. Furthermore, the other methods, such as

the ensemble method in HyperQO, can not effectively eliminate

performance regression.

Due to space limits, we put more experiments in terms of Eraser
into Appendix E in the full version [40]. First, we compare the

performance of Eraser with another technical routine to eliminate

regression by enlarging the training workload in Appendix E.1.

Second, we investigate the effects of the splitting granularity in

the unexpected plan explorer on the performance of Eraser in

Appendix E.2. Third, we investigate the performance of Eraser on

distributed databases, i.e., Spark 3.3 [43], in Appendix E.3.

6.3 Performance on Dynamic Data
In this experiment, we evaluate the performance of Eraser in the

setting of dynamic data. To this end, we insert 50% of the data

into the database at the beginning and insert 12.5% of the data

after receiving every 25% of training queries. Figure 9(a-c) shows

the performance curve of several learned query optimizers since

deployment on the training workload of the STATS benchmark.

Figure 9(d) illustrates the performance of the stable models on

test workload. We observe that Eraser can still help to eliminate

the regression with very little impact on the improvement. This

is because both the unexpected plan explorer and segment model

in Eraser work on the space of plan features, which are totally

independent of the data distributions. As a result, Eraser is robust

to data changes.

Meanwhile, Eraser can eliminate the regression at a very early

stage. This is because the unexpected plan explorer in Eraser has

been trained on the plan space using generated queries, so the

initial performance of Eraser does not rely on training queries. In

the later stage, the segment model in Eraser is gradually updated

with the information of training queries. Therefore, Eraser can

bring a non-negative, even possibly good, impact. This verifies the

success of our design in Eraser.

6.4 Ablation Analysis
We conduct an ablation analysis to investigate the effects of each

component, namely unexpected plan explorer and segment model,

in Eraser. We attach Lero with only each component and compare

their performance. The results of stable models on test workloads

of the IMDB and TPC-H benchmarks are shown in Figure 10. We

have the following findings:

1) Each component can contribute to eliminating the perfor-

mance regression, but the effect is worse than combining them.

For example, on the IMDB benchmark with 25% training data, the

unexpected plan explorer and segment model can eliminate 68%

and 57% regression of Lero, respectively. However, by using both

components, Lero-Eraser can eliminate 96% of the regression. This

is because the two components filter plans with regressions caused

by different reasons. Unexpected plan explorer eliminates plans

with unseen features that the model can not generalize well, while

the segment model eliminates remaining plans with low prediction

accuracy.

2) Each component has little impact on the improvement of

Lero. This is because the candidate plans with benefits are often not

unexpected plans (see Figure 2(a)), which would often not be filtered

by the unexpected plan explorer. Meanwhile, the learning difficulty

of the segment model is much smaller than the risk model’s. Thus,

it is easier to attain our desired goal in loss function to balance the

regressions and benefits.

3) Figure 10(b) reports the ablation study results of Eraser on
top-30% slowest queries. We find that the observations on slow

queries are the same as other workloads. That is, the unexpected

plan explorer eliminates plans with unseen features that the model

can not generalize well, while the segment model eliminates remain-

ing plans with low prediction accuracy. This once again verifies the

effectiveness of Eraser on processing slow queries.

6.5 Effects of Parameter 𝜆
We study the effects of 𝜆 on balancing the elimination of regression

and the impact on improvement. We vary 𝜆 from 0.2 to 1.8 on

IMDB and STATS benchmarks. Figure 11 illustrates the number

of regression queries (in the left part) and average execution time

(in the right part) of the stable models in Lero-Eraser on the test

workloads. We find that:

1) By increasing 𝜆, the number of regression queries also in-

creases. This is simply because a larger 𝜆 encourages to improve

the benefits, so the segment model reserves more candidate plans.

2) For different 𝜆, the execution time may vary. By filtering

different plans, the total benefit B′ and the total regression R′
varies, so the time variance, i.e., B′ − R′ may be different. On

different datasets, the volume of B′ and R′ differs, so the varying

speed is also different. In our dataset, the execution time increases

on IMDB but tends to keep stable on STATS.
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IMDB
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(b) Lero and Lero-Eraser on
TPC-H
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(c) HyperQO and HyperQO-

Eraser on IMDB
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(d) HyperQO and HyperQO-

Eraser on TPC-H
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(e) PerfGuard and

PerfGuard-Eraser on IMDB
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(f) PerfGuard and

PerfGuard-Eraser on

TPC-HFigure 8: Performance curve of learned query optimizer since deployment.
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Figure 9: Performance of learned query optimizer on dynamic data.
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Figure 10: Ablation analysis for two components.
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Figure 11: Effects of parameter 𝜆.
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Figure 12: Effects of parameter 𝛼 and 𝛽 .

6.6 Effects of Parameters 𝛽 and 𝛼

We study the effects of 𝛼 and 𝛽 on balancing the elimination of

regression and the impact on improvement. Specifically, we vary

the parameter 𝛼 or 𝛽 from 0.1 to 0.9 and examine the average time

of Lero on the IMDB and STATS benchmarks. Figure 12 illustrates

the results. We have the following observations:

1) Increasing the value of𝛼 leads to an improvement in the overall

performance. This is because the learned query optimizer tends

to make imprecise predictions on unexpected plans. By pruning

more subspaces of such unexpected plans, we can achieve a higher

performance improvement. It is worth noting that the performance

stabilizes after 𝛼 reaches 0.7. At this time, the unexpected plan

explorer has already filtered almost all risky plans.

2) Similarly, increasing the value of parameter 𝛽 also results in

a slight performance improvement. This phenomenon reflects the

fact that the risk models exhibit poor performance on a subset of

the data. By setting a reasonable value for 𝛽 to filter out such risky

plans, we can also eliminate some performance regressions.

7 CONCLUSIONS AND FUTUREWORK
Performance regression commonly occurs in learned query opti-

mizers and has a serious impact on their applicability and stability.

In this paper, we design a system called Eraser to resolve this chal-
lenging problem. Eraser can be deployed on top of any existing

learned query optimizer to eliminate the performance regression

while preserving the performance improvement. Eraser adopts

a two-stage strategy to identify the prediction accuracy of each

plan, where the first stage qualitatively filters all unpromising plans

with high risks, and the second stage quantitatively evaluates the

prediction quality of the remaining plans. The final plan is selected

to make the best trade-off between benefit and risk. Extensive ex-

periments on different learned query optimizers in PostgreSQL and

Spark exhibit the effectiveness and generality of Eraser.
In future work, we will try to internally integrate Eraser into

the plan exploration strategy and prediction models in learned

query optimizers. Meanwhile, we consider extending Eraser to

other tasks in learned databases, such as knob tuning [17, 22, 34],

index recommendation [6, 8, 23, 29–31] and view advisor [9, 15, 48].
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