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ABSTRACT
Many machine learning techniques rely on plenty of training data.

However, data are often possessed unequally by different entities,

with a large proportion of data being held by a small number of data-

rich entities. It can be challenging to incentivize data-rich entities to

help train models with others via federated learning (FL) if there are

no additional benefits. This difficulty arises because these data-rich

entities cannot enjoy the revenue increment generated from the

improved performances on tasks controlled by data-limited entities.

In this paper, we investigate pricing mechanisms through auctions

for FL, focusing on auction scenarios with one data seller and some

data-limited entities as buyers. The mechanisms aim to account for

buyers’ performance gains from the FL and provide equitable mon-

etary compensation to the data seller. We first formulate the task as

a performance-based auction mechanism design problem and offer

a template that can accommodate multiple kinds of auctions with

different desiderata. Utilizing this template, we instantiate different

truthful strategies with different goals, including maximizing social

welfare and maximizing the seller’s profit in auctions. In addition,

considering the randomness between the model test performance

used in the auction and the actual performance in a production

environment, we provide theoretical analyses to quantify the im-

pact of the uncertainty on the social welfare or the seller’s profit

of auction mechanisms. We provide experimental results based

on two datasets with synthetic buyers’ valuation to illustrate the

truthfulness, social welfare, and data sellers’ profit.

PVLDB Reference Format:
Zitao Li, Bolin Ding, Liuyi Yao, Yaliang Li, Xiaokui Xiao, and Jingren Zhou.

Performance-Based Pricing for Federated Learning via Auction . PVLDB,

17(6): 1269 - 1282, 2024.

doi:10.14778/3648160.3648169

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/ZiTao-Li/fl_auction.

1 INTRODUCTION
Machine learning techniques have demonstrated their great capa-

bilities in accomplishing various tasks. However, data, as the fuel

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.

doi:10.14778/3648160.3648169

behind those techniques, are distributed unevenly among different

entities in practice. For instance, a large hospital in a metropolis

probably maintain a larger medical record dataset than those in a

rural area. Similarly, a general e-commerce established earlier can

gather more customer preference information than a new business

in some sub-categories. While data-rich entities can train high-

performance machine learning models with their plentiful data,

data-limited entities often struggle to obtain models with satis-

factory performance due to their limited data. Although federated

learning (FL) [28] enables cooperation among different entities with

certain data protection guarantees, most data-rich entities have lim-

ited interest in such cooperation. An important reason is that the

data-rich entities providing data in FL training (i.e., data sellers)

cannot obtain satisfactory compensation.

Some existingworks provide solutions for incentivizing data-rich

parties in a data market setting [1, 8, 10, 27, 32, 40]. Generally, the

setting assumes that some buyers want to obtain machine learning

models to accomplish some tasks but do not have data to make

such predictions. The seller can provide data and training services

to produce models sold to those buyers. Within the same setting,

the mechanisms of data markets fall into two categories.

The first category enables the data seller to produce multiple

versions of a model via quantifiable randomness to control the

model performance and lets buyers choose models with their bud-

gets [8, 32, 41]. Nevertheless, these seller-determined prices only

reflect the perceived value of data from the seller’s perspective,

which can pose certain limitations. Firstly, buyers are not guaran-

teed to truthfully provide information about their valuation for

price decisions. Secondly, pricing from the seller’s perspective fails

to capture the varying values that different buyers place on the

same set of data. Thirdly, the noisy model generation can be hard

to control and may not be applicable to all models or all tasks.

The other category of data pricing is built on auction mecha-

nisms [1] with the witness to the great success of online advertise-

ment auctions [26]. The most promising aspect of auction mecha-

nisms for pricing is that if the auction is truthful, it can incentivize

buyers to submit their true value as bids because this strategy max-

imizes their profit. Another advantage of truthful auctions is that

they provide explicit criteria for winner selection and payment

decisions, leading to optimal outcomes, such as maximizing overall

social benefit (i.e., social welfare) or maximizing the seller’s profit.

Challenges. However, some unique properties of pricing FL as a

service differentiate it from conventional auctions for other com-

modities or the data market. Auction mechanisms need to be re-

designed to make them applicable for pricing FL.
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C1. Difficulty in data valuation from buyers’ perspectives. Accurately
determining the value of the seller’s data is infeasible in FL without

first evaluating models trained with input from buyers. (i) This

scenario mirrors the data market setting, where it is impractical

to expect buyers to have prior knowledge of the true value of the

seller’s data, even when buyers are well-versed in tasks and poten-

tial profitability, because the value of the dataset directly depends

on how much the seller’s data can help improve the model, which

is hard to estimate without actually training a model. Thus, auction

mechanisms for other commodities may not be directly employed

in this setting. (ii) However, the FL setting is also different from data

markets. The sellers or brokers in the data markets can access all

data for training and testing [1, 8, 32]. It implies that data valuation

in the data market heavily relies on the honesty of sellers or bro-

kers about the model performance. In contrast, sellers and buyers

in the FL setting have their own data, which are heterogeneous in
distribution (horizontal FL) or attributes (vertical FL) and shall not
be shared directly with other entities. This implies that the model

evaluation cannot rely solely on the seller, and such evaluation

should be economical and trustworthy for all participants.

C2. Flexibility for varied constraints and desiderata in FL. The num-

ber of winners 𝐾 out of 𝑁 buyers is preset and decided by the

available slots in online advertisement auctions, while the data

market setting can have potentially unlimited winners with unlim-

ited buyers. However, different datasets in FL may have different

sharing constraints and regulations, even owned by the same orga-

nization. Pricing FL in some tasks can be between these two: there

can be a preset or variable number of winners out of 𝑁 buyers [1].

The limited buyers (and winners) setting is practical when the sold

model has timeliness properties (the value of the model diminishes

after a certain period) or needs to satisfy privacy constraints (e.g.,

the total privacy loss [15] because of the sold models needs to be

constant). If a slightly changed constraint requires a very differ-

ent auction mechanism, it may confuse the buyers and consume

additional communication and legitimization effort.

C3. Requirement of computation and mechanism efficiency in FL.
There is little concern about the computation and communication

cost in the auction for traditional commodities. Meanwhile, dif-

ferent from the data market setting where sellers or brokers may

access all data and can produce a large number of training trails, a

pricing mechanism for FL is unwelcome if it introduces significant

computation or communication overhead to the seller or buyers.

The desired computation efficiency can be: when FL training is ab-

stracted as an oracle, the number of times that the buyers have to

call the oracle should be minimized. In terms of mechanism effi-
ciency, it refers to the auction mechanism being truthful. Namely,

the optimal strategy for all buyers should be to submit their true

information (e.g., value) when bidding. This property eliminates

the need for extra efforts to explore the optimal bidding strategy,

thereby enhancing the overall efficiency of the process.

C4. Desiderata-preserving concerning the model performance dif-
ferences between the test and production environment. Traditional
auctions rely on buyers’ direct valuation of the commodities; exist-

ing works on pricing data or models rely on test performance with

observed labels. However, achieving good performance on a pre-

pared test set cannot directly translate into profit for buyers because

the profit of observed data is already realized. The performance in

a production environment with unobserved data determines the

true financial gain. As such, even if the valuation is based on test

performance and certain desiderata are achieved, analyzing the

sensitivity of these desiderata when transitioning to the production

environment remains a challenge.

Contributions. Our proposed mechanisms in this paper are built

on auctions. We consider a basic setting with only two kinds of

entities: one data seller and multiple buyers. The seller can be a data

holder or a union of data holders acting as multiple participants

in an FL training task, with whom each buyer may produce an FL

model potentially better than the buyer’s locally trained model. The

commodities in the auction are the accessibility and authorization

to the FL model. This paper aims to overcome the aforementioned

challenges, and our main contributions are as follows.

1) Problem formulation for performance-based pricing FL. We char-

acterize the problem of model-performance-based pricing FL with

realistic assumptions in Section 3. The assumptions are abstracted

based on the existing understanding of FL model performance, pri-

vacy and intellectual property protection techniques. We define the

terms necessary for performance-oriented auctions. Differences

between the auctions in the FL context and the existing auctions

are identified and discussed.

2) A flexible performance-based FL auction template. With the as-

sumptions and unique characteristics of the FL auction, we propose

a performance-based FL auction template based on our problem

formulation and assumptions to price the FL model in Section 3.

The template summarizes common information preparation steps

for auction winner decisions and payment computation. The tem-

plate is flexible in the sense that one can customize the allocation

(winner decision) and payment decision sub-procedures to instanti-

ate different truthful auction mechanisms for different desiderata,

including maximizing social welfare (Section 4) or data seller’s util-

ity (Section 5). Meanwhile, our template also ensures computation

efficiency, as only one FL training for each buyer is needed.

3) Truthful allocation-payment strategies for both limited and unlim-
ited winners cases. We propose truthful mechanisms for pricing

FL when either predefined 𝐾 out of 𝑁 buyers are granted the priv-

ilege to use the FL models (Section 4), or variable buyers can be

granted (Section 5). With the efficiency and provable (approximate)

truthfulness of our proposed mechanisms regarding both income-

improvement rate and model improvement, our proposed auction

designs resolve Challenge C1, C2 and C3.

4) Theoretical and empirical analysis on the impact of test-production
performance gap to the desiderata. While the existing works related

to pricing data solely rely on the model performance on the pre-

pared test dataset with observed labels, we provide guarantees for

the outcomes of auctions with production performance on unseen

data. In Section 4 and Section 5, we provide theoretical analyses

on how the uncertain test-production performance gap can affect

some desiderata of the auction mechanisms, including the utility

of buyers, social welfare, and seller’s profit. Additionally, we con-

duct simulations based on two real-world datasets with synthetic

bids to verify how our mechanisms perform in different desiderata.

This examination is conducted concerning both test and produc-

tion performance. These results provide theoretical and empirical

guarantees for solving Challenge C4.



2 BACKGROUND
In this paper, we consider a single-round auction setting involving

𝑁 buyers and one seller. Let 𝑣𝑖 denote the true value of per unit

commodity for buyer 𝑖 ∈ [𝑁 ]. For instance, in online keyword

advertisement auctions, the commodities refer to the advertising

slots, and the true value represents the expected profit that a buyer

can attain when a user clicks on the advertisement. The true values

𝑣𝑖 constitute private information known solely to buyer 𝑖 , and are

not available to the seller or any other buyers.

In the initial stages of auctions, buyer 𝑖 submits a bid denoted

as 𝑏𝑖 to the seller. The bid 𝑏𝑖 is not necessarily the same as 𝑣𝑖 .

We represent the vector of bids from all 𝑁 buyers as b. An auc-

tion mechanism ℳ usually comprises two important functions:

allocation and payment. The allocation function is a procedure in

which the seller selects a subset of buyers to be the winners of the

auction, denoted byℳ.Allocation(b). These winners are charged
with a specific monetary compensation when the commodities are

handed over to them, a process referred to as payment, represented
asℳ.Payment𝑖 (b) for buyer 𝑖 . Each buyer can generate a profit or

income relative to the true value and allocation results, represented

as Income𝑖 (𝑣𝑖 ,ℳ.Allocation(b)). The utility of buyer 𝑖 is defined

as the net income after payment:

𝑈𝑖 (𝑣𝑖 , b,ℳ) = Income𝑖 (𝑣𝑖 ,ℳ.Allocation(b)) −ℳ.Payment𝑖 (b).

The seller usually does not charge buyers who do not win any

commodities in the auction, but losers also do not receive the

commodities. In essence, if ℳ.Allocation𝑖 (b) = 0, then both

Income𝑖 (𝑣𝑖 ,ℳ.Allocation(b)) andℳ.Payment𝑖 (b) are zero.
Two of the most prevalent objectives for auctions are maximiz-

ing social welfare and maximizing the seller’s profit. Social wel-
fare represents the total value of all entities created via the auc-

tion, SocWel =
∑
𝑖∈[𝑁 ] Income𝑖 (𝑣𝑖 ,ℳ.Allocation(b)). In contrast,

the seller’s profit is the sum of the buyers’ payments, given by

SP =
∑
𝑖∈[𝑁 ] ℳ.Payment𝑖 (b).

We use notations with parentheses in the subscript to represent

the statistics ranks in non-increasing order. For instance, 𝑏 (𝑖 ) de-
notes the bid ranked at 𝑖 . Moreover, we use b−𝑖 to represent the

vector of bids from all buyers excluding buyer 𝑖 .

2.1 Truthfulness in Auctions
Truthfulness, also known as incentive compatibility, is among the

most desirable properties in many mechanism design problems.

This is because truthfulness ensures the efficiency of the mecha-

nism, in the sense that buyers’ utilities are maximized when they

submit their true values as bids. The variants of truthfulness include

universal truthfulness [14], truthfulness with high probability [12],

and expectation-based truthfulness [3, 4]. This paper considers

the following truthfulness definitions for both deterministic and

stochastic mechanisms.

Definition 2.1 (Truthfulness). A deterministic auction is truth-
ful if, for each buyer 𝑖 and any fixed bid values for all other

buyers, buyer 𝑖’s utility is maximized by bidding her true util-

ity value, i.e., ∀ b−𝑖 , 𝑣𝑖 ∈ arg max𝑏𝑖 𝑈𝑖 (𝑣𝑖 , {𝑏𝑖 , b−𝑖 },ℳ). A mech-

anism is truthful in expectation if a buyer always maximizes

her expected utility by bidding truthfully, i.e., ∀ b−𝑖 , 𝑣𝑖 ∈
arg max𝑏𝑖 E [𝑈𝑖 (𝑣𝑖 , {𝑏𝑖 , b−𝑖 },ℳ) ] .

The truthfulness becomes incompatible with other properties

in some scenarios. For example, [23] shows that no constant-

competitive truthful auction is envy-free. Thus, a relaxed approxi-

mate truthfulness notion is also popular.

Definition 2.2 (𝜔-approximate truthfulness). With a smaller con-

stant 𝜔 , the optimal utility in expectation of each buyer 𝑖 by ma-

nipulating her bid is at most 𝜔 better than utility of submitting the

true value as her bid, i.e., for all b−𝑖 ,

max𝑏𝑖 E [𝑈𝑖 (𝑣𝑖 , {𝑏𝑖 , b−𝑖 },ℳ) ] ≤ E [𝑈𝑖 (𝑣𝑖 , {𝑣𝑖 , b−𝑖 },ℳ) ] + 𝜔
There is usually another co-occurring property, individual ratio-

nality, to protect the interest of participants in auctions.

Definition 2.3 (Individual Rationality (IR)). A mechanism is in-

dividually rational if the expected utility of each buyer is always

non-negative, assuming this buyer reports truthfully.

2.2 Classic Auctions
Auctions for pricing FL service share some common properties with

the existing auction problems. Thus, we briefly introduce the two

most closely related auction games in this section. More details

about the mechanism and discussions will be introduced in the

context of FL auction in Section 4 and Section 5.

Auctions for search keywords advertisement. In the advertise-

ment keyword auction (or sponsored search), there are two preva-

lent ranking methods in the auction mechanisms, direct ranking

and (estimated) revenue ranking [2, 17], to assign 𝐾 advertisement

slots to buyers and charge them based on different axes.

Although direct ranking is straightforward and has been used

in auctions with other commodities, its utility depends on the cor-

relation between willingness to pay and a buyer’s relevance to

the search keywords [17]. To improve the robustness of this rank-

ing system, revenue ranking sorts the buyers considering their

click-through rate (CTR). Let CTR𝑖, 𝑗 be the CTR of buyer 𝑖 at the

𝑗-th slot and ∀𝑗 > 𝐾,CTR𝑖, 𝑗 = 0. Each buyer 𝑖 has an associated

weight 𝑤𝑖 , which can be 𝑤𝑖 = CTR𝑖,1 in the simplified Google’s

implementation. The ranking score of buyer 𝑖 is the product of the

buyer’s bid and her weight, namely𝑤𝑖𝑏𝑖 . Buyers are then sorted in

non-increasing order based on these ranking scores, and the top 𝐾

buyers win the corresponding 𝐾 slots.

Common auction payment rules building on these ranking scores

are general second price (GSP), i.e., the buyer ranking at 𝑘 ≤ 𝐾

pays the bid of ranking at 𝑘 + 1. However, GSP is not truthful when

𝐾 > 1. Thus, Aggarwal et.al [2] propose a truthful mechanism

while maintaining the revenue ranking order. Without loss of gen-

erality, we index the buyer according to their ranking score so that

𝑤𝑖𝑏𝑖 ≥ 𝑤𝑖+1𝑏𝑖+1. Its price-per-click rule is derived from Myerson’s

lemma [36] as 𝑝𝑖 =
∑𝐾
𝑗=𝑖

CTR𝑖,𝑗−CTR𝑖,𝑗+1

CTR𝑖,𝑖
𝑤𝑗+1

𝑤𝑖
𝑏 𝑗+1 . Notice that the

CTRs are considered as accurate and constant variables known to

the seller before the auction.

Digitial goods auction. Another inspiring scenario is that a seller
has an unlimited supply of a certain itemwith negligible duplication

cost (e.g., digital copies of movies). In this setting, if such an auction

aims to maximize social welfare, the seller should simply assign

the item to all buyers at no cost. A more meaningful perspective

is to maximize the seller’s profit. If the valuations of all buyers are

known to the seller, the problem becomes an optimization problem,



looking for the price to maximize the seller’s profit, i.e., max𝑝∈𝒫 𝑝×∑
𝑖 1 [𝑣𝑖 ≥ 𝑝]. However, the valuation is private information of each

buyer, so how to decide the payment is the key focus in this problem.

Naively allocating to all buyers regardless of their bids is not the

optimal profit for the seller because it can provide a strong incentive

for buyers tomanipulate bids tomaximize their utility. To solve such

a problem, two routines have been introduced, random sampling

mechanisms [6] and random price selection mechanisms [22, 23].

• Random sampling mechanisms partition buyers into two groups

randomly, search the best prices in both groups based on the bids,

and apply the price of one group to another. These mechanisms

can exclude the impact of a buyer’s bid on her own payment, so

that manipulating bids cannot bring any advantages to buyers.

• On the other hand, random price selection mechanisms, includ-

ing the well-known exponential mechanism [35, 38] in differential

privacy (DP), transform the price-decision process into stochastic.

The probability of a price being selected is positively correlated

to the seller’s profit that it can bring. However, each buyer has

a limited impact on this probability by changing her bids, so the

incentive for untruthful reports is limited.

3 GENERAL PERFORMANCE-BASED FL
AUCTION PARADIGM

The (approximate) truthful mechanisms for pricing the FL services

and their theoretical analyses in this paper are based on the follow-

ing settings and assumptions.

Auction setting. Similar to the auctions introduced in the previous

section, this scenario involves 𝑁 data-limited buyers and a single

seller. Each buyer seeks to enhance her model performance on

a specific task using an FL algorithm and the seller’s additional

data individually. As a result, if a buyer wins the auction, she will
be granted a unique FL trained model. The true value 𝑣𝑖 for a

buyer can be interpreted as the rate of increase in income versus

the improvement of buyer 𝑖’s model on a specific metric, such as

accuracy or the Area Under the Receiver Operating Characteristic

Curve (AUC-ROC). This rate for valuation is referred to hereafter as

the income-improvement rate. The true rate is considered a constant
private value to the buyer because buyers usually know the value

of their model’s per-unit improvement. For instance, based on her

business history, a buyer has records of her average income if the

model successfully identifies a new customer who wants to buy her

products. Thus, if the final model improvement in the production

environment is 𝛼𝑖 for buyer 𝑖 , then buyer 𝑖’s additional gain from

the model is 𝛼𝑖𝑣𝑖 . Analogically, a bid𝑏𝑖 > 0 represents the monetary

amount buyer 𝑖 is willing to pay for each unit of the improvement.

Assumption 1. All buyers agree on a common evaluation metric
to make the auction a fair game. The buyers also have high confidence
in their private true value 𝑣𝑖 , and 𝑣𝑖 is a constant in the auction process.
As in other auction settings, buyers do not collude with each other.

We summarize the notations used in this paper in Table 1 and

compare these concepts in the context of online search keyword

advertisement auctions and our new FL auctions.

FL setting. Our auction can be applied with either horizontal FL
(HFL) or vertical FL (VFL). In the HFL, the seller helps a buyer

improve model performance by joining FL and providing extra

data with the same attributes but collected from different users.

Symmetrically, the seller enhances a buyer’s model by introducing

extra attributes on the same set of user samples in VFL. Information

exchange occurs only between the seller and each buyer, with no

information sharing among the buyers. Notice that the seller in the

auction can be either a single data holder or a union of multiple

ones. The data holder(s) and the buyer participate in a FL course

as clients. However, we make the following assumptions on the

accessibility and cost of the FL model and the evaluation results.

Assumption 2. Buyers are granted to use the trained FL models
in production only if they are winners in the auction.

Developing the FL algorithms satisfying the above assumptions is

beyond the scope of this paper. However, it is important to note that

these assumptions are practical. The accessibility assumptions can

be fulfilled by solutions with security tools, including training tree-

based models in VFL [48], linear models in HFL [53], or adopting the

FL watermarking strategies [42] to ensure the model authorization.

• Data market v.s. pricing for FL. A significant difference is that the

data market is usually assumed to have little constraints regard-

ing data accessibility for training models [1, 8, 32]. The sellers or

brokers in the data market can access all training data without con-

cerns about computation and communication complexity or data

privacy. Data market can conduct more intricate data selection and

auction mechanisms, such as model versioning and combinatorial

auction at per-sample or per-attribute levels, but need to assume

the sellers or brokers are honest about the model performance. How-
ever, the data are owned partially by sellers and buyers in FL. They

are heterogeneous in either distribution or attributes but cannot be

shared with others directly. Thus, the model evaluation must be con-

ducted by or involved buyers, and this process must economically

support the truthfulness of the mechanism. Besides, while the data

market setting focuses on maximizing the seller’s profit exclusively

with an unlimited number of buyers, pricing for FL may need to

accommodate more diverse constraints and desiderata.

• Classic auctions v.s. pricing for FL. The existing digital goods auc-

tions [6, 35, 38] do not consider performance-based bidding, and

the buyers can value the commodities before the auction. Although

both search keywords auctions [2] and our design for FL focus on

performance-based, the accessibility of the FL models is uniform

and independent of rankings among winners (i.e., each winner will

be granted her unique FL models, which has only one version),

while the advertisement slot awarded to winners in search key-

words auctions differ by rankings (i.e., a higher spot has a higher

CTR: CTR𝑖, 𝑗 ≥ CTR𝑖, 𝑗+1). This difference requires re-designing the

auction mechanisms for FL to ensure truthfulness.

Performance assumption. In real-world applications, FL models

are evaluated on test sets, which are subsets of the observed data

before or during the auction. This evaluation introduces two prob-

lems. 1) A client’s FL model performance can be no better or even

poorer than the one of her locally trained model when the seller’s

data and the task do not match. 2) The profits or incomes from

the models typically depend on the model performance realized

on a much larger, unseen dataset (e.g., unexplored customers) in

a production environment, which is unknown to all before an FL

model is handed over to the winners. The model performances in

the production environment will not be exactly the same as the

ones on the test set and are unknown to all participants.



Table 1: Comparison between search keyword auction and FL auction. �̂� denotes the set of winners in an auction.

Auction concepts Search keyword auction (with [2]) FL auction (withℳ ∈ {K-FLA, EM,RSM})
Commodities 𝐾 advertisement slots 𝑗 ∈ [𝐾] (Limited or unlimited) improved models after FL with seller

Performance CTR𝑖, 𝑗 : CTR of buyer 𝑖 on 𝑗-th slot 𝛼𝑖 / 𝛼𝑖 : test/production performance improvement after FL

True value 𝑣𝑖 : income for buyer 𝑖 given a click happen 𝑣𝑖 : income-improvement rate

Ranking score 𝑤𝑖𝑏𝑖 , where𝑤𝑖 depends on CTR𝑖,1 𝑏𝑖𝛼𝑖

Seller’s profit (In expectation)

∑
𝑖∈�̂� 𝑝𝑖CTR𝑖,rank(𝑖 )

∑
𝑖∈�̂� ℳ.𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖 (�̂� , b)

Buyer’s utility (In expectation) ∀𝑖 ∈ �̂� , (𝑣𝑖 − 𝑝𝑖 ) × CTR𝑖,rank(𝑖 ) Income𝑖 (𝑣𝑖 , 𝛼𝑖 ,ℳ(�̂� , b)) −ℳ.Payment𝑖 (�̂� , b)
Uncertainty Both seller’s profit and buyer’s utility are in expectation

because of uncertainty of clicks.

Buyer’s utility is uncertain because of the uncertainty of

𝛼𝑖 to 𝛼𝑖 , seller’s profit is decided in the auction.

In our performance-based FL auction, we name the performance

improvement (subtracting the performance of the locally trained

model in a metric from the one of the FL model) evaluated on test

sets as test improvement and results in the production environment

as production improvement. Notably, these two improvement eval-

uation results may have subtle differences. The test-production

improvement gap may consist of multiple sources of randomness,

including but not limited to the randomness of the model empirical

error to its generalization error.

Because we can only use test improvements in the auction, but

the actual values of models depend on production improvements,

the randomness of test to production improvement can potentially

influence the desired guarantees of our mechanisms. Consequently,

it becomes essential to investigate the extent to which the truth-

fulness and other desiderata of our mechanism are sensitive to

variations in the test-production improvement gap. Despite the

complexity of the sources of the gap, we only make the following

general assumption, regardless of the source of randomness.

Assumption 3. Let 𝛼 be the model improvement evaluated on a
test set, and 𝛼 be the improvement observed in the production environ-
ment. We assume that the evaluation on the test set is representative
in the sense that 𝛼 = 𝛼 + [, where [ is a zero-mean sub-Gaussian
random noise with variance proxy parameter 𝜎2. Notice that 𝛼 and 𝛼
are not necessarily always positive.

Under the assumption of zero-mean sub-Gaussian random noise,

we can use the bounds on the tail as Pr [[ < −𝛽] ≤ 𝑒−𝛽/(2𝜎
2 )

or Pr [[ > 𝛽] ≤ 𝑒−𝛽
2/(2𝜎2 )

. In practice, if the samples in the test

set follow i.i.d. distribution as close as possible to the production

environment, the 𝜎 may converge to 0 as the number of samples in

the test set increases towards infinity. This assumption echoes many

studies on the generalization error [7, 24, 49] where empirical error

is assumed or demonstrated following sub-Gaussian distribution in

different machine learning tasks. If 𝛼 or 𝛼 > 0, the FL service helps

the client positively. The non-positive possibility is introduced to

cover the fact that collaboration in federated learning does not

always guarantee performance improvement for any one of the

participants in practice.

3.1 FL Auction Template
Considering the settings and assumptions outlined earlier, we pro-

pose a mechanism template for the FL auctions. The template guar-

antees the following properties: (1) valuation from the client’s per-

spective and based on the performance improvement of FL models;

Mechanism 1 General performance-based FL auction template

1: Bids submission: All 𝑁 buyers submit their bids 𝑏1, . . . , 𝑏𝑁 ,

for the income-improvement rate.

2: FL training & evaluation: The seller conducts FL training

with each of the 𝑁 buyers. The improvements of these 𝑁 mod-

els 𝛼1, . . . , 𝛼𝑁 are evaluated on test sets.

3: Score computation & ranking: The seller calculates and sorts
with ∀𝑖 ∈ [𝑁 ], ˆ𝜙𝑖 = 𝑏𝑖 × 𝛼𝑖 .

4: Allocation & Payment imposition: The seller applies

ℳ.Allocation andℳ.Payment sub-mechanisms to decide win-

ners and their payments.

(2) charging payments before the model is granted; (3) serving

𝑁 clients in an auction and ensuring truthfulness and different

desiderata with different allocation and payment methods for spe-

cific scenarios (e.g., a preset or a variable number of winners).

FL auction template. The template Mechanism 1 consists of four

stages: 1) bids submission, 2) FL training and evaluation, 3) score

computation and ranking and 4) allocation and payment imposing.

1) Bid submission as participation intention. In the first stage, buyers

submit their bids indicating their interest in the auction. By design,

this bid 𝑏𝑖 > 0 represents the valuation of the income-improvement

rate if the buyer 𝑖 is truthful.

2) Training and evaluation before deciding the winners and payments.
In the second stage, the seller conducts FL training with each buyer,

but the buyers do not share information with each other. The seller

follows the training protocols decided by the buyers, including

the algorithms, initial models, and hyper-parameters, but does not

provide guarantees that the FL models are better than the buyers’

local models. After all models are trained and evaluated, the seller

can obtain model improvement 𝛼𝑖 corresponding to each buyer

𝑖 ∈ [𝑁 ] on a test set for the ranking. This information is used

in allocation and payment imposing in the following stage. The

seller conducts FL with all buyers at this stage because obtaining a

relatively accurate estimate for performance improvement via FL

without actual training is hard, because performance improvement

highly depends on the correlation of the seller’s and buyer’s data

and the suitability for the task.

3) Ranking score computation. In the third stage, a buyer’s ranking

score is computed as the product of her model improvements after



FL training and submitted bid. The intuition of the performance-

based ranking score definition is that with a performance improve-

ment on the test dataset, the seller can estimate the true value of

the FL via this improvement and the buyer’s truthful bid. If the

buyer submits the bid truthfully, 𝑏𝑖 = 𝑣𝑖 , then the ranking score

is an estimate of income the buyer can make with the FL model

on the test set. This design of ranking score can reduce the risk

to buyers of overestimating/underestimating the value of FL and

encourage truthful bidding.

4) Allocation and payment imposition. The fourth stage, including

the sub-mechanism of allocation strategies and payment strategies,

are the key components to ensure the auctionmechanism is truthful.

We will introduce different mechanismsℳ ∈ {K-FLA, EM,RSM}
in Section 4 and 5, depending on whether there is a restriction on

the number of reveal models.

Remark 1. The auction involves one seller and 𝑁 buyers. However,

the seller is a concept for auction. It is not necessarily restricted

to a single data holder in FL. Our mechanism can extend to more

general FL tasks in two different aspects. (i) The seller is a proxy of

multiple data holders with a consensus of maximizing their union’s

desiderata. The payment received from buyers can be further split

to data holders by metrics like Shapley value [1, 40]. (ii) Our mech-

anism can be invoked repeatedly with multiple sellers sequentially.

For example, a buyer can participate in multiple auctions selling

data from different data holders. This approach can be considered

as a greedy approximation to the combinatorial auction [34].

Adapted notations. To make the following discussion more con-

cise and precise, we overwrite some of the notations as the follow-

ing. Because the allocation and payment of a mechanism depend

on all buyers’ model test or production performance improvements

and bids, the allocation and payment results based on test improve-

ment are denoted as ℳ.Allocation𝑖 (�̂� , b) and ℳ.Payment𝑖 (�̂� , b).
Both functions return 0 if buyer 𝑖 loses the auction or the auction

is aborted, but the allocation function returns 1 if wins and the

payment will be a non-negative real number. With the above nota-

tions, the real incomes are based on the production improvement

and auction allocation according to the test improvement:

Income𝑖 (𝑣𝑖 , �̄� ,ℳ(�̂� , b)) = (𝑣𝑖𝛼𝑖 ) ·ℳ.Allocation𝑖 (�̂� , b),

but Income𝑖 (𝑣𝑖 , �̂� ,ℳ(�̂� , b)) can be understood as an estimate of

the buyer’s income based on the test improvement. Following the

above definition, buyer 𝑖’s utility is denoted as

𝑈𝑖 (𝑣𝑖 , ·,ℳ(�̂� , b)) = Income𝑖 (𝑣𝑖 , ·,ℳ(�̂� , b))−ℳ.Payment𝑖 (�̂� , b),

where the placeholder · can be either �̄� or �̂� for produc-

tion/test utility analysis. Similarly, social welfare is denoted as

SocWel =
∑
𝑖∈[𝑁 ] Income𝑖 (𝑣𝑖 , �̄� ,ℳ(�̂� , b)) and seller’s profit SP =∑

𝑖∈[𝑁 ] ℳ.Payment𝑖 (�̂� , b). In some analysis, we may switch be-

tween �̂� and �̄� in the above notions.

We use ÔPT(·) to denote the optimal of a variable (e.g., social

welfare) on the test improvement, but assuming all private values

are known; we denoteOPT(·) as the optimal of a variable assuming

both production improvements and private true values are known.

4 TRUTHFUL AUCTION RELEASING MODELS
TO LIMITEDWINNERS

We first consider the scenario where the seller in the FL auction

is constrained to only grant trained models to 𝐾 out of 𝑁 buyers

in an auction. Limiting the granted models can be due to different

reasons, including privacy. For instance, if differential privacy [15]

is considered as the privacy notion. Each revealed model consumes

a portion of the predefined privacy budget for a dataset. The privacy

budget for a model cannot be too small; otherwise, the valuable

data information will be dominated by the added noise in training,

and the model’s utility is hard to guarantee.

While following the first three stages in Mechanism 1, the Allo-
cation and Paymentmethods must be adapted as Sub-mechanism 2

to ensure the mechanism is truthful.

Sub-mechanism 2 𝐾 Winner FL Auction (K-FLA)

Sort the buyers according to
ˆ𝜙𝑖 . If ˆ𝜙 (𝐾+1) ≤ 0, abort the acution.

Allocation rule: select at th top𝐾 buyers in the ranking according

the ranking scores as winners : �̂� = {𝑖 | ˆ𝜙𝑖 > ˆ𝜙 (𝐾+1) }.
Payment rule: each winner 𝑖 pays Payment𝑖 = ˆ𝜙 (𝐾+1) .

Theorem 4.1. Sub-mechanism 2 is truthful and IR for buyer 𝑖
given any (�̂� −𝑖 , b−𝑖 ) regarding the test datasets, i.e.,

(𝛼𝑖 , 𝑣𝑖 ) ∈ arg max𝛼𝑖 ,𝑏𝑖 𝑈𝑖 (𝑣𝑖 , �̂� ,K-FLA({𝛼𝑖 , �̂� −𝑖 }, {𝑏𝑖 , b−𝑖 }))
and𝑈𝑖 (𝑣𝑖 , �̂� ,K-FLA({𝛼𝑖 , �̂� −𝑖 }, {𝑣𝑖 , b−𝑖 }))) ≥ 0.

Proof. To prove IR with test improvement, we can see that any

winner in �̂� has
ˆ𝜙𝑖 ≥ Payment𝑖 by the allocation rule. Thus, the

incomes of the winners regarding the test improvements �̂� are

always at least as much as their payment.

To prove truthfulness of (𝛼𝑖 , 𝑣𝑖 ), we want to show that for any

buyer 𝑐 , she cannot benefit more by manipulating her ranking score

ˆ𝜙𝑖 = 𝛼𝑖𝑣𝑖 . When
ˆ𝜙 (𝐾+1) > 0, assume all other buyers’ bids and test

improvements are fixed arbitrarily except for the ones of buyer 𝑐 .

Suppose buyer 𝑐 ranks at 𝑟𝑐 if she submits her bid truthfully, 𝑏𝑐 = 𝑣𝑐
and 𝛼𝑐 = 𝛼𝑐 . By manipulating buyer 𝑐’s bid 𝑏𝑐 ≠ 𝑣𝑐 and/or test

improvement 𝛼𝑐 ≠ 𝛼𝑐 , buyer 𝑐 can change her rank to 𝑟 . (1) When

𝑟 > 𝐾 and 𝑟𝑐 > 𝐾 , or 𝑟 ≤ 𝐾 and 𝑟𝑐 ≤ 𝐾 , the test income of buyer 𝑐

does not change. (2) When 𝑟 > 𝐾 ≥ 𝑟𝑐 , buyer 𝑐 could have won the

auction but it does not because of manipulating the rank. Recall

that winning the auction always brings non-negative income. So

the utility of ranking at 𝑟𝑐 can always be no less than the ranking

at 𝑟 . (3) When 𝑟 ≤ 𝐾 < 𝑟𝑐 , it means buyer 𝑐 wins the auction, but

the payment outweighs its true income on test improvement, i.e.,

𝛼𝑐𝑏𝑐 ≥ ˆ𝜙 (𝐾+1) ≥ 𝑣𝑐𝛼𝑐 . When
ˆ𝜙 (𝐾+1) ≤ 0, increasing any

ˆ𝜙𝑖 can

either keep the
ˆ𝜙 (𝐾+1) ≤ 0 or

ˆ𝜙 (𝐾+1) > 0. The former does not

change the utilities of all clients, while the latter can introduce

negative utility to the buyer manipulating the score. □

The bids 𝑏𝑖 or test improvements 𝛼𝑖 hold truthfulness guarantees

alone as an implication from Theorem 4.1.

Corollary 4.2. Sub-mechanism 2 also ensures truthfulness for
buyer 𝑖’s bid and test improvement given any (�̂� −𝑖 , b−𝑖 ), i.e.,

𝑣𝑖 ∈ arg max𝑏𝑖 𝑈𝑖 (𝑣𝑖 , �̂� ,K-FLA({𝛼𝑖 , �̂� −𝑖 }, {𝑏𝑖 , b−𝑖 })),



𝛼𝑖 ∈ arg max𝛼𝑖 𝑈𝑖 (𝑣𝑖 , �̂� ,K-FLA({𝛼𝑖 , �̂� −𝑖 }, {𝑣𝑖 , b−𝑖 })).
Remark 2. Notice that 𝛼𝑖 is not known yet when buyer 𝑖 submits

her bid 𝑏𝑖 , and the payment
ˆ𝜙 (𝐾+1) is independent of ˆ𝜙𝑖 if buyer 𝑖

wins the auction. Therefore, if the buyer 𝑖 cheats on either her bid

𝑏𝑖 or her test performance improvement 𝛼𝑖 , the best result for her

is spending extra computation costs but obtaining the same utility
regarding her actual test improvement.

4.1 Impact of the Difference Between Test and
Production Improvements

In the industrial machine learning model operational management

(MLOps), a standard setting is that the evaluation in the production

environment can only be revealed days or even weeks after the

model is deployed, after which the production improvement can be

calculated. Since there are unavoidable gaps between the evalua-

tions on the test set used in auctions and the ones in the production

environment, one may be interested in how sensitive FL auctions

are to this random gap regarding truthfulness and social welfare.

We provide analyses for the client utility and social welfare when

the auction is not aborted.

Impact on the client utility. The optimal utility of buyer 𝑖 is

𝑈 ∗
𝑖
= max{𝛼𝑖𝑣𝑖− ¯𝜙 (𝐾+1) , 0} if production improvements are known.

However, a buyer’s utility can be negative without knowing the

exact 𝛼𝑖 as in practice.

Theorem 4.3. If Assumption 3 holds, the mechanism K-FLA, when
it is not aborted, ensures that with probability at least 1−𝛿 , the utility
concerning production improvements can be bounded as

|𝑈𝑖 (𝑣𝑖 , �̂� ,K-FLA(�̂� , b)) −𝑈𝑖 (𝑣𝑖 , �̄� ,K-FLA(�̂� , b)) | ≤ 𝑣𝑖𝜎𝑖
√︁

2 ln(1/𝛿).

Proof. The cases in which truthful bids are not optimal for the

buyer are either 𝛼𝑖𝑣𝑖 > ˆ𝜙 (𝐾+1) > 𝛼𝑖𝑣𝑖 (real income is less than the

payment) or 𝛼𝑖𝑣𝑖 < ˆ𝜙 (𝐾+1) < 𝛼𝑖𝑣𝑖 (real income is larger than the

required payment, but the buyer loses the auction). We consider

the case 𝛼𝑖𝑣𝑖 > ˆ𝜙 (𝐾+1) > 𝛼𝑖𝑣𝑖 , while the other one is symmetric.

When Assumption 3 holds, the probability of 𝑣𝑖 (𝛼𝑖 −𝛼𝑖 ) ≥ 𝛽 by the

property of the sub-Gaussian randomness is Pr [𝑣𝑖 (𝛼𝑖 − 𝛼𝑖 ) ≥ 𝛽] ≤
𝑒−𝛽

2/2𝑣2

𝑖 𝜎
2

𝑖 . Therefore, with probability 1−𝛿 , the buyer cannot gain
more than 𝑣𝑖𝜎𝑖

√︁
2 ln(1/𝛿). Following the same idea, with probability

1 − 𝛿 , the buyer’s utility will be at least −𝑣𝑖𝜎𝑖
√︁

2 ln(1/𝛿). □

Impact on social welfare. The differences between test and

production improvements can lead to a consequence that the win-

ners selected with test improvements (i.e., Allocation(�̂� , b)) are
different from those that should have been selected if production

improvements were known (i.e., Allocation(�̄� , b)). The differences
in winners will lead to differences in social welfare.

Let �̄� be the set of top 𝐾 buyers selected via

K-FLA.Allocation(�̄� , b), and �̂� as the top 𝐾 buyers by

K-FLA.Allocation(�̂� , b). We demonstrate the stability of so-

cial welfare by bounding

∑
𝑖∈�̄� 𝑣𝑖𝛼𝑖 −

∑
𝑗∈�̂� 𝑣 𝑗𝛼 𝑗 . For simplicity,

we follow Assumption 3 and further assume that all [𝑖 have

the same 𝜎2
and ∀𝑖 ∈ [𝑁 ], 𝑣𝑖 = 1. But our results can be easily

extended to different buyers with different 𝜎2

𝑖
and true values.

We start by analyzing a special case where there is only one

winner 𝐾 = 1, then generalize the result for arbitrary 𝐾 .

Lemma 4.4. When there is only one winner (𝐾 = 1) and Assump-
tion 3 holds, with probability at least 1 − 1

𝑁
, the selected buyer’s

social welfare 𝑣ℓ𝛼ℓ for some ℓ is at most 𝛽 < 4𝜎
√

ln𝑁 worse than the
optimal social welfare max{𝑣𝑖𝛼𝑖 |𝑖 ∈ [𝑁 ]}.

Proof. By Assumption 3, E [ 𝑣𝑖𝛼𝑖 ] = 𝑣𝑖𝛼𝑖 , without loss of gen-
erality, we further index the buyers so that 𝑖 < 𝑗 , then 𝑣𝑖𝛼𝑖 ≥ 𝑣 𝑗𝛼 𝑗 .

To help the proof, we define a function as 𝛾 (𝑖, 𝛽) = min{ 𝑗 |𝑣𝑖𝛼𝑖 −
𝑣 𝑗𝛼 𝑗 ≥ 𝛽}, which returns the smallest index of those buyers with

scores at least 𝛽 smaller than buyer 𝑖’s. By assuming 𝐾 = 1, the

problem can be reduced to a sub-problem bounding the probability

Pr

[
𝛾 (𝑖, 𝛽) = arg max𝑗∈[𝑁 ] 𝑣 𝑗𝛼 𝑗

]
.

Pr

[
𝛾 (𝑖, 𝛽 ) = arg max

𝑗 ∈ [𝑁 ]
𝑣𝑗𝛼 𝑗

]
= Pr

[
∩𝑥 ∈ [𝑁 ],𝑥≠𝛾 (𝑖,𝛽 ) 𝑣𝑥𝛼𝑥 ≤ 𝑣𝛾 (𝑖,𝛽 )𝛼𝛾 (𝑖,𝛽 )

]
≤ Pr

[
𝑣1𝛼1 ≤ 𝑣𝛾 (𝑖,𝛽 )𝛼𝛾 (𝑖,𝛽 )

]
By the tail bound of sub-Gaussian and the union bound for all

buyers with indices larger than 𝛾 (1, 𝛽),

Pr [𝑣1𝛼1 − 𝑣ℓ𝛼ℓ > 𝛽] ≤ (𝑁 − 𝛾 (1, 𝛽)) Pr

[
𝑣1𝛼1 ≤ 𝑣𝛾 (𝑖,𝛽 )𝛼𝛾 (𝑖,𝛽 )

]
≤ (𝑁 − 𝛾 (1, 𝛽))𝑒−

𝛽2

8𝜎2 ≤ 𝑁𝑒
− 𝛽2

8𝜎2

The second inequality comes from the probability bound of the

random variable 𝑣1𝛼1 − 𝑣𝛾 (𝑖,𝛽 )𝛼𝛾 (𝑖,𝛽 ) smaller than 0 with variance

proxy 2𝜎 . By setting 𝛽 = 4𝜎
√

ln𝑁 , the probability is at most
1

𝑁
. □

More general case: 𝐾 > 1. When the number of winners is set to be

larger than 1, we can prove the social welfare of the output buyers

is close to the one of the optimal set of buyers with high probability.

Theorem 4.5. When there are 𝐾 winners, two sets of winners �̄� =

K-FLA.Allocation(�̄� , b) and �̂� = K-FLA.Allocation(�̂� , b), based on
production and test improvements respectively, introduce difference in
social welfare in production environment

∑
𝑖∈�̄� 𝑣𝑖𝛼𝑖 −

∑
𝑗∈�̂� 𝑣 𝑗𝛼 𝑗 ≤

2𝐾𝜎
√︁

2 ln𝑁𝐾 (𝑁 − 𝐾) with probability at least 1 − 1

𝑁
.

Proof. The key idea of the proof inherit the proof of Lemma 4.4.

Pr


∑︁
𝑖∈�̄�

𝑣𝑖𝛼𝑖 −
∑︁
𝑗 ∈�̂�

𝑣𝑗𝛼 𝑗 > 𝛽

 ≤ Pr

[
∃𝑖 ∈ �̄� , 𝑗 ∈ �̂� , 𝑣𝑖𝛼𝑖 − 𝑣𝑗𝛼 𝑗 ≥

𝛽

𝐾

]
≤ 𝐾 (𝑁 − 𝐾 ) Pr

[
𝑖 ∈ �̄� , 𝑣𝑖𝛼𝑖 < 𝑣

𝛾 (𝑖, 𝛽
𝐾

)𝛼𝛾 (𝑖, 𝛽
𝐾

)

]
≤ 𝐾 (𝑁 − 𝐾 )𝑒−

𝛽2

8𝐾2𝜎2

The first inequality comes from the union bound and the second

comes from a similar idea in the proof of Lemma 4.4. By setting

𝛽 = 2𝐾𝜎
√︁

2 ln𝑁𝐾 (𝑁 − 𝐾), the above probability is bounded by
1

𝑁
□

5 OPTIMIZED SELLER’S PROFIT WITH
VARIABLE WINNERS

In the previous section, we discuss how to decide the winners when

the number of opportunities for granted models, 𝐾 , is predefined

and fixed. However, there may be scenarios where the seller is

primarily interested in maximizing its revenue without restrictions

on the number of released models. Notice that revealing FL models

to all participants is not always the most profitable strategy because

no payment method can ensure truthfulness and maximize the

seller’s profit with such an allocation strategy. Before discussing



Figure 1: The solid lines are utilities based on test improvement
𝑈𝑖 (𝑣𝑖 , �̂� ,Naive(�̂� , {𝑏𝑖 , v−𝑖 }) ) , the dashed lines are the true values of
buyers. Untruthful bids can increase buyers’ utilities in Naive.

the solutions, we first formulate the goal of this setting as the

optimal price selection problem:

max𝑝∈𝒫 𝑝 ×∑
𝑖 1 [𝛼𝑖𝑏𝑖 ≥ 𝑝] (1)

A strawman mechanism: Naive. Assuming all buyers truthfully

report their bids, a Naive mechanism can maximize the seller’s

profit by following steps. Naive.Payment outputs the price by solv-

ing Equation (1) to get the optimal price 𝑝Naive andNaive.Allocation
selects buyers with 𝛼𝑖𝑏𝑖 ≥ 𝑝Naive as winners.

However, the truthfulness assumption on buyers is unrealistic.

For example, Figure 1 shows the relations between utility and bids

assuming a buyer can change her bid arbitrarily while the other

buyer’s bids are fixed as true values
1
. The vertical dashed lines

indicate their utility regarding test improvement if submitting true

values and test improvements. The Buyer 46 and 23 are the two

buyers with the highest ranking scores if they bid truthfully. But

they can further improve their utility by submitting a bid lower

than their true value, which violates the definition of truthfulness.

Thus, to design truthful auctions (approximately) solving Equa-

tion (1), we need to borrow the wisdom from the traditional digital
goods auction, e.g., exponential mechanism [35] and random sam-

pling mechanism [6]. Following the previous literature[35], we as-

sume that the range of legitimate bids is predefined as [𝑏min, 𝑏max];
the improvement on a metric is in the range [𝛼min, 𝛼max] for both
the test and production performance improvement, which can be

obtained by definition of metric used in the auction. As the can-

didate prices are defined by the seller, the price (or payment for

buyers) is in the range [max{𝑏min𝛼min, 𝑝min}, 𝑏max𝛼max], where
𝑝min is the lowest price the seller can accept.

5.1 Approximate Truthfulness via Exponential
Mechanism

Following the digital goods auction routine, the auction process is

described in Sub-mechanism 3. The selection of the price becomes

stochastic. The key idea of EM is that the price introducing a higher

seller’s profit is more likely to be selected. But any buyer can only

have a limited impact on changing the probability of a price 𝑝 being

selected. Formally, the probability EM outputs 𝑝 as the price is

Pr

[
EM.Payment𝒫,𝜖 (�̂� , b) = 𝑝

]
=

exp

(
𝜖𝑢 (�̂� ,b,�̂� )

2Δ

)
∑
𝑝∈𝒫 exp

(
𝜖𝑢 (�̂� ,b,𝑝 )

2Δ

) , (2)

where Δ = 𝑏max𝛼max − max{𝑏min𝛼min, 𝑝min} and 𝑢 (�̂� , b, 𝑝) =

𝑝
∑
𝑖∈[𝑁 ] 1[𝛼𝑖𝑏𝑖 ≥ 𝑝] as EM’s utility functions for the price 𝑝 .

Notice that we follow the [35] assuming the seller can impose the

winners to pay for the model. It differs from [38], where buyers can

1
Details about the experiment settings are deferred to Section 6.

rescind to pay and give up being allocated. Namely, we assume EM
itself is with imposition. The approximate truthful regarding the

ranking scores
ˆ𝜙𝑖 = 𝛼𝑖𝑏𝑖 of EM can be directly derived from [35].

Sub-mechanism 3 Exponential mechanism (EM)

Given a set of candidate prices 𝒫 = {𝑝0, . . . , 𝑝 |𝒫 |−1
}:

Seller samples a 𝑝 ∈ 𝒫 with probability as Equation (2).

Allocation rule: release models to the winners �̂� = {𝑖 |𝛼𝑖𝑏𝑖 > 𝑝}.
Payment rule: charge the winner with price 𝑝 .

Theorem 5.1 (From [35, 38]). The EM is (𝑒𝜖 − 1)Δ-approximate
truthful, namely

max

𝛼𝑖 ,𝑏𝑖
E
[
𝑈𝑖 (𝑣𝑖 , �̂� , EM𝒫,𝜖 ({𝛼𝑖 , �̂� −𝑖 }, {𝑏𝑖 , b−𝑖 }))

]
≤ E

[
𝑈𝑖 (𝑣𝑖 , �̂� , EM𝒫,𝜖 (�̂� , {𝑣𝑖 , b−𝑖 }))

]
+ (𝑒𝜖 − 1)Δ

As stated in [38], the above result is meaningful when 𝜖 ∈ (0, 1]
and Δ ≤ 1, so 𝑒𝜖 − 1 ≤ 2𝜖 and EM becomes 2𝜖Δ-approximate

truthful. Similar to Corollary 4.2, the truthfulness can be extended

to either the bids and the test improvements alone. On the other

hand, it has been shown that EM can also provide prices that is

close to the optimal (regarding the test improvement ÔPT(SP))
with high probability. The proof follows [35, 38].

Theorem 5.2 (Adapted from [35]). With probability at least
1 − 𝛿 , the EM can guarantee its seller’s profit SPEM

ÔPT(SP) − SPEM ≤ 2Δ

𝜖
ln( |𝒫 |/𝛿)

Difference between SPEM andOPT(SP). OPT(SP) is the optimal

seller’s profit if the production improvements and true values of

all buyers are known, i.e., OPT(SP) = max𝑝∈𝒫 𝑝
∑
𝑖 1[𝑣𝑖𝛼𝑖 ≥ 𝑝].

Similarly, the optimal seller profit based on test improvements and

known true values is ÔPT(SP) = max𝑝∈𝒫 𝑝
∑
𝑖 1[𝑣𝑖𝛼𝑖 ≥ 𝑝]. Since

the desiderata in this setting is to maximize the seller’s profit, a de-

sirable mechanism should guarantee that SPEM is not significantly

worse than OPT(SP) with high probability.

As we assume there are lower bounds for both bids and model

improvements, we set the smallest candidate price as 𝑝0. For conve-

nience, we denote 𝑐 𝑗 =
∑
𝑖 1[𝑏𝑖𝛼𝑖 ≥ 𝑝 𝑗 ] and 𝑐 𝑗 =

∑
𝑖 1[𝑏𝑖𝛼𝑖 ≥ 𝑝 𝑗 ]

as the counts for the number of buyers whose production/test rank-

ing scores are greater than the 𝑗-th price (sorted in increasing order)

in the candidate set.

We set the set of candidate prices as 𝒫 = {𝑝0, 𝑝1, . . . , 𝑝 |𝒫 |−1
},

such that either of the following statements holds: A○ 𝑝 𝑗 = (1 +
𝜌)𝑝 𝑗−1 or B○ 𝑝 𝑗 = 𝑝 𝑗−1 + 𝜏 , where 𝜌 > 0 and 𝜏 > 0. Then we can

have the following lemma.

Lemma 5.3. Assuming ∀𝑖 ∈ [𝑁 ], 𝑏𝑖 = 1 and 𝜎𝑖 = 𝜎 with Assump-
tion 3. With probability 1 − 𝛿 ,

OPT(SP) − ÔPT(SP) ≤ max{𝜎𝑁
√︁

2 ln𝑁 /𝛿, _𝑁 },

where _ = 𝜌𝑝0 with A○ or _ = 𝜏 with B○.

Proof. Our proof consists of the following possible cases.



Case 1: If𝑝0 = arg max𝑝∈𝒫 𝑝
∑
𝑖 1[𝑏𝑖𝛼𝑖 ≥ 𝑝], thenOPT(SP) = 𝑝0𝑁 .

The profit based on test improvements ÔPT(SP) cannot be worse
than 𝑝0𝑁 with A○ or B○.

Case 2: If 𝑝1 = arg max𝑝∈𝒫 𝑝
∑
𝑖 1[𝑏𝑖𝛼𝑖 ≥ 𝑝], then OPT(SP) =

𝑝1𝑐1. In contrast, ÔPT(SP) = max𝑝∈𝒫 𝑝
∑
𝑖 1[𝑏𝑖𝛼𝑖 ≥ 𝑝] ≥ 𝑝0𝑁 .

Thus, setting A○ leads to OPT(SP) − ÔPT(SP) ≤ 𝑝1𝑐1 − 𝑝0𝑁 ≤
𝜌𝑝0𝑁 ; setting B○ leads toOPT(SP) − ÔPT(SP) ≤ 𝑝1𝑐1 −𝑝0𝑁 ≤ 𝜏𝑁 .

Case 3: If 𝑝𝑥 = arg max𝑝∈𝒫 𝑝
∑
𝑖 1[𝑏𝑖𝛼𝑖 ≥ 𝑝] for some 𝑥 ≥ 2. An

observation is that if OPT(SP) − ÔPT(SP) = 𝑝𝑥𝑐𝑥 − 𝑝𝑥−1𝑐𝑥−1 >

(𝑝𝑥 −𝑝𝑥−1)𝑐𝑥 , then it must hold that

{
𝑖 | ¯𝜙𝑖 ≥ 𝑝𝑥

}
∩
{
𝑖 | ˆ𝜙𝑖 ≤ 𝑝𝑥−1

}
≠

∅. More general, if OPT(SP) − ÔPT(SP) = 𝑝𝑥𝑐𝑥 − 𝑝𝑥−1𝑐𝑥− 𝑗 >

(𝑝𝑥 −𝑝𝑥− 𝑗 )𝑐𝑥 , then there must be

{
𝑖 | ¯𝜙𝑖 ≥ 𝑝𝑥

}
∩
{
𝑖 | ˆ𝜙𝑖 ≤ 𝑝𝑥− 𝑗

}
≠ ∅.

Therefore, the following inequality holds with union bound:

Pr

[
OPT(SP) − ÔPT(SP) ≥ (𝑝𝑥 − 𝑝𝑥− 𝑗 )𝑐𝑥

]
≤ Pr

[
∃𝑖, ¯𝜙𝑖 − ˆ𝜙𝑖 ≥ 𝑝𝑥 − 𝑝𝑥− 𝑗

]
≤ 𝑐𝑥𝑒−

(𝑝𝑥 −𝑝𝑥− 𝑗 )2

2𝜎2

Let 𝛽 = (𝑝𝑥 − 𝑝𝑥− 𝑗 )𝑐𝑥 , then

Pr

[
OPT(SP) − ÔPT(SP) ≥ 𝛽

]
≤ 𝑐𝑥𝑒

− 𝛽2

2𝜎2𝑐2

𝑥 ≤ 𝑁𝑒
− 𝛽2

2𝜎2𝑁 2 = 𝛿

Substituting 𝛽 with 𝛿 , we have 𝛽 = 𝜎𝑁
√︁

2 ln(𝑁 /𝛿) as the result.
□

With the above result, we can conclude the seller’s profit guar-

antee of EM on the production improvement.

Theorem 5.4. With probability 1 − 𝛿 , the price selected by EM
mechanism can guarantee the seller’s profit with respect to production
improvement is at least

OPT(SP) − (2Δ/𝜖) ln(2|𝒫 |/𝛿) − 𝜎𝑁
√︁

2 ln(2𝑁 /𝛿)

This can be proved by combining Theorem 5.2 and Lemma 5.3.

Discussion of randomness of test improvement. The upper bound of

the profit gap is 𝑂 (𝑁
√

ln𝑁 ) and it has a lower bound of at least

Θ(𝑁 ) because of Case 2 in our analysis. But notice that 𝑁 ≤ OPT
𝑝0

,

which indicates the gap can be small if 𝜎/𝑝0 is small. Besides, such

a worst case happens when all buyers’ ranking scores are very

close to each other and close to the prices in 𝒫 . In practice, the

randomness of test improvement can be alleviated if either 1) the

ranking scores are distributed “separably enough” in the domain

or 2) the test improvements are close to production improvement.

5.2 Truthful Dual Price via Random Sampling
Mechanism

If the environment does not have the constraint that all winners

must enjoy the same price but wants strictly truthful, we can borrow

the results from [6] about the truthfulness and utility guarantee, as

shown in Sub-mechanism 4. Because the winners are decided by

the ranking scores, the truthfulness can be extended to the income-

improvement rate and the test improvement as Corollary 4.2.

With RSM, a buyer can never affect the price in her own group.

However, shewill be forced to pay if her ranking score is higher than

the threshold in her group, so reporting a higher bid/improvement

increases the risk of paying more than the best utility. On the other

Sub-mechanism 4 Random sampling mechanism (RSM)

Given a set of candidate prices 𝒫 = {𝑝0, . . . , 𝑝 |𝒫 |−1
}:

Randomly partition users into two subsets 𝑆1 and 𝑆2.

Obtain 𝑝1 = arg max𝑝∈𝒫 𝑝
∑
𝑖∈𝑆1

1[ ˆ𝜙𝑖 ≥ 𝑝] and 𝑝2 =

arg max𝑝∈𝒫 𝑝
∑
𝑖∈𝑆2

1[ ˆ𝜙𝑖 ≥ 𝑝];
Allocation rule: release models to the winners in𝑊 =𝑊1 ∪𝑊2

where𝑊1 = {𝑖 ∈ 𝑆1 | ˆ𝜙𝑖 > 𝑝2} and𝑊2 = {𝑖 ∈ 𝑆2 | ˆ𝜙𝑖 > 𝑝1};
Payment rule: charge the𝑊1 with 𝑝2 and𝑊2 with 𝑝1.

hand, it will increase the probability of losing the auction she could

have won if her bid/improvement is lower than the true value.

Thus, RSM is truthful on the test improvement. Using the utility

guarantee proved in Theorem 6 of [6] and our Lemma 5.3, we can

give the guarantee on the seller’s profit brought by RSM(�̂� , b).

Corollary 5.5. Under the same assumptions as Lemma 5.3 and
setting the candidate price set as A○, with probability 1 − 𝛿 , using
RSM can obtain profit at least

OPT(SP) − 8

√︃
OPT(SP) log(2/𝜌𝛿) − 𝜎𝑁

√︁
2 ln(2𝑁 /𝛿) .

6 EXPERIMENTS
To better understand the desiderata and properties of mechanisms

discussed in the previous section, we have developed simulations

based on semi-real-world datasets.
2

Datasets. Due to the relatively early stage of pricing for FL research
and the confidential commercial information typically involved,

there are no public datasets available for this task. Therefore, we

simulate real-world scenarios by combining real-world datasets

with synthetic true values of buyers. For the FL datasets, we employ

the public Criteo dataset [13] and a private dataset related to CTR

prediction tasks (referred to as “Business”)
3
. As is common in many

mechanism design studies, we assume that both the true values and

bids fall within the domain (0, 1). Therefore, we employ a method

of sampling values from a uniform distribution in (0, 1).
• Train, test and production data simulation. We split the datasets

into training, testing and production sets. The training subset, de-

noted as (𝑋 𝑡𝑟 , 𝑌 𝑡𝑟 ), is used for model training, while the testing

subset, denoted as (𝑋 𝑡𝑒 , 𝑌 𝑡𝑒 ), is employed to evaluate the test per-

formance of FL model for auctions. The remaining is used to simu-

late production performance, represented as (𝑋𝑝𝑟𝑜𝑑 , 𝑌𝑝𝑟𝑜𝑑 ). The
train/test/production size ratio is 5:2:3. The sizes of production sets

are larger than the test sets because themodels are expected to serve

a more extensive range of users in the production environment.

• Vertical federated learning simulation. In our simulation, we em-

ulate a vertical federated learning setting, where the data seller

possesses the datasets of half of the attributes, denoted as 𝑋 𝑡𝑟𝑠 , 𝑋 𝑡𝑒𝑠 ,

and 𝑋
𝑝𝑟𝑜𝑑
𝑠 . Each buyer’s local dataset comprises 5 attributes ran-

domly selected from the remaining attribute set, alongwith the label.

These are represented as (𝑋 𝑡𝑟
𝑖
, 𝑌 𝑡𝑟
𝑖
), (𝑋 𝑡𝑒

𝑖
, 𝑌 𝑡𝑒
𝑖
), and (𝑋𝑝𝑟𝑜𝑑

𝑖
, 𝑌
𝑝𝑟𝑜𝑑

𝑖
).

The training datasets are respectively assigned to the data seller

and the buyers. We assume all samples are aligned between buyers’

and the data seller’s datasets by record ids.

2
The simulation code and a full manuscript with more results in appendix can be found

on https://github.com/ZiTao-Li/fl_auction.

3
The private data is not available to the public at this stage.

https://github.com/ZiTao-Li/fl_auction


• Buyers’ true values simulation. In our experiments, we consider

the number of buyers in the auctions as 𝑁 = 100 or 500. For each

buyer, we sample her private true value from a uniform distribution

in the range (0, 1). These values are fixed and retained across all

experiments conducted with the same settings.

More details about the datasets used can be found in Table 2.

FL training and evaluation simulation. For our simulations,

we use the logistic regression (LR) model from the Scikit-learn

package [39]. For Criteo dataset, we preprocess the dataset so that

all the categorical attributes are transformed to one-hot encod-

ing. Since our interest lies primarily in verifying the properties

of our auction mechanisms, we simplify the process as follows.

For each buyer 𝑖 ∈ [𝑁 ], we train an LR model exclusively with

local data (denoted as ℱLC
) and obtain the local performance on

the test set and production set as 𝑔LC
𝑖

= Eval(ℱLC, 𝑋 𝑡𝑒
𝑖
, 𝑌 𝑡𝑒
𝑖
) and

𝑔LC
𝑖

= Eval(ℱLC, 𝑋
𝑝𝑟𝑜𝑑

𝑖
, 𝑌
𝑝𝑟𝑜𝑑

𝑖
), respectively. Subsequently, we

merge the data seller’s attributes with the buyer’s dataset and

train a different model (denoted as ℱFL
). This setup is often con-

sidered a baseline in VFL literature. We evaluate these pseudo-

VFL models of buyers on the testing set and on the production

set, yielding performances as 𝑔FL
𝑖

= Eval(ℱLC, [𝑋 𝑡𝑒
𝑖
, 𝑋 𝑡𝑒𝑠 ], 𝑌 𝑡𝑒

𝑖
) and

𝑔FL
𝑖

= Eval(ℱLC, [𝑋𝑝𝑟𝑜𝑑
𝑖

, 𝑋
𝑝𝑟𝑜𝑑
𝑠 ], 𝑌𝐺

𝑖
).

We then compute the model improvements as 𝛼𝑖 = 𝑔
FL

𝑖
−𝑔LC

𝑖
and

𝛼𝑖 = 𝑔
FL

𝑖
− 𝑔LC

𝑖
. As the CTR prediction task often has unbalanced

label distribution, we employ the AUC-ROC at the metric. As we

observe, both 𝛼𝑖 and 𝛼𝑖 ∈ (0, 0.35) in all experiments. Thus, we set

𝛼min = 0 and 𝛼max = 0.35 for all experiments. We replicate training

with each buyers 20 times with different train/test splits but keep

the production set the same to simulate the inherent randomness

comparing test improvements to production improvements.

Efficiency of the auction mechanisms. Since the end-to-end

efficiency of the auction depends on many factors, including the

federated learning algorithms and frameworks, we focus on the

efficiency of the auctions when all the evaluation results are ready.

Our experiments are conducted on a server with Intel(R) Xeon(R)

Platinum 8163 CPU@ 2.50GHz CPUs. The K-FLA is very efficient in

the sense that the auction can be finished in 0.15/1.14 ms on average

with 100/500 buyers, as its computation complexity is dominated by

sorting (𝑂 (𝑁 log𝑁 )) to identify the top 𝐾 winners. The EM takes

0.18/0.26 ms per execution with 100/500 buyers and is dominated

by the profit calculation (𝑂 ( |𝒫 |𝑁 )) and sampling function, while

every execution of RSM elapses 0.17/0.23 ms. Notice that the com-

plexity is based on our straightforward implementation and can be

improved by advanced algorithms.

6.1 Truthfulness and Buyers’ Utilities
To validate the truthfulness, we conduct simulations following these

steps. We initially fix all buyers’ ranking scores/bids/test improve-

ments equal to their true ranking scores/values/test improvements

but vary those variables of the Buyer 𝑖 within the domains. If truth-

fulness to test improvement holds, we can observe that there would

be no other potential dishonest report that could provide Buyer 𝑖

with a strictly higher utility than simply reporting the truth. Results

are shown in Figure 2 and 3. The solid lines are utilities with test im-

provement𝑈𝑖 (𝑣𝑖 , �̂� ,ℳ({𝛼𝑖 , �̂� −𝑖 }, {𝑏𝑖 , v−𝑖 })), and the dotted line

is 𝑈𝑖 (𝑣𝑖 , �̄� ,ℳ({𝛼𝑖 , �̄� −𝑖 }, {𝑏𝑖 , v−𝑖 })), where the Buyer 𝑖 can mod-

ify 𝛼𝑖 , 𝑏𝑖 or both to affect her ranking scores. The scatter points

are𝑈𝑖 (𝑣𝑖 ,𝜶 ,K-FLA(�̄� , v)) in Figure 2 and𝑈𝑖 (𝑣𝑖 ,𝜶 ,Naive(�̄� , v)) in
Figure 3. The numbers in the parentheses in the legend are the

ranking of the buyers with 𝛼𝑖𝑣𝑖 . The shadow of the line means the

range of utility based on test improvement on different splits.

Truthfulness and buyer utility of K-FLA. In Figure 2, we report

the utility of the top-2 winners (e.g., Buyer 90 and 91 in Criteo)

based on the true value and production improvements, as well as

for those buyers situated around the decision boundaries (10 or

20). Notice that manipulating the ranking score is equivalent to

manipulating the bid and test performance together or separately.

As observed, the utility of the top winners increases with a rise in

𝐾 values, pertinent to both test and production improvement (e.g.,

Figure 2(a) to Figure 2(d)). This can be attributed to the decrease

in payments Payment𝑖 = ˆ𝜙 (𝐾+1) to maintain truthfulness, as the

number of winners 𝐾 increases.

Through our experiments, we observe that those who should

have won the auction if bidding and reporting their test improve-

ment truthfully, indeedmaximize their profit when they actually bid

and report truthfully. Submitting a lower score/bid/improvement

can often result in the buyer losing the auction. For example, if

Buyer 90 manipulates her ranking score to 0.03 (Figure 2(a)), or

submits a lower bid around 0.5 (Figure 2(b)), or similarly lowers

her test improvement to 0.03 (Figure 2(c)), the risk of obtaining

sub-optimal utility (i.e., losing the auction) significantly increases.

Conversely, for those buyers who should not have won the auction,

bidding higher than their truth could lead to negative utility. An

example is Buyer 66 in Figure 2(e)-2(g), where she obtains 0 util-

ity when truthfully reports but experiences negative utility when

exaggerating her score/bid/test improvement to be a winner.

Upon comparing (averaged) utilities based on test improvement

(�̂� ) and production improvements (�̄� ), the gaps between them are

tiny. It means the utilities based on test improvement can be reliably

good estimates of the outcomes when the production improvements

are revealed and final true values are calculated. Notably, higher-

ranking buyers tend to suffer less from this disparity. However, for

buyers with ranking scores around the thresholds, there exists a

risk of experiencing negative utility.

Truthfulness and Buyer utility of EM. The shadows in Fig-

ure 3 mean the range of 0.25 and 0.75 quantiles, representing a

divergence from the EM results. Upon comparing with the fixed-K

setting, it is evident that the variance of utility primarily arises

from the randomness of EM. According to our results, untruthful

ranking score, bids or improvement does not offer substantial ben-

efits on test/production utility to buyers in expectation with EM. It

is because the payment decision process is designed with inherent

randomness, which means a single buyer is unlikely to influence the

probability of a particular price being selected without significantly

deviating from the truth. However, significantly deviating from

the truth can only bring large losses to the buyers. For example,

untruthful ranking scores and test improvements (Figure 3(a) and

3(c)) can lead to large negative utility because these two variables

are significantly smaller than 0.35. The utilities based on test and

production improvements are very close, because the randomness

of EM will dominate in this setting.



Table 2: Dataset information.

Dataset # seller’s attributes # buyer’s attributes Training size Testing size production simulation size

Criteo 19 5 out of 20 378277 151310 226967

Business 26 5 out of 27 1042442 446762 638230

(a) Criteo 𝐾 = 10, change R.S. (b) Criteo 𝐾 = 10, change bids (c) Criteo 𝐾 = 10, change T.I. (d) Criteo 𝐾 = 20, change R.S.

(e) Business 𝐾 = 10, change R.S. (f) Business 𝐾 = 10, change bids (g) Business 𝐾 = 10, change T.I. (h) Business 1 𝐾 = 20, change R.S.

Figure 2: Utility of buyers with K-FLA and different ranking scores (R.S.) / bids / test improvements (T.I.).

(a) Criteo, EM change R.S. (b) Criteo, EM, change bids (c) Criteo, EM change T.I. (d) Criteo, RSM change R.S.

(e) Business, EM change R.S. (f) Business, EM change bids (g) Business, EM change T.I. (h) Business, RSM change R.S.

Figure 3: Utility withℳ ∈ {EM(𝜖 = 2),RSM} and different ranking scores (R.S.) / bids / test improvements (T.I.).

Notice that a phenomenon different fromK-FLA experiments that

the marker points,𝑈𝑖 (𝑣𝑖 , �̄� ,Naive(�̄� , v)), may be higher or lower

to the line of 𝑈𝑖 (𝑣𝑖 , �̄� , EM𝒫,𝜖 (�̄� , {𝑏𝑖 , v−𝑖 })). This is because EM
is not unbiased on the selected price. The price from Naive(�̄� , v)
may be different from EM𝒫,𝜖 (�̄� , v) in expectation. But as 𝜖 in-

creases, EM has higher probability selecting the optimal price same

as Naive(�̄� , v), and thus, 𝑈𝑖 (𝑣𝑖 , �̄� , EM𝒫,𝜖 (�̄� , {𝑏𝑖 , v−𝑖 })) becomes

closer to𝑈𝑖 (𝑣𝑖 , �̄� ,Naive(�̄� , v)).
Truthfulness of RSM. RSM shows similar phenomena as for EM
in Figure 3(d) and 3(h), but no matter how a buyer manipulates

her ranking score, the expected utilities will not surpass the one

when she truthfully submits the private value as her bid. However,

we can see that the utility may depend on the randomness of the

test improvements. For the Criteo dataset, the variances of the

utilities are very small; however, for Business, RSM shows a larger

variance. Also, there will not be large negative utilities on the Criteo

dataset because the prices applied to Buyer 𝑖 are generated from

another group, which consists of benign buyers. Other properties

can be similar to the results of EM, including the relation between

𝑈𝑖 (𝑣𝑖 , �̄� ,Naive(�̄� , v)) and𝑈𝑖 (𝑣𝑖 , �̄� ,RSM(�̄� , {𝑏𝑖 , v−𝑖 })).

6.2 Stability with Respect to Production Data
Stability of social welfare with K-FLA. Figure 4 compares the

results of

∑
𝑖∈�̄� 𝑣𝑖𝛼𝑖 and

∑
𝑗∈�̂� 𝑣 𝑗𝛼 𝑗 with both 100 and 500 buyers.

As we can see from the figure, the

∑
𝑖∈�̄� 𝑣𝑖𝛼𝑖 is always very close

to

∑
𝑗∈�̂� 𝑣 𝑗𝛼 𝑗 . There are two reasons. The first is that the test

performances are usually very close to production performances in

our experiments, making
ˆ𝜙𝑖 ≈ ¯𝜙𝑖 (as shown in Figure 2). A second



(a) Criteo, K-FLA social welfare (b) Business, K-FLA social welfare

(c) Criteo, EM seller ’s profit (d) Business, EM seller ’s profit

Figure 4: Comparing of social welfare and seller ’s profit

reason is that there are many buyers with ranking scores very

close to the
ˆ𝜙 (𝐾+1) or ¯𝜙 (𝐾+1) (as shown in Figure 2(a) and 2(e)).

Any of those buyers selected does not introduce huge differences

between
ˆ𝜙 (𝐾+1) and ¯𝜙 (𝐾+1) . Thus, our theorem in Section 4 can

serve as the worst-case guarantee. Besides, the social welfare with

500 buyers are larger than the ones of 100 buyers. This is because

in the simulation, the top 𝐾 randomly sampled values from 500

samples are expected to be larger than the top 𝐾 from 100 samples.

Sensitivity of seller’s profit via EM. As demonstrated in Fig-

ure 4(c) and 4(d), the seller’s profit can exceed or fall short of the

value based on production improvement. The reason is that the

randomness of EM and the payments are calculated according to

test improvement, which can either outperform or under-perform

compared to production improvement. However, the expectation

of the seller’s profit based on both test and production improve-

ment remains relatively small. Unsurprisingly, as the parameter 𝜖

increases, both the seller’s profit based on test improvement and

production improvement rise. The reason is that the optimal price

stands a higher chance of being selected when 𝜖 increases. The

difference between the seller’s profit of 500 and 100 buyers can be

explained by more buyers leading to more high-valued FL models,

which eventually lead to more winners even with the same price.

7 RELATEDWORK
There is a comprehensive survey on pricing the data [40].

Datamarket. Pricing the data is closely related to pricing federated
learning. A vision paper [18] talks about the desirable properties of

datamarket platforms, from system design tomechanism properties.

Agarwal et al. [1] proposes a framework for the FL cooperation

marketplace, from designing allocation function to control model

quality to payment decision and division functions. Their setting

assumes the buyers come one by one. Their revenue maximization

property depends on a pricing function based onmulti-armed bandit

optimization. However, their revenue function and pricing update

function need to explore all possible bids lower than the current

one, which can be computationally expensive. There are other work

building data marketplace platforms, but focusing more on using

differential privacy as a knob to control the data quality and the

price [21, 31, 32, 41]. Besides, some other studies consider Shapley

value to evaluate data in central setting [20, 29] and in FL setting [33,

46]. Those research results are orthogonal to our auctions because

Sharply value is a metric of profit division, where the total revenue

is known, and the focus is on how to allocate the revenue fairly; the

auctions are designed for pricing objectively. In the decentralized

setting, [47] proposes an incentive-aware mechanism based on

reinforcement learning and allows participants to achieve Nash

equilibrium with their reward functions. However, the prices (costs)

of pulling parameters are decided without a competitive pricing

mechanism. [50] focuses on how to prevent the data seller cheating

by replicating data.

Auction in FL. Compared to our approach, most of the exist-

ing work on FL focuses on auction mechanisms for selecting buy-

ers/devices to participate in FL [9, 11, 30, 44, 51]. In this case, the

server announces the learning task, and buyers submit their prices,

which represent their cost of conducting the task. But these prob-

lems are formulated as reverse auction problems. In this setting,

truthfulness is defined as buyers being unable to increase their util-

ity by bidding higher than their learning cost. The existing works
vary in their objective of allocation and payment design. One rep-

resentative work is FAIR [11], which formulates the objective as

maximizing the learning quality of each task subject to (1) the to-

tal payment being within budget and (2) the rewards/payment to

each buyer being greater than the bids. The authors demonstrate

the truthfulness of the mechanism using Myerson’s theorem [36].

In [30], the authors propose a Vickrey-Clarke-Groves (VCG) auction

mechanismwith the aim of identifying the most suitable buyers and

determining the appropriate payment. The mechanism was sub-

sequently refined in [9] by prioritizing the maximization of social

welfare and minimizing the imbalances within the federation.

Auction in Advertisement. GSP and VCG auctions are well-

known auction mechanisms that have been extensively researched

and implemented in diverse advertising systems [5, 16, 19, 37, 45,

52]. The most related paper is [2], in which the authors discuss the

truthfulness of the auction in advertisement with (weighted) bids.

In [45], the authors discuss the attractive properties and potential

drawbacks of VCG ad auctions. They argue that in VCG ad auction

has the attractive property that bidding the true value is a dominant

strategy for all players. In [43], the authors consider GSP variants

that are revenue-equivalent to the truthful equilibrium of corre-

sponding dominant-strategy mechanisms with the same allocation

rules. Later, a series of GPS variants that aims to optimize multiple

objectives in ads auctions and meanwhile ensure truthfulness are

proposed, including [5, 19, 52] In more general auction settings,

some existing results consider guaranteeing truthfulness via the

exponential mechanism of DP [25, 35, 38].

8 CONCLUSIONS
In this paper, we provide solutions for pricing FL via auction mech-

anisms and account for performance improvement. We propose a

template and present different instantiated auctions for different

constraints and desiderata, with theoretical guarantee and empiri-

cal simulation supports. To bring pricing FL closer to practice, some

problems can be further explored, such as adapting computationally

expensive auctions (e.g., combinatorial auctions) in FL.
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