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ABSTRACT

Learned databases, or AI4DB techniques, have rapidly developed
in the last decade. Deploying machine learning (ML) and AI4DB
algorithms into actual databases is the gold standard to examine
their performance in practice. However, due to the complexity of
database systems, the difference between ML and DB programming
paradigms, and the diversity of ML models, the tasks of developing
and deploying AI4DB algorithms into databases are prohibitively
difficult. Most previous works focus on specific AI4DB algorithms
and ML models whose deployment requires close cooperation be-
tween ML and DB developers and heavy engineering cost.

In this paper, we design and implement PilotScope, an AI4DB
middleware with a programming model that largely reduces such
difficulties. With a novel abstraction of AI4DB algorithms for, e.g.,
knob tuning and query optimization, PilotScope consists of two
classes of components, AI4DB drivers and DB interactors, with dif-
ferent programming paradigms and roles in AI4DB tasks. ML devel-
opers focus on designing and implementing AI4DB drivers, which
are algorithmic workflows that collect statistics from databases,
train ML models, make decisions and optimize databases using
learned models. AI4DB drivers interact with databases via DB inter-
actors (e.g., for collecting data and enforcing actions in databases).
DB developers focus on implementing these interactors on one or
more database engines, with the interaction details hindered from
ML developers. PilotScope supports a variety of AI4DB tasks,
and the implementation of an AI4DB algorithm on PilotScope
can be deployed in different databases with only minimum mod-
ifications. PilotScope is effective in benchmarking these AI4DB
algorithms in real-world scenarios. We hope that PilotScope could
significantly accelerate iterating AI4DB research and make AI4DB
techniques truly applicable in production.
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1 INTRODUCTION

Learned databases, or AI4DB techniques, aim at enabling auto-
matic, fine-grained, and data-dependent characterization of the
action spaces for various database tasks. To name a few, such Al-
aided database tasks (AI4DB tasks) include knob tuning [25, 44, 57],
index recommendation [1, 13, 16, 19, 30, 45, 49, 52], query opti-
mization [24, 29, 39, 40, 53-55, 60, 63], index structures [21, 22, 31],
monitoring [37, 59], etc. A considerable amount of research efforts,
ranging from theoretical analysis, model and algorithm design to
benchmark evaluation, have been devoted to this field.
Challenges of Deploying AI4DB Algorithms. We can fairly
benchmark various AI4DB algorithms [23, 41, 46] and evaluate their
values in production only by deploying them into actual databases.
However, due to the complexity of database systems, the different
ML and DB programming paradigms, and the diversity of ML algo-
rithms, the tasks of developing and deploying AI4DB algorithms are
prohibitively difficult. Most previous works focus on AI4DB tasks
in some specific database engine. For example, [41] deploys the
learned query optimizer Bao [39] on SCOPE [15] (the distributed
computing system in Microsoft); [34] integrates a number of learned
techniques, including query rewriter, cost model, and view advi-
sor, into openGauss [9]; [14, 36, 42] deploy workload forecasting,
behavior modeling, data collection and other functions into the
NoisePage DBMS [5]. Even for one DB engine, the deployment of
AI4DB techniques requires close cooperation between ML and DB
developers and heavy engineering cost.

There are some practical challenges and considerations:

e The ML and DB communities have very different programming
paradigms (e.g., PyTorch v.s. C). Although we expect that the gap
is closing, it is rare that one developer masters both. Thus, it is
important to have an abstraction of the AI4DB system so that:
1) ML and DB developers can focus their own components; 2) it
could be appliable to a wide range of database systems; and 3)
their works can be re-used by others in different AI4DB tasks.

We expect that an AI4DB solution can be easily deployed and
extended for different DB engines and tasks. The hope is that,
when the solution is transferred from one engine to another (e.g.,
from PostgreSQL to Spark), only DB developers’ work needs to
be adapted to the new engine, while ML developers can focus
on iterating algorithms and models for various AI4DB tasks.
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o An AI4DB task usually involves a long pipeline. During this pipeline,
the AI4DB algorithms may need to interact with internal functions
of the database multiple times (e.g., collecting training data and
enforcing actions in the database). Any implementation detail
may affect the end-to-end performance of a solution significantly.
Thus, for a fair benchmark of different solutions, it is better for
them to share as many atomic operators as possible (e.g., how
data is fetched from and pushed into the database).

Existing AI4DB solutions are designed under different technical
routines to address different problems. Their requirements are very
diversified and complex. For example, knob tuning algorithms
are typically applied to optimize the database performance for
the entire workload, while a learned query optimizer is designed
to speed up each singleton SQL query. Some AI4DB tasks ask
for customized functionalities, e.g., periodical model retraining.
Therefore, it is very necessary to design a flexible yet easy-to-use
framework that accommodates all these diversified requirements
of AI4DB algorithms.

In this paper, we design and implement PilotScope, a desirable
system aiming at resolving the problem of deploying AI4DB tasks
into databases. PilotScope takes all the above practical issues into
consideration and resolves these challenges. In the following, we
first describe a sample of representative AI4DB tasks and summa-
rize their common elements in Section 1.1 to lay a foundation for
PilotScope. Then, we overview the main features and contribu-
tions of PilotScope in Section 1.2.

1.1 Sample and Elements of AI4DB Tasks

In this paper, we focus on AI4DB tasks for query processing since
these methods are growing rapidly and have significant importance
to database performance [23, 33, 50, 62]. As shown in Figure 1, for
any database, we often tune its configurations, including knobs,
indices, views and flags, to make preparations for downstream
query processing. Then, for the input query Q, it is fed into the
query rewriter to transform it to an equivalent query Q” with better
execution efficiency. The query Q’ is then parsed and fed into
the query optimizer to generate an execution plan P. The query
optimizer often estimates the cardinality, i.e., the number of tuples,
of each sub-query of Q’, predicts the cost of each candidate plan
P and enumerates the join orders of tables to select the plan P*
with the minimum predicted cost for execution. Finally, the query
executor executes plan P* and returns a set of tuples R as the result.

Learned methods have been applied to replace one or more com-
ponents in this workflow (marked in green in Figure 1), including
but not limited to: learned knob tuning, index or view recommen-
dation; learned query rewriter; learned cardinality estimator, cost
model and join search methods; and learned end-to-end query opti-
mizer. We describe the procedures of them as follows.

1.1.1  Learned Knob Tuning. This task is required by database users.
It targets to automatically tune the values of a set of knobs K to
optimize the database performance, which is measured by a metric
M, on a query workload W. The method often works in iterations.
Each time it executes all queries Q € W on the database, collects
their execution statistics related to metric M and gradually updates
the value of knobs using an ML model, such as a reinforcement
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Figure 1: Workflow of query processing,.

learning (RL) model [57] or a Bayesian model [25, 44]. After finish-
ing iterating, the generated value of knobs K are set accordingly
into databases. The learned index recommendation and view advi-
sor [26, 56] work in similar ways as knob tuning.

1.1.2  Learned Cardinality Estimator. It takes a (sub-)query Q as
input and trains an ML model to estimate its cardinality. The ML
model could be data-driven [24, 54, 63] or query-driven [29]. The
data-driven models are unsupervised models building the joint dis-
tribution of all attributes while the query-driven ones are supervised
models mapping featurized queries into the estimated cardinality.
The models are updated periodically to keep track of data/workload
changes. In similar, the learned query rewriter [12, 17, 38], cost
model [28, 35] and join order search methods [18, 48] also apply
ML models to replace the traditional database components.

1.1.3  Learned Query Optimizer. These methods aim at generating
an execution plan P for the input query Q using ML techniques.
They often train a model using collected historical data to predi-
cate the execution time (or relative goodness) of a plan. Then, the
methods generate a number of candidate plans for Q using different
strategies. Specifically, some methods [40, 53] directly search the
plan space by themselves and some other ones [39, 55, 60] tune the
traditional query optimizer with different knobs to produce differ-
ent plans. The plan with the minimum predicted time is returned
for execution. Meanwhile, its execution statistics are collected to
update the prediction model periodically.

Based on the workflow of these AI4DB tasks, we summarize the
following elements required to deploy an AI4DB task:

1) We need a flexible data collection interface to extract different
kinds of statistical data, e.g., cardinality, plan cost, and execution
time, from databases for model training.

2) We require a mechanism to inject the AI4DB task into databases
to replace the original component. The injection mechanism is re-
sponsible for invoking the AI4DB task when needed, providing the
inputs to the AI4DB task and sending its output to the databases.

3) We need an ML environment to support the execution of the
AI4DB algorithms and the model inference, training and updating.

4) During the execution, we should have an interface to interact
with the database so that the AT4DB task could operate the databases
and exchange data. For example, tuning the knobs and obtaining
the produced plans in a learned query optimizer.

1.2 Features and Contributions of PilotScope

PilotScope is a middleware to deploy AI4DB tasks on top of any
native database. It provides all required elements to deploy AI4DB
tasks and attains a number of attractive features, including:

e PilotScope is easy-to-use for database users. The database user
could access PilotScope to start any AI4DB task as needed
and operate the database as usual. The execution of any AI4DB
algorithm is totally transparent to the database user.



e PilotScope enables ML and DB developers to work indepen-
dently to play their own strengths in developing ML and DB
programs. They do not need to learn and care about the details
on the other side.

e PilotScope attains high generality. It could support deploying a
variety of AI4DB tasks on different database systems. Moreover,
it could be easily extended to new tasks and new systems.

Due to space limits, we put a detailed comparison between
PilotScope and related works, i.e., composable DBMS [43] and
other deployment systems [14, 34, 36, 41, 42], in Appendix A of the
full paper [61]. Our contributions in PilotScope, including design,
implementation and applications, are summarized as follows:

1) We propose a comprehensive framework in PilotScope to
facilitate the implementation of AI4DB algorithms and their de-
ployment into databases. PilotScope abstracts the requirements
of multiple typical AI4DB algorithms and is highly user-friendly to
support them in a unified manner.

2) We design a novel mechanism to allow ML and DB devel-
opers to work independently in PilotScope. This is achieved by
abstracting a DB interactor interface between AI4DB algorithms
and databases. The ML developers could focus on writing AI4DB
algorithms using this interface without caring about the database
details. The same copy of an AI4DB algorithm could steer any
database in a unified manner. On the DB side, the DB interactor is
implemented as lightweight patches on each steered database by
its native DB developers. In different databases, the DB interactor
is implemented by DB developers in different ways.

3) We highly abstract several simple but robust operators, namely
push and pull, for data interaction between ML algorithms and
databases. Through these two operators, PilotScope can utilize a
simple flow to collect various types of data, inject AI4DB tasks and
enforce actions in the databases. We have implemented a number
of specific push and pull operators, such as sub-query extraction
and setting cardinality, in the query optimization workflow.

4) We provide an open-source implementation of PilotScope.
In our open-source repository, we implement 15 algorithms in four
representative AI4DB tasks, namely knob tuning, index recommen-
dation, cardinality estimation and end-to-end query optimizer, in
PilotScope and apply them to steer two well-known databases,
i.e., PostgreSQL and Spark. Moreover, we show our system design
and implementation in PilotScope are easily extended to support
other AI4DB tasks and database systems.

5) We conduct a comprehensive evaluation to show the bene-

fits and overheads by deploying AI4DB tasks in databases using
PilotScope. The experimental results demonstrate that the over-
head brought by PilotScope is negligible. Whereas, the benefits
and shortcomings of different AI4DB algorithms are clearly exposed
through benchmarking, which could serve as valuable insights for
future research iterations.
Organization. Section 2 overviews the PilotScope system. Sec-
tion 3 introduces the detailed programming model in PilotScope.
Section 4 exhibits how to apply PilotScope for a number of rep-
resentative AI4DB tasks. Section 5 describes the implementation
details. Section 6 reports the evaluation results on PilotScope.
Section 7 concludes the paper and discusses future work.

2 SYSTEM OVERVIEW

2.1 A Quick Start

PilotScope is a middleware that largely reduces the difficulties of
applying and developing AI4DB tasks in databases. To DB users,
PilotScope is very easy-to-use by accessing its console and typing
several commands (green arrows in Figure 2(b)). First, the user
types a command to ask PilotScope to start an instance to con-
nect and log into the database. After establishing the connection,
PilotScope takes control of the database. Then, the user types
another command to start an AI4DB task, e.g., learned query op-
timizer, on the database. After that, the user could operate the
database with this connection as usual. PilotScope could identify
the commands and send them to databases to execute if needed.
Whenever the AI4DB task needs to be invoked, e.g., the user ex-
ecutes a SQL query, the database would automatically apply the
learned query optimizer to replace the traditional component. To
database users, PilotScope and the underlying AI4DB algorithms
are totally transparent. They just need to learn several new com-
mands and experience the benefits of AI4DB algorithms.

In this section, we show the system architecture of PilotScope
in Section 2.2. Then, we introduce its detailed workflow and work-
ing paradigm in Section 2.3 and Section 2.4, respectively.

2.2 System Architecture

The system architecture of PilotScope is shown in Figure 2(a).
PilotScope provides a console to operate the whole system. It
manages multiple AI4DB drivers and the DB interactor. The DB
interactor contains an interface connecting AI4DB drivers with
databases. Each database steered by the AI4DB drivers is attached
with its specific implementations of DB interactor. The role of each
component is described as follows.

2.2.1 Al4DB Driver. In PilotScope, each AI4DB task, which tar-
gets to replace a database component, is packaged as a driver. Each
driver contains: 1) an AI4DB algorithm describing the algorithmic
workflow, e.g., how to learn to generate the execution plan in a
learned query optimizer; 2) one or more ML models to be consulted
in the AI4DB algorithm, e.g., the execution time prediction model in
alearned query optimizer; and 3) the training and inference function
for each ML model. The algorithms and models in the driver are all
written in an Al-friendly language, e.g., Python. The PilotScope
integrates a runtime environment with the third-party dependencies
and libraries to support their execution.

2.2.2  Interface of DB Interactor. This component shields the under-
lying details of different databases and serves as a unified bridge for
drivers to interact with the databases. We abstract two operators,
namely push and pull, to meet the requirements of AI4DB tasks
(see Section 1.1).

The push operator allows AI4DB tasks to send requests to the
databases while the pull operator extracts data from the databases.
Through their cooperation, the AI4DB task could enforce actions
in database and exchange data with the database. Our push and
pull operators are more powerful and general than APIs provided
by databases. In our design, we could apply multiple push and
pull operators in a logic order, e.g., we could set the database flags
using push, execute a query, and then obtain its generated plan and
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Figure 2: System architecture and workflow of PilotScope.

execution time using two pull operators. The details to apply these
operators are introduced in Section 3.

The push and pull operators are also applied to inject AI4DB
tasks into databases. Based on them, PilotScope abstracts the
injection interface as a configurable parameter for AI4DB drivers.
The driver only needs to specify the type of injection interface for
itself, e.g., a learned knob tuner or a learned cardinality estimator.
Then, PilotScope would automatically invoke its AI4DB algorithm
to replace the original database component when needed.

Besides, we also apply the push/pull operators to collect data,
e.g., estimated cardinality, plan cost and query execution time, from
databases for model training. We also discuss how to apply them
in Section 3 and defer the implementation details to Section 5.

2.2.3 Implementations of DB Interactor on Databases. The DB in-
teractor is implemented in different ways on different databases.
However, all of them satisfy the same interface of DB interactor
and fulfill the required functions. In such a way, each driver could
apply the interface to steer different databases with minimum mod-
ifications. In practice, the implementations are often developed as
lightweight patches, e.g., hook functions, to the database codebase
so that the changes incurred to the database kennel are minimal.

2.3 Workflow of PilotScope

As shown in Figure 2(b), after the database user establishes the
database connection and starts a driver through PilotScope con-
sole, the driver starts to collect the pre-defined training data from
databases. For example, the query execution time would be col-
lected for training the time prediction model in the learned query
optimizer. After collecting enough data, the driver would start to
train each model using the provided training function. As an option,
the users could tune the hyper-parameters before model training.

After finishing model training, the AI4DB algorithm in the driver
would wait to be executed. When needed, it would be invoked by
PilotScope to replace the original database component, e.g., the
learned query optimizer is called whenever the database user exe-
cutes a SQL query. It obtains the inputs from the injection interface
(e.g., the query), executes its algorithm in the runtime environ-
ment in PilotScope, consults the ML models using the provided
model inference functions and interacts with the database through
push/pull operators to fulfill its job. After it finishes executing, the
injection interface sends its result (e.g., the selected execution plan)

to the database. For some drivers, the ML models are updated in
the background to keep track of database changes.

Notably, for all drivers designed for the same task, e.g., differ-
ent learned cardinality estimation methods, PilotScope allows to
open at most one driver at any time or else they would make con-
flicts. For different tasks, PilotScope supports opening multiple
drivers for them at the same time, e.g., a learned knob tuner and
alearned cardinality estimator in Section 6.4. Due to the stability
and unpredictable behaviors of ML models [23, 50], PilotScope
also provides a validation mode to safely tune and test AI4DB tasks.
In this mode, the AI4DB task could be applied as usual. However,
when quitting this mode, PilotScope would automatically recover
the database settings (e.g., knobs or indices) as original.

2.4 A Collaborative Working Paradigm

The whole working paradigm to integrate an AI4DB algorithm
into the codebase of a database includes the designing, developing
and maintenance phases. In existing systems [34, 41, 46], ML and
DB developers need to work closely and know about each other
in the whole paradigm. Whereas, PilotScope allows ML and DB
developers to work more independently and focus on their own
fields, especially in the developing phase.

Designing Phase. As shown in Figure 3, at the initial stage, the
ML researchers design the AI4DB algorithm and ML models to
solve the database task. During this phase, they need to learn about
the background knowledge of the database task to formulate it into
an ML problem and select proper features, models and loss func-
tions to solve it. We note that the ML researcher often just requires
high-level knowledge, e.g., the task inputs, outputs, traditional ap-
proaches and constraints, but does not need to know about the
implementation details. Thus, the ML researchers could consult the
DB developers in a conceptual view or refer to a database seminar
book to acquire such knowledge by themselves. The connections
between the ML researchers and the DB developers are not tight.
Developing Phase. Then, the ML developers (possible the ML
researchers themselves) define the AI4DB driver for the target
database task and configure its injection type. After that, they write
the AI4DB algorithm, inference and training functions for each
model in the Al-friendly language. In this process, the existing
interface of DB interactor may not meet their requirements. For
example, there does not exist an injection interface for such a task
or a push/pull operator to transfer a new type of data. The ML
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w.r.t. different roles.

developers just define the inputs and outputs of these new interfaces
and send the requests to the DB developers.

On the DB side, the DB developers for a native database are
responsible for implementing the requested interfaces on databases.
These developers are familiar with the underlying codes of databases,
so they could find the best way to implement the interfaces as light-
weight patches using the database language. Notably, implementing
these patches is much easier than integrating a complete ML pro-
gram into databases. What they do is just like their ordinary work
on developing new features on the native database.

In this paradigm, the ML developers are liberated from the data-

base details. The only connection between ML and DB developers is
the interface of DB interactor. In our open-source PilotScope, we
have defined the interface for some representative tasks (see Sec-
tion 4) and implemented the interface on PostgreSQL and Spark (see
Section 5). In the future, the interface of DB interactor and related
implementations could be gradually enriched by the open-source
community and commercial database companies.
Maintenance Phase. After an AI4DB driver is deployed, the ML
researchers could also update models and monitor their perfor-
mance according to user feedback through PilotScope. For model
updating, we provide commands in PilotScope console to allow
researchers (or users) to tune the model hyper-parameters and re-
train the model manually. The researchers could also pre-define
some events in the AI4DB algorithm to update the model automati-
cally. For example, in Section 4.4, for the learned query optimizer,
we apply a timer to retrain the model periodically to keep track
of data and workload changes. For performance monitoring, the
researchers are required to bury some functions in the AI4DB algo-
rithm to export necessary statistical data. Then, users could access
such data for monitoring. In our future work, we would integrate
more off-the-shelf tools with PilotScope to improve the conve-
nience of performance monitoring.

3 PROGRAMMING MODEL

We introduce the programming APIs for DB interactor operators,
ML model and driver. Figure 4 and Figure 5 list all programmable
APIs and some examples. We describe the details as follows.

DB Interactor Operator APIs. In PilotScope, we use the con-
cept of a session to define the interaction process between the AI4DB
algorithm and the database. In each session, the PilotScope cre-
ates and maintains a new connection e.g., a database session, to
enforce actions in the database. Each session is created with the
API session_start(), which returns a session_id to mark this session,

def session_start():
# create a new session and return its session_id
def session_end(session_id):
# close the session specified by session_id
def session_exec(session_id):
# execute all operators registered before it
def push(session_id, data_type, data_name, data_value)
# send data from ML side to the database side
# data_type: type of the data, including FLAG, INDEX, VIEW,
# QUERY, SUB_Q, CARD, COST, PLAN, TIME
# FLAG, INDEX, VIEW: database flags, indices and views
# QUQEY: SQL query, SUB_Q: sub-queries of input query
# CARD, COST, PLAN, TIME: estimated cardinality, plan cost, execution plan
< and plan execution time of the input query
# data_name: only appliable for FLAG, null for others
# data_value: the value of the data
def pull(session_id, data_type, data_name)
# acquire data from database side to the ML side
interaction_example(x, y, Q, C)
sid = session_start()
push(sid, FLAG, x, y)
push(sid, QUERY, null, Q)
push(sid, CARD, null, C)
P = pull(sid, PLAN, null)
t = pull(sid, TIME, null) # P and t are placeholder noew
sesssion_exec(sid) # execute the above push and pull operators
# The value of P and t are obtained only after sesssion_exec
Do sth. using P, t
session_end(sid)

de

3

Figure 4: Programming APIs of DB interactor operators.

and is released by session_end(). In each session, we could enforce
the actions to databases, e.g., updating its configurations, sending
or acquiring data, using multiple push() and pull() operators.

The parameters of the two operators include session_id, data_type,
data_name and data_value. Here, data_type refers to the type of
data we send to or acquire from the database. We define a variety
of data types to support the AI4DB tasks in the query processing
workflow (see details in the comments in Figure 4). The parameter
data_name is only applicable for flags, which refers to the specific
flag name, e.g., max_memory_size. It is set to null for other data
types. For the push operator, the parameter data_value indicates
the value of the data we send to the database.

Notably, in each session, we could apply multiple push() and
and pull() operators. However, they are not executed immediately
but just define the logic order of the operators. We apply the API
session_exec() with a session_id to execute all operators registered
in front of it. In such a way, we could exchange multiple types of
data and/or enforce different actions for the same query.

For example, in the interaction_example() function in Figure 4,
we create a new session sid. We first use push(sid, FLAG, x, y) to
set the database flag x to value y. Then, we push a query Q to
execute and apply push(sid, CARD, null, C) to replace its estimated
cardinality to C. After that, we could acquire the newly generated
plan P and its execution time ¢ of query Q using two pull() operators.
Notably, at this time, P and t are just two placeholders. Their value
would be instantiated after invoking the session_exec() APL Finally,
we close this session using the session_end() APL
Model and Driver APIs. For each new driver class, it needs to
override the init() and algo() functions. The init function initializes
the object of this driver. Specifically, we need to do the following
necessary jobs in it: 1) specify the injection type, e.g., a member
variable, of the driver class; 2) initialize the models to be used in
the AT4DB algorithm; and 3) collect training data and train ML




def collect_data(data_type, data_size, data_addr):
# collect raw data from database for model training
# data_type: CARD, COST, PLAN, TIME
# data_size: the size of data to be collected
# data_addr: the address to store the collected data
class model(args):
def model_train(train_data, args): # model training
def model_inference(inference_data, args): # model inference
class driver(injection_type, args):
# inference_type: the injection type for the task,
# including INJ_KNOB, INJ_INDEX, INJ_CARD, INJ_E2EQO
def init():
self.injection_type = injection_type
Collect data to perform model training
Add customized functions here
def algo(args):
Do sth. according to the AI4DB task... ...

Figure 5: Programming APIs of model and driver.

models. Developers could also add customized codes to implement
other functions,e.g., periodic model updating using a timer. For
the injection type, we provide four options for the sample appli-
cations in Section 4, namely INJ_KNOB, INJ_INDEX, INJ_CARD
and INJ_E2EQO to inject the learned knob tuning, index recom-
mendation, cardinality estimation and end-to-end query optimizer,
respectively.

The algo() function, which describes the AI4DB algorithm, ap-
plies ML models and DB interactor operators to accomplish the
AI4DB task and is called by PilotScope when needed.

For training data collection, we provide the API collect_data()
to obtain statistical data from the databases. It has three parame-
ters: 1)data_type for the type of data to be collected. We provide
the option CARD, COST PLAN and TIME to obtain estimated car-
dinality, plan cost, execution plan and query execution time, re-
spectively; 2)data_size indicates the size of data to be collected;
and 3)data_addr refers to the address to store the collected data.
Users could filter or process the collected raw data for model train-
ing. Both our injection interface and training data collection are
implemented using the DB interactor operators. We discuss the
implementation details and the extension method in Section 5.

4 SAMPLE APPLICATIONS

In this section, we exhibit how to apply PilotScope for specific
AI4DB tasks. In our open-source repository, we implement 15 ML-
based algorithms for four representative tasks mentioned in Sec-
tion 1.1. Notably, the AI4DB drivers for knob tuning and index
recommendation work on the query workload level. They aim at
configuring the databases to optimize their overall performance on
the workload and are invoked upon user requests, e.g., the query
workload characteristics have significant changes. Whereas, the
AT4DB drivers for cardinality estimation and query optimizer work
on each singleton SQL query. They accept each input SQL query
and inject the cardinality or execution plan generated by the AI4DB
methods to improve its performance. Aside from these well stud-
ied problems, we also show PilotScope could support some new
AI4DB tasks. Due to space limits, in Appendix B of the full pa-
per [61], we apply our PilotScope to deploy an AI4DB method
proposed in [51] to eliminate regressions on learned query optimiz-
ers. In the future, PilotScope will be continuously updated to stay
aligned with the state-of-the-art literature in AI4DB.

class model_knob():
model_train(train_data):

model_inference(X, v, M):

return predicted_metic # predicting metric M when applying value v of X

class driver_knob(K, S): # opened and invoked by user request
def init():
self.injection_type = INJ_KNOB
self.knob_model = model_knob() # pre-trained offline
algo(X, W, M): # tune knobs X in K with workload W to optimize metric M
Set the initial value v of X
sid = session_start()
for i in range(MAX_ITER):
push(sid, FLAG, X, v)
session_exec(sid)
for each Q in W:
push(sid, QUERY, null, Q)
exec_time = pull(sid, TIME, null) # by metric M
session_exec(sid)
Update self.knob_model using W, v, exec_time
for each new value n_v:
predict.add(nv, self.knob_model.inference(X, n_v, M))
v = argmin (nv, predict) # update the new value to v
session_end(sid)
return v

de

3

Figure 6: The PilotScope model and driver for knob tuning.
4.1 Knob Tuning

Let K = {ki,ky, ..., kn} be a set of tuneable system knobs in the
databases, e.g., work memory size and maximum connections. For
the knob k;, let S; denote its domain size. Let S = S; X - - - X Sp,. The
knob tuning problem asks to find a combination of knob values
(s1,82,...,8n) € S such that an objective performance metric M,
e.g., query execution time or system throughput, is maximized.

PilotScope could well support the general workflow of knob
tuning algorithms discussed in Section 1.1.1. As shown in Figure 6,
we define a driver driver_knob with the parameters K and S on
all tuneable knobs and their domain. It applies the injection type
INJ_KNOB. In PilotScope, the user could apply the command
“auto knob tune -X, -W -M” to tune knobs X C K on databases using
workload W to optimizer metric M. The query workload W could be
regarded as the training data for the driver. The injection interface
would pass the parameters to the algo() function in driver_knob
and execute it immediately.

In the init() function of driver_knob, it builds an ML model
model_knob to predict the metric M when applying value v for
knobs X C K. This model is often pre-trained offline and would be
gradually updated in executing the algorithm. In the algo() function,
it first sets an initial value v for knobs in X. Then, we start a database
interaction session to set the value of knobs X to v, execute each
query Q € W and collect its metric M, e.g., the query execution time,
by the push() and pull() operators. After finishing execution, we use
the exact value of metric M to refine the model parameters, predict
the metric value of each candidate and update the knob value v to
the new value with the minimum predicted number. Finally, the
knob value v of X is returned. The injection interface is responsible
for setting the knob value in databases (see implementation details
in Section 5). Notably, such drivers are not frequently invoked
and the iteration over the training workload W could be done in
the background in databases. Therefore, it would not consume too
many resources to affect the normal service of the databases.

This framework could support a variety of advanced knob tun-
ing algorithms mentioned in [27]. We implement two Bayesian
optimization methods SMAC [25] and GP-BO [44] and an RL-based



class driver_index(): # opened and invoked by user request
def init():
self.injection_type = INJ_INDEX
def algo(C, W, B): # select indices from C with workload W under budget B
Set the initial D of candidate columns
sid = session_start()
for i in range(MAX_ITER):
push(sid, INDEX, null, D)
session_exec(sid)
for each Q in W:
push(sid, QUERY, null, Q)
plan_cost = pull(sid, COST, null)
session_exec(sid)
Update D according to plan cost with some strategies
session_end(sid)
return D

Figure 7: The PilotScope driver for index recommendation.

method DDPG [57]. They have been shown to have better perfor-
mance on DBMS tuning in recent studies [27, 58].

4.2 Index Recommendation

Let C = {c1,¢2,...,¢m} denote a number of columns where we
could build an index. For column c;, we denote its index size as
s(c;). For any query Q, let cost(Q, D) denote the cost of executing
Q with indices on all columns in D C C. Given a workload W, the
index recommendation problem asks to find the D such that: 1) the
index size ),.cp s(c) < B is no greater than the budget B; and 2)
the cost Y gew cost(Q, D) of executing W is minimized.

Similar to knob tuning, PilotScope could also build a driver
driver_index for index recommendation. It applies the injection type
INJ_INDEX. In similar, the user applies the PilotScope command
“auto index recom -C, -W -B” to recommend indices on columns C
using the training workload W under budget B.

As shown in Figure 7, the AI4DB algorithm in driver_index also
works in iterations from an initial set D C C. Then, we start a
session and use the push() operator to set the database index to D
before each loop. We execute all queries Q € W and collect their es-
timated cost. After that, the candidate columns D are updated using
some strategies and returned in the final. We implement multiple
algorithms with different index updating strategies in our open-
source repository, including: 1) AutoAdmin [16], DB2Advisor [49],
DTA [1] and Extend [45] starting with the empty set and adding
indices each time; 2) Drop [52] and Relaxation [13] starting with
a large set and reducing indices each time; and 3) linear program-
ming, such as CoPhy [19]. AutoAdmin (also DTA) and DB2Advisor
have been applied for commercial databases SQL Server and DB2,
respectively. Some work [20] also applies learned models to search
and update the index in each iteration. We could also deploy the
learned view advisor task in PilotScope in a very similar way to
index recommendation. We omit the details due to space limits.

4.3 Learned Cardinality Estimation

Unlike with knob tuning and index recommendation, cardinality
estimation needs to be called whenever the database executing a
SQL query. As shown in Figure 8, in the driver class driver_card, we
set its injection type to INJ_CARD in the init() function. We build an
ML model model_card for cardinality estimation. For query-driven
and data-driven methods, the models are trained using different
data. Specifically, for query-driven models, we apply the API collec-
tor_data() to collect the estimated cardinality of queries for model

class model_card():
model_train(train_data):

model_inference(Q): # return estimated cardinality for query Q

return est_card

class driver_card(): # opened by user, invoked for each input SQL query
def init():
self.injection_type = INJ_CARD
train_data = collect_data(CARD, MAX_SIZE, data_addr)
# for data-driven models, access the tables for train_data
self.card_model = model_card()
self.card_model.model_train(train_data)
Collect train_data when needed
Set timer to call model_train() periodicallly when needed
def algo(Q): # input query Q
sid = session_start()
push(sid, QUERY, null, Q)
SQ = pull(sid, SUB_Q, null)
session_exec(sid)
new_cards = self.card_model.model_inference(SQ)
session_end(sid)
return SQ, new_cards

Figure 8: The PilotScope model and driver for cardinality
estimation.
training. For data-driven models, we could directly access the data
in database tables to build the unsupervised models. Sometimes,
the model needs to be updated. At this time, we could start a back-
ground thread to continuously collect training data and set a timer
to invoke the model_train() function for updating in periodical.
In the algo() function, for the input query Q (passed by the
injection interface), we estimate the cardinality of each sub-query
Q’ of Q. To this end, our pull operator provides the function to
obtain all sub-queries SQ of Q in a batch manner. This would save
the communication cost but need to adapt the traditional databases
a bit. After estimating the cardinality of all queries in SQ, we return
them together with the new cardinality. Notably, our injection
interface also supports replacing the cardinality of all sub-queries
in a batch manner. We defer the implementation details in Section 5.
Our driver_card could seamlessly support any learned cardi-
nality estimation method. In our open-source repository, we inte-
grate several representative methods, namely MSCN [29], Neuro-
Card [54] and DeepDB [24] using supervised deep neural networks,
unsupervised auto-regression model and sum-product networks,
respectively. They have exhibited superior performance in some
benchmark evaluations [23, 47]. Other learned components in query
optimizer, such as query rewriter, cost model or join order search
method, could also be deployed using PilotScope in a similar way.

4.4 Learned Query Optimizer

PilotScope also supports deploying learned end-to-end query op-
timizers to directly generate plans for SQL queries. As discussed in
Section 1.1.3, different methods apply different strategies for candi-
date plan search and different models for plan selection. Specifically,
Neo [40] and Balsa [53] search the plan search by themselves using
a (bounded) best-first search strategy and an ML model to predict
the execution time of each (partial) plan. Therefore, their train-
ing cost and query optimization time are very long. Alternatively,
Bao [39], HyperQO [55] and Lero [60] tune the native query op-
timizer with different knobs to generate a set of candidate plans.
Their performance is shown to be much better than others [39, 60].
We present the pseudocodes to implement Bao in Figure 9. Lero
and HyperQO could be implemented in a similar way.



class model_prediction():
model_train(train_data):

return est_exec_time

class driver_bao(H): # opened by user, invoked for each input SQL query
# parameter H: set of hints for the database

def init():
self.injection_type = INJ_E2EQO
train_data = collect_data(TIME, MAX_SIZE, data_addr)
self.predict_model = model_prediction()
self.predict_model.model_train(train_data)
Collect train_data
Set timer to call model_train() periodicallly
algo(Q): # input query Q
for each h in H:

sid = session_start()

push(sid, FLAG, hint, h)

push(sid, QUERY, null, Q)

Ph = pull(sid, PLAN, null)

session_exec(sid)

session_end(sid)

PS.add(Ph)
plan_time = self.predict_model.model_inference(PS)
P = argmin(PS, plan_time)
return P

de
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Figure 9: The PilotScope model and driver for end-to-end
query optimizer Bao in [39].

In our driver_bao class, we set its injection type to INJ_E2EQO.
We apply an ML model to predict the execution time of each plan
and collect query execution time for model training. According to
its requirements, we collect data in the background and retrain the
model in periodical. For the query Q, Bao tunes the native query
optimizer with different flags of hints to enable/disable certain oper-
ators, e.g., hash_join or index_scan, to generate different candidate
plans. By enabling or disabling certain operators, we could enforce
the native database to try different code paths and produce possible
better plans. To this end, we require to pass the set of all possible
hints H as an input parameter for the driver_bao class. This allows
us to apply different hints for different databases.

In the algo() function, for each hint h € H, we start a new
session to set hint flags to h, send the query Q to the database and
obtain the generated candidate plan Ph. Notice that, unlike knobs
and indices, tuning the flags of hint would only affect the current
database session. After obtaining all candidate plans, we consult the
prediction model to find and return the best plan P. The injection
interface is responsible for sending P to a database for execution.

The HyperQO method applies flags of leading hints on join
orders. It could be implemented by just replacing the hint flag h
with the leading hint flag. Lero has two differences with Bao. First,
it applies a learning-to-rank model to produce the relative order
of plans for the same query. We also collect the query execution
time but perform model training and inference in different ways
(see details in [60]). Second, Lero scales the estimated cardinality of
sub-queries with different factors s to produce different candidate
plans. To deploy Lero, we just need to pull the estimated cardinality
of all sub-queries of Q, scale the estimated cardinality and push the
new cardinality back to the database to produce different candidate
plans. We omit their pseudocodes due to space limits.

5 SOME IMPLEMENTATION DETAILS

In this section, we discuss implementation details in PilotScope,
including the DB interactor operators (in Section 5.1) and the related

injection interface and data collection (in Section 5.2). Based on
them, we show how PilotScope could support to simultaneously
apply multiple AI4DB tasks in Section 5.3. Finally, we introduce how
to implement the validation execution mode and fault tolerance
mechanism in PilotScope (in Section 5.4).

5.1 DB Interactor Operators

5.1.1 The General Approach. We attach the original database with
some lightweight patches to enable the interaction with AI4DB
algorithms. We describe our approach to support the AI4DB tasks
for the query processing workflow (listed in Section 1.1). As shown
in Figure 10, we insert a number of blue nodes, called anchors and
some new flags, into the original query processing workflow. They
represent the new patches added to the database codebase.
Specifically, we add two anchors before and after each database
component. When the AI4DB algorithm starts a new database in-
teraction session using session_start(), we prepare an empty prefix.
This prefix records: 1) all variables in the AI4DB algorithm sent to
the database component (in push operators) and 2) all intermediate
data produced by the database component acquired by the variables
in the algorithm (in pull operators). When executing session_exec(),
this prefix is sent to the database side. Then, the database starts
to invoke the query processing workflow to call each database
component, ie., checking the configurations, query rewriter, query
optimizer and executor, one by one. Before each component, the
anchor marked with push examines whether there exists a request
in the prefix to replace its input. If so, we replace its original input
data with the value provided in the prefix. After each component,
the anchor marked with pull checks whether we need to pull its
output. If so, we fill the value of the corresponding variable into
the prefix. After executing all required components, the database
returns the prefix to the ML side to instantiate the value of the
variables in the AT4DB algorithm. The prefix is reset to be empty.
For the interaction_example shown in Figure 4, it registers three
push and two pull operators before session_exec(). We illustrate
the prefix in Figure 10. In execution, the database first updates the
flag x in configurations to y and then starts executing query Q (see
the two dash arrows). Before the cardinality estimator, it replaces
the estimated cardinality with variable C provided in the prefix.
Then, the database generates the query plan and fills the value of
variable P (see the dash arrow to t). After that, it executes the plan,
obtains its execution time and fills in the value of variable ¢. P and
t are returned to the ML side to instantiate the value of the two
variables.
5.1.2  Our Implementation Strategy on PostgreSQL and Spark. Later,
we could implement the DB interactor interfaces in multiple databases
by its developers. The interfaces consist of three modules: the query
parser module, the data transmission module, and the anchor mod-
ule. The query parser module is responsible for adding and resolving
the prefix before each SQL query. We could simply add its code
before the SQL query processing codes in the database. In our im-
plementation, we store all information in the prefix in the common
JSON format. The data transmission module receives the prefix
from the database to instantiate the value of the variables in the
AI4DB algorithm. We implement it using a standardized HTTP
transmission method. In terms of the code complexity, the query
parser and data transmission modules are relatively easy.
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The anchor module demands a proficient knowledge of the data-
base codebase. However, in comparison to injecting a whole AI4DB
algorithm into the database codebase, it is much easier as it just
embeds a number of functions into the query execution process.
On each specific database, e.g., PostgreSQL and Spark, we could
even implement some anchors with off-the-shelf tools provided by
the database to incur minimal changes to its kernel.

First, some anchors could be achieved by directly using database
commands. On PostgreSQL, we directly use the “SET” command to
set knobs, indices and views and the “EXPLAIN” command to pull
the execution plan and its cost. On Spark, for a Spark session, we
directly set the values of knobs in “SparkSession.config”. For hint
flags, we could set them together with the SQL queries in “SparkSes-
sion.sql”. To get a plan, we could apply “DataFrame.explain("plan")”.

Second, some anchors are implemented using the database hooks,
which are interfaces provided by the database itself to inject codes.
In PostgreSQL, we apply its hook mechanism provided by the
pg_hint_plan plug-in unit in [7] to set hint flags. We also use the
two hook functions ExecutorStart_hook and ExecutorEnd_hook to
get plan execution time.

Finally, we write the functions of all remaining anchors, e.g., sub-
query extraction, join order setting and other push/pull operators
on PostgreSQL and Spark, as patches and insert them into the right
place of the database codebase. The code complexity of each anchor
depends on the complexity of setting or collecting the specific data.
For example, collecting the execution time is relatively easy by
deploying timers before and after the execution. However, collecting
all sub-queries in a batch manner can be a bit complex. In the query
processing workflow, each sub-query is proceeded by the cardinality
estimation function one by one. Therefore, the developer needs to
embed codes into the cardinality estimation function to collect all
sub-queries together.

5.2 Injection Interface and Data Collection

The injection interface and data collection are all built upon DB
interactor operators. The code complexity to implement them is
very low. We describe the details as follows.
5.2.1 Injection Interface. Recall that, in PilotScope, we maintain
a connection for each user to operate the database (see Section 2.1).
Unlike the database sessions that are created by AI4DB algorithms,
this database session is created by a user. PilotScope automatically
records its identifier of this session, denoted as mid. Based on it,
we could affect its behaviors using the DB interactor operators to
inject AI4DB algorithms.

We divide all AI4DB tasks into two types. First, for tasks like
knob tuning and index recommendation, they are invoked upon
user request using PilotScope commands. We only need to send

their results, e.g., knob value and indices, into the database. This
is fairly easy. For knob tuning discussed in Section 4.1, after the
user types the command “auto knob tune -X, -W -M”, the Al4DB
algorithm in the knob tuning driver is executed. When it finishes,
PilotScope obtains the value v for knobs X. Then, it executes
push(mid, FLAG, X, v) and session_exec(mid). The knobs in the
databases would be tuned according to the AI4DB algorithm. For the
index recommendation task in Section 4.1, the injection approach
is similar. For similar tasks, such as learned view advisor [26, 56],
they could also be supported by PilotScope in this manner.

Second, for tasks like cardinality estimation and query optimizer,
they need to be invoked by the database when needed. To this
end, we add two flags, namely use_learned_ce and use_learned_qo,
as patches in the database (see Figure 10). These flags are closed
by default. If the user opens a driver, PilotScope applies push()
and session_exec() with mid to open the corresponding flag in the
database. Our anchors added before the cardinality estimator and
query optimizer (marked as flags in Figure 10) would check the
flags. If it is opened, it would ask PilotScope to invoke the AI4DB
algorithm and pass the input parameters to it. After the algorithm
finishes, PilotScope sends the result, e.g., the new cardinality or
plan, to the anchor. The anchor would skip the original component
and apply the new result for the downstream procedures. Simi-
larly, we could extend PilotScope to support tasks such as learned
query rewriter [12, 17, 38], cost model [28, 35], join order search
methods [18, 48] and learned index [21, 22, 31].

5.2.2 Data Collection. For each type of collected data, e.g., query
execution time, we could collect it using the pull operator. Specifi-
cally, when we start the collect_data() API, we add a pull() operator
on the collected type of data before executing each SQL query. Our
anchor (marked as pull & collect in Figure 10) would check the
pull() operator in the prefix and send the data to PilotScope if
it is opened. PilotScope would write the data into the address
specified in the collect_data() APL If the collected data reaches the
desired size, the collect_data() API closes the flag. Following this
approach, we could extend PilotScope to collect more statistical
information from the databases.

5.3 Applying Multiple AI4DB Tasks in PilotScope

PilotScope supports applying multiple AI4DB tasks on one data-
base at the same time. For AI4DB tasks having no overlaps in the
execution workflow, PilotScope could execute them in order. For
example, we could first apply a learned knob tuning method and
then execute a query using a learned cardinality estimator. Besides,
in query execution, we could apply a learned query rewriter and a
learned query optimizer at the same time.



However, for AI4DB tasks having overlapped functions, e.g.,
cardinality estimator and query optimizer, the situation is a bit com-
plex. In developing each injection interface, PilotScope requires
the ML developers to specify whether it has overlaps w.r.t. other
injection interfaces. Based on these, PilotScope could identify
the conflicts between different drivers. The user could tune the
priority of each driver in PilotScope. In execution, PilotScope
could automatically apply the AI4DB task in the driver with higher
priority but ignore the others. In such a way, the user could select
to apply a learned cardinality estimator or an end-to-end learned
query optimizer in databases.

Note that, updating the priority of tasks only affects the database
session (marked with mid) where the user operates the database.
For tasks running in different sessions, we could apply different
priorities. We show this by the example of Bao [39], the learned
query optimizer discussed in Section 4.4. We could set the learned
query optimizer with higher priority in the database user session
(with identifier mid), so Bao would be executed for each SQL query.
In its algorithm, it iteratively creates a session (with identifier sid) to
invoke the traditional query optimizer to generate candidate plans.
In this session, we could replace the traditional cardinality estimator
with the learned one by opening its flag, i.e., adding push(sid, FLAG,
use_learned_ce, true) after session_start() in Figure 9. In this case,
the candidate plans are generated using learned cardinality while
the execution plan is obtained using Bao.

5.4 Validation Mode and Fault Tolerance

PilotScope supports the validation execution mode which could
run AI4DB tasks and automatically recover the original settings
of databases when quitting it. Meanwhile, it could tolerate faults
caused by network failures or system blocks. We apply different
strategies to implement them for the two types of AI4DB tasks
defined in Section 5.2.1.

For the first type of AI4DB tasks like knob tuning, PilotScope
records the original settings, e.g., knobs or indices, when entering
the validation mode. When quitting it, PilotScope reset these set-
tings. For fault tolerance, PilotScope sets a pre-defined wait_time
for each driver. If the algorithm exceeds its waiting time, PilotScope
restarts this job to run once again.

For the second type of AI4DB tasks like cardinality estimation,
PilotScope just closes all flags, e.g., use_learned_ce, when quitting
the validation mode. For fault tolerance, if the algorithm exceeds
the waiting time, the anchors in the database would continue to
run this job with the original database component.

6 SYSTEM EVALUATION

We conduct extensive experiments to evaluate the performance of
PilotScope. We describe our experimental setups in Section 6.1.
The conducted experiments target to answer the most crucial ques-
tions as follows:

1) How about the performance of AI4DB algorithms when de-
ployed into actual database systems using PilotScope (in Sec-
tion 6.2);

2) How much overhead does PilotScope bring in the deploy-
ment and its impact on the AI4DB algorithms (in Section 6.3);

3) What about the performance of databases when applying
multiple AI4DB algorithms together by PilotScope (in Section 6.4).

We emphasize that PilotScope only serves as a middleware
to facilitate the implementation of AI4DB algorithms and support
deploying them into databases. Thus, the performance of the AI4DB
algorithms is independent of our PilotScope. The problems to
analyze their detailed performance and design better methods are
beyond the scope of this paper. However, our PilotScope could
truly benchmark the actual performance of AI4DB algorithms in
real-world scenarios and expose their shortcomings. This would be
very helpful to iterate AI4DB research in the future.

6.1 Experimental Setups

AI4DB Algorithms and Settings. We deployed all of the 15 algo-

rithms mentioned in Section 4 on both PostgreSQL and Spark! by
PilotScope. Due to space limits, we report the evaluation results of
the most representative algorithm for each AI4DB task, namely the
SMAC [25] for knob tuning, Extend [45] for index recommendation,
DeepDB [24] for learned cardinality estimation and Bao [39] for
learned query optimizer. The reasons for selecting these algorithms
are described as follows:

1) SMAC is shown to perform better than other algorithms in
the benchmark evaluation [27, 58]. For PostgreSQL and Spark, we
obtain the set of tuneable knobs in the configuration files, including
all numerical (e.g., autovacuum_vacuum_threshold) and Boolean
knobs (e.g., enable_indexonlyscan). We tune knobs using the train-
ing workload to iterate 50 times to optimize the execution time.

2) Extend is shown to provide the best combination of runtime
and solution quality in the benchmark [30]. We use it to build
indices on all feasible columns with a budget of 250MB on memory.

3) DeepDB is verified to perform better than the other two algo-
rithms on real-world databases. The benchmark evaluation in [23]
shows that, on some datasets, the traditional query optimizer could
obtain near optimal plans when applying DeepDB for cardinality
estimation.

4) Bao and Lero [60] follow similar technical routines. We select
the set of hint flags in the same way as [2]. Its prediction model is
updated after executing every 100 queries.

For all algorithms, we use their original implementations in [3,
4,10, 11] and set all other (hyper-)parameters to the default values.

Benchmarks. We apply three benchmarks widely used for query
optimization: 1) IMDB dataset on 21 tables of movies and stars with
its JOB workload [32] containing 113 realistic queries; 2) STATS
dataset on 8 tables of user-contributed content on the Stats Stack
Exchange network with its STATS-CEB workload [8, 23] having
146 queries varying in join size and forms; and 3) TPC-DS bench-
mark [6] on synthetic data. For IMDB and STATS, we apply its JOB
and STATS-CEB workload for testing, respectively. We generate a
training workload of 1,000 queries where each time we randomly
sample a query template from JOB or STATS-CEB, fetch its join
template and attach some randomly generated predicates to it. For
TPC-DS, we set the scaling factor to 10 and generate a training and
testing workload having 4,900 and 490 queries, respectively.

! All index recommendation algorithms are not deployed on Spark since it does not
support index.



Environments. We deploy PilotScope and all databases on a
cluster of Linux machines. Each one is equipped with an Intel(R)
Xeon(R) Platinum 8163 CPU running at 2.5 GHz, 96 cores, 512GB
DDR4 RAM, 1TB SSD and one NVIDIA RTX-2080TI GPU for model
training and inference. We install PostgreSQL 13.1 and Spark 3.3.2.

6.2 Performance of AI4DB Algorithms When
Deployed using PilotScope

We evaluate the performance of each database with and without
each deployed AI4DB algorithm. Specifically, for learned knob tun-
ing (or index recommendation), we record the end-to-end time
of executing the test query workload with the knobs (or indices)
generated by the AI4DB algorithm and in the default setting, respec-
tively. For knob tuning, the default values of all knobs are provided
by the original PostgreSQL in its configuration file. For index rec-
ommendation, the default indices are set in the same way to the
original benchmark. For learned cardinality estimation (or query
optimizer), we record the end-to-end execution time of applying
the AI4DB algorithm and traditional component, respectively. No-
tably, since DeepDB does not support join queries across foreign
keys in the JOB workload, we just apply another workload called
JOB-light [54, 63] having 70 large queries on the IMDB dataset to
evaluate its performance. Notice that, JOB-light is not a subset of
JOB workload. Their queries are totally different. The results are
shown on Figure 11. In each sub-figure, the first red bar and second
light blue bar indicate the performance of the database with the
AT4DB algorithm and the default method, respectively. We observe
that:

1) The generality of PilotScope is verified, which could support
to apply different AI4DB algorithms in different databases using
one framework.

2) In most cases, the AI4DB algorithms could bring remarkable
performance improvement to databases. For example, on STATS
dataset, the end-to-end execution time is 2.71%, 1.82%, 1.32x and
1.46x faster than the original PostgreSQL using learned knob tun-
ing, index recommendation, cardinality estimation and query op-
timizer, respectively. Specifically, for the knob tuning, the SMAC
algorithm produces different values for almost all knobs, e.g., set
autovacuum_vacuum_scale_factor to 56.86 rather than its default
value 0.2. For the index recommendation, the Extend algorithm
removes all non-unique indices on 25 columns in the IMDB dataset
and recommends building indices on only four columns. On the
STATS dataset, the Extend algorithm removes all non-unique in-
dices on 12 columns and does not recommend the database building
any additional indices. Although it builds fewer indices than the
original benchmarks, it attains better performance in terms of the
query execution time.

3) In some cases, the performance of AI4DB algorithms is even
worse than the traditional database components. This is due to the
shortcomings of the AI4DB algorithms. For example, on PostgreSQL,
Bao needs to generate several dozens of candidate plans and predict
their execution time through a large model. The DB interaction
and model inference time degrade its overall performance, so Bao
performs worse than the original database query optimizer on the
IMDB even its pure plan execution time is better. On Spark, the
improvement of learned knobs is not significant due to the large
domain size of the knobs.

These results indicate the effectiveness of AI4DB algorithms
on different databases and also verify the necessity of developing
PilotScope. It could benchmark the actual performance of AI4DB
algorithms in real-world scenarios and expose their shortcomings.
This would be very helpful to iterate AI4DB research in the future.
For example, in a learned query optimizer, we need to balance the
plan quality and exploration cost to optimize the end-to-end time.

6.3 Impact and Overhead of PilotScope

Next, we examine the impact and overhead brought by PilotScope
to the databases and AI4DB algorithms.

The third bar in each sub-figure in Figure 11 reflects the exe-
cution time of query workload on PostgreSQL and Spark without
installing PilotScope. In comparison to the second bar, where the
execution time is recorded on the databases with PilotScope, the
two execution time is very close. This indicates that PilotScope
makes no difference on the native database systems. This is because
all implementations of the DB interactor are developed as light-
weight patches into the database codebase. They do not affect the
original database behaviors when no AI4DB algorithms are applied.

The right part (corresponding to the right y-axis) in each sub-
figure in Figure 11 represents the overhead brought by PilotScope
in executing query workload with each AI4DB algorithm. Specifi-
cally, the fourth to seventh bars represent the time cost of all pull
operators, all push operators, communication and I/O, respectively.
We have two observations:

1) In almost all cases, the overall overhead is negligible in com-
parison to the end-to-end execution time. Specifically, the overhead
occupies at most 0.27% and 0.066% for most AI4DB algorithms on
PostgreSQL and Spark, respectively. This verifies the success of
the design choices of our programming model, which enables the
AI4DB algorithms to transfer only a small amount of data to fulfill
their jobs. Meanwhile, we adopt some techniques, such as batch of
sub-queries, to decrease the data transfer time. The only exception
is Bao, whose interaction cost is very high as it needs to fetch a
large number of plans from databases.

2) In different AI4DB algorithms, the time cost of each type of
overhead is different. For example, DeepDB consumes the most time
on communication to pass sub-queries from databases to the AI4DB
algorithms and estimated cardinality from AI4DB algorithms to
databases. Bao costs a large time, especially on the IMDB, to invoke
traditional query optimizer to pull candidate plans. This detailed
analysis could further help us to optimize the bottlenecks of AI4DB
algorithms in actual databases. For example, how to decrease the
number of generating candidate plans in learned query optimizer
while still ensuring the plan quality.

6.4 Deploying Multiple AI4DB Algorithms
using PilotScope

Finally, we exhibit the ability of PilotScope to flexibly deploy mul-
tiple AI4DB algorithms on the same database. Notice that, these ex-
periments have never been performed in the literature. The results
are shown in Figure 12. We present three settings on PostgreSQL:
1) applying SMAC to tune knobs and then applying Bao to learn to
generate execution plans (the left two sub-figures); 2) applying the
learned query optimizer Bao, which calls the learned cardinality
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Figure 12: End-to-end execution time of multiple AI4DB algorithms on PostgreSQL.

estimation DeepDB for generating each candidate plan (the mid-
dle two sub-figures, the detailed method is discussed in the last
paragraph in Section 5.3); 3) applying SMAC to tune knobs and
DeepDB to estimate cardinality since these two methods provide
the most benefits by Figure 11 (the right two sub-figures)

We observe that the effect of applying multiple AI4DB algo-
rithms is complex. In some cases, such as Figure 12(b), (c) (e) and
(f), the performance of applying two algorithms is comparable to
applying only one. In other cases, such as Figure 12(a) and (d), the
performance of applying two algorithms is even worse than apply-
ing any single algorithm. We consider that it is possible the turned
knob value (or new estimated cardinality) affects the behaviors of
the learned query optimizer, so it explores bad plans. However, it
still needs more in-depth analysis on their correlations. Note that,
until now, there exists very little research on the impact of applying
multiple AI4DB algorithms together. PilotScope could serve as a
powerful tool to conduct research towards this direction. It is very
attractive to design AI4DB algorithms that could work together to
optimize the overall performance of databases.

7 CONCLUSIONS AND FUTURE WORK

We propose PilotScope, an AI4DB middleware with a program-
ming model to deploy and develop AI4DB algorithms in databases.

PilotScope abstracts the interactions between typical AI4DB algo-
rithms and databases into purely a simple interface that hinders the
underlying details of databases. With such abstraction, the same
AI4DB algorithm in PilotScope could be applied to steer multiple
different databases. Meanwhile, ML and DB developers could work
more independently and play to their own strengths in developing
AI4DB tasks in databases. The abstract interface is shown to be
expressive and general. It has been applied to support a variety of
AI4DB tasks and algorithms and could be easily extended to new
AI4DB tasks. Extensive experiments have verified the effectiveness
of PilotScope in terms of research and application fields.

In the future, we hope to inspire and iterate AI4DB research with
PilotScope. We target to build an open-source community for
PilotScope to attract developers to: 1) develop and evaluate more
AI4DB tasks and algorithms, including but not limited to, learned
index, database monitor and diagnosis; and 2) implement the DB
interactor to steer more databases, e.g., MySQL and MongoDB. More
over, we would try to push forward to set up a standard for the
interface of DB interactor and deploy PilotScope in real-world
production scenarios.

Acknowledgements. This work was supported by grants from
the National Natural Science Foundation of China (No. 62022077
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